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FIXED POINTS THEOREMS FOR n-VALUED
MULTIFUNCTIONS

ABDELKADER STOUTI AND ABDELHAKIM MAADEN

Abstract. We first show that if Y is a nonempty AR space and F : Y → Y
is a compact n-valued multifunction, then F has at least n fixed point. We
also prove that if C is a nonempty closed convex subset of a topological
vector space E and F : C → C is a continuous Φ-condensing n-valued mul-
tifunction, then F has at least n fixed points.

1. Introduction and preliminaries

Let X and Y be two Hausdorff topological spaces.

A multifunction F : X → Y is a map from X into the set 2Y of nonempty

subsets of Y. The range of F is F (X) =
⋃
x∈X

F (x).

The multifunction F : X → Y is said to be upper semi-continuous (usc) if
for each open subset V of Y with F (x) ⊂ V there exists an open subset U of
X with x ∈ U and F (U) ⊂ V.

The multifunction F : X → Y is called lower semi-continuous (lsc) if for
every x ∈ X and open subset V of Y with F (x) ∩ V 6= ∅ there exists an open
subset U of X with x ∈ U and F (x′) ∩ V 6= ∅ for all x′ ∈ U.

A multifunction F : X → Y is continuous if it is both upper semi-continuous
and lower semi-continuous.

A multifunction F : X → Y is compact if it is continuous and the closure of
its range F (X) is a compact subset of Y.

A point x of X is said to be a fixed point of a multifunction F : X → X if
x ∈ F (x). We denote by Fix(F ) the set of all fixed points of F.

A multifunction F : X → Y is said to be n-valued if for all x ∈ X, the subset
F (x) of Y consists of n points.
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A multifunction F : X → X is said to be an n-function if there exist n contin-
uous maps fi : X → X, where i = 1, . . . , n, such that F (x) = {f1(x), . . . , fn(x)}
and fi(x) 6= fj(x) for all x ∈ X and i, j = 1, . . . , n with i 6= j.

In this work, we shall use the following result due to H. Schirmer [11].

Lemma 1.1. [11]. Let X and Y be two compact Hausdorff topological spaces.
If X is path and simply connected and F : X → Y is a continuous n-valued
multifunction, then F is an n-function.

In [1], Borsuk first introduced the notion of AR spaces (for the general theory
see [1, 2]).

Definition 1.2. [1, 2]. A space Y is called an absolute retract space whenever

(i) Y is metrizable and
(ii) for any metrizable space X and closed subset A of X each continuous

map f : A → Y is extendable over X. The class of absolute retracts is
denoted by AR.

By Dugundji’s extension Theorem [4], we know that every nonempty convex
subset of a Banach space is an AR space. In [1], it is shown that every union
of two AR spaces, which their intersection is an AR space is also an AR space.
Recently, in [9], Park established the following result.

Theorem 1.3. [9]. Every nonempty compact convex subset of a metrizable
topological vector space is an AR space.

In infinite dimension topology the Hilbert cube I∞ is an important tool. It
is defined by

I∞ =

{
(x1, x2, x3, . . . ) : xi ∈ R and for all i ∈ N∗, |xi| ≤ 1

i

}
.

In [1], Borsuk proved the following result.

Theorem 1.4. [1]. Let K be a nonempty compact metric space. Then, there
is a closed subset K1 of the Hilbert cube I∞ and a homeomorphic map h : K →
K1.

In [11], Schirmer studied the fix-finite approximation property for n-valued
multifunction defined on finite polyhedron. Later on, in [12, 13], the first au-
thor established some results concerning the fix-finite approximation property
for n-valued multifunction defined in normed spaces and metrizable locally
convex spaces. In the present work we are interesting to study the existence
of fixed point of continuous n-valued multifunctions.

In [5, Theorem 10.8, p.94], one can find the proof of the generalized Schauder
fixed point theorem.

Theorem 1.5. [5]. Let Y be a nonempty AR space. Then, every compact map
f : Y → Y has a fixed point.
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In this note, we first prove that if Y is an absolute retract and F : Y → Y
is a compact n-valued multifunction, then F has at least n fixed points (see
Theorem 2.1). That is a generalization of the generalized Schauder fixed point
theorem [5]. By using the properties of AR spaces [1, 2], we shall show that
if Ci, for i = 1, . . . , m, is a finite family of nonempty convex compact subsets
of a metrizable topological vector space such that ∩i=m

i=1 Ci 6= ∅, then every
continuous n-valued multifunction F : ∪i=m

i=1 Ci → ∪i=m
i=1 Ci has at least n fixed

points (see Theorem 2.2).
The notion of measure of noncompactness was first introduced by Kura-

towski in [6]. In Banach spaces he defined the set-measure of noncompactness,
α, as follows:

α(A) = +∞, if A is unbounded. and if A is bounded, then

α(A) = inf{d > 0 :A can be covered with finite number

of sets of diameter less than d}.
Analogously, Gokhberg, Goldenstein and Markus (see Lloyd [7], Ch. 6) in-
troduced the ball measure of noncompactness β. The notion of measure of
noncompactness in the following definition is a generalization of the measure
of noncompactness α and β defined in terms of a family of seminorms or a
norm.

