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TANGENT BUNDLE OF THE HYPERSURFACES IN A
EUCLIDEAN SPACE

SHARIEF DESHMUKH, HAILA AL-ODAN AND TAHANY A. SHAMAN

Abstract. We consider an immersed orientable hypersurface f : M →
Rn+1 of the Euclidean space (f an immersion), and observe that the tan-
gent bundle TM of the hypersurface M is an immersed submanifold of the
Euclidean space R2n+2. Then we show that in general the induced metric
on TM is not a natural metric and obtain expressions for the horizontal
and vertical lifts of the vector fields on M . We also study the special case
in which the induced metric on TM becomes a natural metric and show
that in this case the tangent bundle TM is trivial.

1. Introduction

The geometry of the tangent bundle TM of a Riemannian manifold is an
interesting field in differential geometry. The first attempt to define a Rie-
mannian metric on TM was made by Sasaki [8], and since then the tangent
bundle has become focus of study with this metric. Specially after the work
of Dombrowoski [2], who has introduced a nice theory of linking the geometry
of the tangent bundle with Sasaki metric to the geometry of the base man-
ifold, many mathematicians have studied the geometry of the tangent bun-
dle through various aspects (cf. the survey article [3] and references therein).
Since there is a naturally associated almost complex structure J to the tangent
bundle TM of a Riemannian manifold M , one naturally expects fairly good
properties associated to this almost complex structure vis-a-vis the complex
geometry. However, the Sasaki metric on TM offers a significant obstruction
on the almost complex structure and does not even allow it to be a complex
unless the base manifold is flat. This deficiency in the Sasaki metric lead math-
ematicians to search for other metrics on the tangent bundle other than Sasaki
metric, for instance Cheeger-Gromoll metric, Oproiu metric (cf. [1], [3], [7],
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[9]). This lead to the class of metrics on TM which make the natural submer-
sion π : TM → M into a Riemannian submersion and this class of metrics is
known as natural metrics. In this paper we are interested in the tangent bundle
TM of an immersed orientable hypersurface M in the Euclidean space Rn+1.
If f : M → Rn+1is the smooth immersion which makes M as an immersed hy-
persurface of Rn+1, then we show that the smooth map F = df : TM → R2n+2

is also an immersion, thereby making TM a submanifold of R2n+2 and conse-
quently has an induced metric g. We study the Riemannian manifold (TM, g)
as submanifold of the Euclidean space (R2n+2, 〈, 〉) and first show that in gen-
eral the induced metric g is not a natural metric by calculating the horizontal
and vertical lifts of vector fields on M to TM . Then we consider a special
case, in which the metric g becomes a natural metric and observe that in this
case the tangent bundle TM is trivial.

2. Preliminaries

Let (M, g) be a Riemannian manifold and TM be its tangent bundle with
projection map π : TM → M . Then for each (p, u) ∈ TM , the tangent space
T(p,u)TM = H(p,u) ⊕V(p,u), where V(p,u) is kernel of dπ(p,u) : T(p,u)TM → TpM
and H(p,u) is the kernel of the connection map K(p,u) : T(p,u)TM → TpM with
respect to the Riemannian connection on (M, g). The subspaces H(p,u), V(p,u)

are called the horizontal and vertical subspaces respectively. Consequently
the Lie algebra of smooth vector fields X(TM) on the tangent bundle TM
admits the decomposition X(TM) = H ⊕V, where H is called the horizontal
distribution and V is called the vertical distribution on the tangent bundle
TM . For each Xp ∈ TpM , the horizontal lift of Xp to a point z = (p, u) ∈ TM
is the unique vector Xh

z ∈ Hz such that dπ(Xh
z ) = Xp ◦ π and the vertical

lift of Xp to a point z = (p, u) ∈ TM is the unique vector Xv
z ∈ Vz such

that Xv
z (df) = Xp(f) for all functions f ∈ C∞(M), where df is the function

defined by (df)(p, u) = u(f). Also for a vector field X ∈ X(M), the horizontal
lift of X is a vector field Xh ∈ X(TM) whose value at a point (p, u) is the
horizontal lift of X(p) to (p, u), the vertical lift Xv of X is defined similarly.
For X ∈ X(M) the horizontal and vertical lifts Xh, Xv of X are the uniquely
determined vector fields on TM satisfying

dπ(Xh
z ) = Xπ(z), K(Xh

z ) = 0π(z), dπ(Xv
z ) = 0π(z), K(Xv

z ) = Xπ(z)

