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SECOND ORDER PARALLEL TENSORS ON a — SASAKIAN
MANIFOLD

LOVEJOY DAS

ABSTRACT. Levy had proved that a second order symmetric parallel non-
singular tensor on a space of constant curvature is a constant multiple of
the metric tensor. Sharma [12] has proved that a second order parallel
tensor in a Kaehler space of constant holomorphic sectional curvature is a
linear combination with constant coefficients of the Kaehlarian metric and
the fundamental 2 — form. In this paper we show that a second order sym-
metric parallel tensor on an o — K contact (« € R,) manifold is a constant
multiple of the associated metric tensor and we also prove that there is no
nonzero skew symmetric second order parallel tensor on an o — Sasakian
manifold.

1. INTRODUCTION

In 1923, Eisenhart [10] showed that a Riemannian manifold admitting a
second order symmetric parallel tensor other than a constant multiple of the
metric tensor is reducible. In 1926, Levy [11] had obtained the necessary and
sufficient conditions for the existence of such tensors, Recently Sharma [12]
has generalized Levy’s result by showing that a second order parallel (not
necessarily symmetric and non singular) tensor on an n — dimensional (n > 2)
space of constant curvature is a constant multiple of the metric tensor. Sharma
has also proved in [12] that on a Sasakian manifold there is no nonzero parallel
2 — form. In this paper we have considered an almost contact metric manifold
and have proved the following two theorems.

Theorem 1.1. On an o — K contact (o € R,) manifold a second order sym-
metric parallel tensor is a constant multiple of the associated positive definite
Riemannian metric tensor.
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Now the question arises whether there is a skew symmetric second order
parallel tensor on a a — k contact manifold. We do not have an answer to it.
However we do have an answer if the manifold is oe— Sasakian where o € Ry.

Theorem 1.2. On an a— Sasakian manifold there is no nonzero parallel 2 —
forms.

2. PRELIMINARIES

A C* manifold M of dimension 2n + 1 is called a contact manifold if it
carries a global 1 — form A such that A A (dA)" # 0. On a contact manifold
there exists a unique vector field T' called the characteristic vector field such
that

(2.1) A(T) =1, (dA) (T, X) =0

for any vector field X on M. By polarization we obtain a Riemannian metric
g called an associated metric and a (1,1) tensor field ¢ on M such that

P?=—I+ART
(2.2) (dA) (X,)Y) =g (X, ¢Y)
A(X)=g(X,T)

for the arbitrary vector fields X and Y on M. If in addition to (2.1) and (2.2),
M™ admits a positive definite Riemannian metric g such that

g (@X,0Y) =g (X,Y) - A(X) A(Y)
(2.3) o(T)=0, A(p(X)) =0,V X, Y € X (M)
and rank (¢) = 2n everywhere on M.

Such a manifold satisfying (2.1), (2.2), and (2.3) is called an almost contact
metric manifold. The structure endowed in M is called (¢, A, T, g) — structure.
For a (¢, A, T, g) — structure, the skew symmetric bilinear form

(2.4) O (X,Y)=g(X,0Y)

is called the fundamental 2 — form of the almost contact metric structure.

3. SOME DEFINITIONS AND THEOREMS

Definition 3.1. An almost contact metric structure is said to be an a — K
contact structure if the vector field T is killing with respect to g.

In proving Theorems 1.1 and 1.2, we need the following theorems.
Theorem 3.1. On an a — K contact structure the following holds.
(3.1) VxT = —a¢z for all X € X (M)

where V s the Riemannian connection of g.
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Theorem 3.2. An almost contact metric structure — (¢, A, T, g) is o — Sasakian
iff

(3.2) (V.0)Y = afg (X, V)T — A(Y) X}

where V denotes the Riemannian connection of g.

Proof. The proofs of the above theorems follows in a similar fashion as in the
Theorem 6.3 by Blair [3]. O

Definition 3.2 ([2]). An almost o — Sasakian manifold M is an almost contact
metric manifold such that ¢ (X,Y) = 2dn(X,Y),a € Ry and M is a o —
Sasakian manifold if the structure is normal.