Definition 1.6. Let E be a topological vector space and L be a lattice with a
least element, which is denoted by 0. A function Φ: E → L is called a measure
of noncompactness on E provided that the following conditions hold for any
X, Y ∈ 2E:

(1) Φ(X) = 0 if and only if X is compact,
(2) Φ(coX) = Φ(X), where co denotes the convex closure of X,
(3) Φ(X ∪ Y ) = max{Φ(X), Φ(Y )}.

Definition 1.7. For X ⊂ E, a multifunction F : X → E is said to be Φ-
condensing provided that if A ⊂ X and Φ(A) ≤ Φ(F (A)), then A is relatively
compact; that is, Φ(A) = 0.

Note that every multifunction defined on a compact set is Φ-condensing.
In 2001, Cauty [3] obtained the affirmative solution of the Schauder conjec-

ture as follows:

Theorem 1.8. [3]. Let E be a Hausdorff topological vector space, C a nonempty
convex subset of E, and f a continuous map from C into C. If f(C) is con-
tained in a compact subset of C, then f has a fixed point.

By using the last result, we prove that if C is a nonempty closed convex
subset of a Hausdorff topological vector space E and F : C → C is a continuous
Φ-condensing n-valued multifunction, then F has at least n fixed points (see
Theorem 2.5).
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2. The Results

In this section, we shall establish some fixed point results for n-valued mul-
tifunctions. First, we shall show the following.

Theorem 2.1. Let Y be a nonempty AR space. Then, every compact n-valued
multifunction F : Y → Y has at least n fixed points.

Proof. Let Y be a nonempty AR space and F : Y → Y be a compact n-valued
multifunction. Let K = F (Y ). Since K is a compact metric space, then by
Theorem 1.4, there exists a closed subset K1 of I∞ and a homeomorphism
h : K → K1. Let i : K → Y and j : K1 → I∞ be the inclusion maps. Then,
the map i◦h−1 : K1 → Y is continuous. From this and as K1 is a closed subset
of I∞ and Y is an AR space, then there exists a continuous map g : I∞ → Y
which extends the map i ◦ h−1. Now, set G = j ◦ h ◦ F : Y → I∞.

Claim 1. The multifunction G : Y → I∞ is an n-valued continuous mul-
tifunction. Indeed, if x ∈ Y, then F (x) = {y1, . . . , yn} and yi 6= yj for all
i, j = 1, . . . , n with i 6= j. So, we have

G(x) = j(h({y1, . . . , yn})) = j({h(y1), . . . , h(yn)}) = {h(y1), . . . , h(yn)}.
As h is a homeomorphism, hence for every x ∈ Y the set G(x) has exactly n
elements. Thus, G is an n-valued continuous multifunction and our claim is
proved.

Claim 2. We have: F = g ◦ G. Indeed, if x ∈ Y, then F (x) = {y1, . . . , yn}
and yi 6= yj for all i, j = 1, . . . , n with i 6= j. Then, we obtain,

g(G(x)) = g({h(y1), . . . , h(yn)}) = {g(h(y1)), . . . , g(h(yn))}.
On the other hand, we know that for every i ∈ {1, . . . , n}, we have h(yi) ∈ K1.
From this and as g/K1 = i ◦ h−1, then for every i ∈ {1, . . . , n}, we get

g(h(yi)) = i ◦ h−1(h(yi)) = yi.

Therefore, F = g ◦G and our claim is proved.
Claim 3. The multifunction H = G ◦ g : I∞ → I∞ has at least n fixed

point. Indeed, since G is an n-valued multifunction, then H is an n-valued
multifunction. On the other hand G and g are continuous, so H is continuous.
Since I∞ is compact convex set, then by Lemma 1.1 H is an n-function. Hence,
there exist n continuous maps hi : I∞ → I∞, where i = 1, . . . , n, such that
H(x) = {h1(x), . . . , hn(x)} and hi(x) 6= hj(x) for all x ∈ I∞ and i, j = 1, . . . , n
with i 6= j. By using the Schauder fixed point theorem [5], we deduce that
we have Fix(hi) 6= ∅, for every i ∈ {1, . . . , n}. From this and as Fix(hi) ∩
Fix(hj) = ∅ for i, j = 1, . . . , n and i 6= j and Fix(H) = ∪i=n

i=1Fix(hi), then H
has at least n fixed points.