Also we have for a smooth function f ∈ C∞(M) and vector fields X, Y ∈
X(M), that, (fX)h = (f ◦ π)Xh, (fX)v = (f ◦ π)Xv, (X + Y )h = Xh + Y h

and (X + Y )v = Xv + Y v. If dim M = m and (U, φ) is a chart on M with
local coordinates x1, x2, . . . , xm, then (π−1(U), Φ̄) is a chart on TM with local
coordinates x1, . . . , xm, y1, . . . , ym, where xi = xi ◦π and yi = dxi,i = 1, . . . ,m.
Throughout this paper we use Einstein summation, that is, the repeated indices
are summed on their range. For horizontal and vertical lifts we have
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Lemma 2.1 ([3]). Let (M, g) be a Riemannian manifold and X, Z ∈ X(M)
which locally are represented by X = ξi ∂

∂xi and Z = ηi ∂
∂xi . Then the vertical

and horizontal lifts Xv and Xh of X at the point Z ∈ TM are given by

(Xv)Z = ξi ∂

∂yi
, (Xh)Z = ξi ∂

∂xi
− ξjηkΓi

jk

∂

∂yi

where the coefficients Γi
jk are the Christoffel symbols of the connection ∇ on

(M, g).

A Riemannian metric ḡ on the tangent bundle TM is said to be natural
metric with respect to g on M if ḡ(p,u)(X

h, Y h) = gp(X,Y ) and ḡ(p,u)(X
h, Y v) =

0, for all vector fields X, Y ∈ X(M) and (p, u) ∈ TM , that is the projection
map π : TM → M is the Riemannian submersion [6]

3. Tangent bundle of the hypersurface

Let M be an immersed hypersurface of the Euclidean space (Rn+1, 〈, 〉),
where 〈, 〉 is the Euclidean metric, with the immersion f : M → Rn+1. Then
we have the smooth maps

F = df : TM → R2n+2, π̃ : R2n+2 → Rn+1

defined by F (p,Xp) = (f(p), dfp(Xp)) and π̃ (x, y) = x for x, y ∈ Rn+1, where
dfp : TpM → R is the differential of the map f at p ∈ M . Clearly f ◦π = π̃ ◦F
holds, where π : TM → M is the projection of the tangent bundle. We have
for the submersion π̃ : (R2n+2, 〈, 〉) → (Rn+1, 〈, 〉), as π̃ is linear dπ̃p = π̃,
p ∈ R2n+2, which implies that the vertical space V̄p = ker dπ̃p = (0, Rn+1)
and since H̄p ⊥ V̄p we get H̄p = R2n+2/V̄p = (Rn+1, 0). Also we see that dπ̃
preserves lengths of horizontal vectors, that is, 〈X, Y 〉 = 〈dπ̃(X), dπ̃(Y )〉 for
X, Y ∈ H̄ where dπ̃ =

[
I(n+1)×(n+1) 0(n+1)×(n+1)

]
consequently it follows that

π̃ : (R2n+2, 〈, 〉) → (Rn+1, 〈, 〉) is a Riemannian submersion (cf. [6]).
If x1, . . . , xn are the local coordinates on M then the corresponding coordi-

nates on TM are x1, x2, . . . , xn, y1, y2, . . . , yn where xi = xi ◦ π, yi = dxi, i =
1, . . . , n. Similarly if u1, . . . , un+1 are the local coordinates on Rn+1 then we
get a corresponding coordinates u1, . . . , un+1, v1, . . . , vn+1 on R2n+2 where we
know that (

∂

∂ui

)v

=
∂

∂vi

(
∂

∂ui

)h

=
∂

∂ui
, i = 1, . . . , n + 1.

Let us denote by D, D̄ the Euclidean connections on Rn+1, R2n+2 respectively,
then recall that the connection coefficients (Christoffel symbols) Γk

ij of the
Euclidean connections are zero.

For the Riemannian submersion π̃ : R2n+2 → Rn+1 we have the following:
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Theorem 3.1. π̃ : R2n+2 → Rn+1 is the Riemannian submersion with totally
geodesic fibers Rn+1, that is, T = 0. The tensor field A on R2n+2 also vanishes.

Proof. Recall that for E,F ∈ X(R2n+2) we have [6]

TEF = H(D̄VEVF ) + V(D̄VEHF )

AEF = V(D̄HEHF ) + H(D̄HEVF ).