Theorem 3.3. An almost contact metric manifold M is o — Sasakian manifold
iff for all X, Y € X (M)
(3.3) RX,)Y)T=a{AY)X -A(X)Y}

Proof. The proof of the above theorem follows in view of Lemma 6.1 of Blair

3]
The two conditions of being normal and contact metric may be written as
the following:

(3.4) R(T,X)Y =afg(X,Y)T — A(Y)X}
O
Theorem 3.4. For an o — K contact manifold we have
(3.5) R(T'X)T=o{-X+A(X)T}
Proof. In view of (3.4), the proof follows immediately. O

For a detailed study on a contact manifold the reader is referred to [2].

4. PROOFS OF THEOREMS 1.1 AND 1.2

Proof of Theorem 1.1. Let h denote a (0,2) — tensor field on an o — K contact
manifold M such that Vh = 0. Then it follows that

(4.1) h(R(W,X)Y,Z)+h(Y,R(W,X)Z) =0

for arbitrary vector fields X,Y, Z, W on M.
We write (4.1) as follows

g(R(W,X)Y,Z) + g (¥, R(W,X),Z) =0,

On substituting W =Y = Z =T in (4.1) we get:

(4.2) g(R(T,X)T,T) + g(T,R(T,X),T) = 0.

In view of Theorem (3.4), the above equation becomes:

(4.3) g(—aX +AX)T,T)+g(T,—aX +aA(X)T) = 0.
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In this equation, using (2.2) we get
(4.4) 209 (X, T)h (T, T) — ah (X, T) —ah(T,X) =0.
Differentiating (4.4) covariantly with respect to ¥ and using Theorem (3.1)

we get
(45) 2ah (T, T) g(VyX,T) —2a°h(T,T) g(X,0Y)
—ag (VyX,T) + a’g (X, ¢Y) + a?g (¢Y,X) — ag (T,VyX) =0.
Replacing Y by ¢Y and using equations (2.2), (2.3) and (4.4) we obtain
R(X,)Y)+h(Y,X)=2hn(T,T) g(X,Y).
But h is symmetric, thus on simplifying the above equation we get
(4.6) 2R (T, T)g(X,Y)=2h(X,Y).

In view of the fact that h(T,T) is constant by differentiating it along any
vector on M2t we get

B(T,T)g(X,Y) = h(X,Y)
which completes the proof. 0]

Proof of Theorem 1.2. Let us consider h to be a parallel 2 — form on an a—
Sasakian manifold M?" ! and let H be a (1, 1) tensor field metrically equivalent
to h since h (X,Y) =g (HX,Y). Now (4.1) can be written as

(47) g (R(W,X)Y, Z) + ¢ (¥, R(W,X) Z) = 0.
Let us put X =Y =T in (4.7) and using the fact that h (X,Y) =g (HX,Y)
we get
(4.8) g(HR(W,T)T,Z)+ g (HT,R(WT) Z) = 0.
Applying the skew symmetric property of R (X,Y) and using (3.3) and (3.4)
in (4.8) and after simplifying, we obtain
(4.9) ag(HZ,T)T +ag(Z,T)HT = aHZ.
Differentiating (4.9) along ¢ X we obtain
(4.10) 20A(X)AHZ)T —ag(HZ, X)T —ag(HZ,T) X
— g (Z,X) HT — 20A (X) A(Z) HT + aA (Z) HX.

Let {e;},i=1,2,...,2n + 1 be an orthonormal basis of the tangent space.
In the above equation (4.10), we substitute X = e; and take the inner product
with e; and eventually summing over i gives us

a@2n—-1)g(HZ,T)=0.
Since a (2n — 1) # 0, we have g (HZ,T) = 0. But ¢(HZ,T) = —g(HT, 7).

Thus, HT = 0 and hence (4.9) shows that H = 0, which completes the proof.
O
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