Claim 4. The multifunction F has at least n fixed point. Indeed, if x is a
fixed point of H, then g(x) ∈ (g ◦ G)(g(x)). On the other hand, by Claim 2,
we know that we have F = g ◦G. Then,

x ∈ Fix(H) ⇒ x ∈ H(x) ⇒ g(x) ∈ F (g(x)) ⇒ g(x) ∈ Fix(F ).
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Thus, we have
g(Fix(H)) ⊆ Fix(F ).

Now, let xi, xj ∈ Fix(H) with i, j = 1, . . . , n, i 6= j and xi 6= xj. Let

F (g(xi)) = {zi
1, . . . , z

i
n} and F (g(xj)) = {zj

1, . . . , z
j
n}. As H = G ◦ g and

G = j ◦ h ◦ F, then we have

H(xi) = {h(zi
1), . . . , h(zi

n)} and H(xj) = {h(zj
1), . . . , h(zj

n)}.
Since, xi, xj ∈ Fix(H), so there is k, l ∈ {1, . . . , n} such that

xi = h(zi
k) and xj = h(zj

l ).

From this and as h(zi
k), h(zj

l ) ∈ K1 and g/K1 = i ◦ h−1, then we get

g(xi) = g(h(zi
k)) = zi

k = h−1(xi) and g(xj) = g(h(zj
l )) = zj

l = h−1(xj).

As xi 6= xj and h is a homeomorphism, hence we get g(xi) 6= g(xj) for i, j =
1, . . . , n and i 6= j. By Claim 3, we know that the set Fix(H) has at least n
elements, so g(Fix(H)) has also at least n elements. On the other hand, we
know that g(Fix(H)) ⊆ Fix(F ). Therefore, F has at least n fixed points. ¤

For finite unions of closed convex subsets of a metrizable topological vector
space, we obtain the following result.

Theorem 2.2. Let Ci, for i = 1, . . . , m, be a finite family of nonempty compact
convex subsets of a metrizable topological vector space such that ∩i=m

i=1 Ci 6= ∅.
Then, every continuous n-valued multifunction F : ∪i=m

i=1 Ci → ∪i=m
i=1 Ci has at

least n fixed points.

Proof. Let C = ∪i=m
i=1 Ci and let F : C → C be a continuous n-valued multi-

function. By Theorem 1.3, we know that every nonempty convex subset of a
metrizable topological vector space is an AR space. In addition, it is shown
in [2] that every union of two AR, which their intersection is an AR is also an
AR. From this it follows that C is an AR space. By using Theorem 2.1, we
deduce that F has at least n fixed points in C. ¤
Remark 2.3. In Theorem 2.2, the condition ∩i=m

i=1 Ci 6= ∅ is essential. Because if
it is not the case, then there exists at least a continuous n-valued multifunction

F : ∪i=m
i=1 Ci → ∪i=m

i=1 Ci which is fixed free. Indeed, let C1 = B((0, 1), 1
2
) and

C2 = B((0,−1), 1
2
) be two compact convex in the Banach space R2 and let

f : C1 ∪C2 → C1 ∪C2 the continuous map defined by f(x) = −x. If f(x) = x,
then x = 0. That is not possible. Therefore the map f is fixed point free.

Next, we shall show the following result.

Theorem 2.4. Let C be a nonempty closed convex subset of a Hausdroff
topological vector space and F : C → C be a continuous Φ-condensing n-
multifunction. Then, F has at least n fixed points.

To prove Theorem 2.4, we recall the following result.
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Lemma 2.5. [8]. Let C be a nonempty closed convex subset of a topological
vector space E, and F : C → C be a Φ-condensing multifunction. Then, there
exists a nonempty compact convex subset K of C such that F (K) ⊂ K.

Combining Theorems 1.3 and 1.8 and Lemma 2.5, we obtain the proof of
Theorem 2.4.

Proof of Theorem 2.4. Let C be a nonempty closed convex subset of a Haus-
droff topological vector space and F : C → C be a continuous Φ-condensing
n-multifunction. By Lemma 2.5, there exists a nonempty compact convex sub-
set K of C such that F (K) ⊂ K. From this and by using Lemma 1.1 and
Theorems 1.3 and 1.8, we conclude that F has at least n fixed points. ¤

As a consequence of Theorem 2.4, we obtain the following result.

Corollary 2.6. Let C be a nonempty closed convex subset of a Hausdroff
topological vector space and F : C → C be a compact n-valued multifunction.
Then, F has at least n fixed points.
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