Let E = X + U, F = Y + V where X,Y ∈ H̄,U, V ∈ V̄,, that is X = ai ∂
∂ui ,

Y = bi ∂
∂ui , U = ci ∂

∂vi and V = di ∂
∂vi . Then we have

TEF = H(D̄UV ) + V(D̄UY )

= H(U(di)
∂

∂vi
) + V(U(bi)

∂

∂ui
) = 0,

AEF = V(D̄XY ) + H(D̄XV )

= V(X(bi)
∂

∂ui
) + H(X(di)

∂

∂vi
) = 0.

¤
The following theorem is a consequence of the fact that an immersion of

M in N induces an immersion of TM in TN , yet we sketch the proof for the
sake of our need for an explicit expression for the differential of the induced
immersion of TM in TN .

Theorem 3.2. The map F : TM → R2n+2 is an immersion.

Proof. Let p ∈ M and P = (p,Xp) ∈ TM , then we have for local coordinates
x1, . . . , xn around p, Xp = yi(P )( ∂

∂xi )p and F (P ) = df(p,Xp) = (f(p), dfp(Xp)).
The matrix for dfp : TpM → Tf(p)R

n+1 is the (n + 1)× n matrix.

dfp =




∂f1

∂x1 (p) · · · · · · ∂f1

∂xn
(p)

...
...

...
...

∂fn+1

∂x1 (p) · · · · · · ∂fn+1

∂xn
(p)




where fα = uα ◦ f, α = 1, . . . , n + 1. This gives

dfp(Xp) =




∂f1

∂xi (p)yi(P )
...

∂fn+1

∂xi (p)yi(P )




consequently

F (P ) = (f 1(p), f 2(p), . . . , fn+1(p),
∂f 1

∂xi
(p)yi(P ), . . . ,

∂fn+1

∂xi
(p)yi(P ))

that is

F = (f 1 ◦ π, f 2 ◦ π, . . . , fn+1 ◦ π, (
∂f 1

∂xi
◦ π)yi, . . . , (

∂fn+1

∂xi
◦ π)yi).
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Thus the matrix for dFP : TP (TM) → TF (P )(R
2n+2) is the (2n+2)×2n matrix.

dFP =




∂F 1

∂x1 (P ) · · · ∂F 1

∂xn (P ) ∂F 1

∂y1 (P ) · · · ∂F 1

∂yn (P )
...

...
...

...
...

...
∂F n+1

∂x1 (P ) · · · ∂F n+1

∂xn (P ) ∂F n+1

∂y1 (P ) · · · ∂F n+1

∂yn (P )
∂F n+2

∂x1 (P ) · · · · · · · · · · · · ∂F n+2

∂yn (P )
...

...
...

...
...

...
∂F 2n+2

∂x1 (P ) · · · · · · · · · · · · ∂F 2n+2

∂yn (P )




Note that for α = 1, . . . , n + 1 and j = 1, . . . , n we have:

∂F α

∂xj
(P ) =

∂(fα ◦ π)

∂xj
(p) =

∂fα

∂xj
(p),

∂F n+1+α

∂yj
(P ) =

∂((∂fα

∂xi ◦ π)yi)

∂yj
(P ) =

∂fα

∂xj
(p),

∂F α

∂yj
(P ) =

∂fα

∂yj
(p) = 0,

∂F n+1+α

∂xj
(P ) =

∂((∂fα

∂xi ◦ π)yi)

∂xj
(P ) =

∂2fα

∂xj∂xi
(p)yi(P )

thus we arrive at

dFP =

[
dfp(n+1)×n

0(n+1)×n

( ∂2f i

∂xj∂xk (p)yk(P ))(n+1)×n dfp(n+1)×n

]
.

Hence dFP has rank 2n that is F : TM → R2n+2 is an immersion. ¤
Thus the tangent bundle TM of the hypersurface M of the Euclidean space

Rn+1 is a submanifold of R2n+2. We denote the induced Riemannian metrics on
M and TM respectively by g and g respectively. Also we denote by ∇, ∇̄ the
Riemannian connections on M,TM respectively. We denote by N the unit
normal vector field of the orientable hypersurface M . For the hypersurface
M of the Euclidean space Rn+1 we have the following Gauss and Weingarten
formulae

DXY = ∇XY + 〈S(X), Y 〉N(1)

DXN = −S(X)(2)

where X,Y ∈ X(M) and S denotes the Weingarten map S : X(M) → X(M).
Similarly for the submanifold TM of the Euclidean space R2n+2 we have the
Gauss and Weingarten formulae:

DXY = ∇̄XY + h(X,Y )(3)

DXN̂ = −SN̂(X) +∇⊥
XN̂(4)

where X, Y ∈ X(TM) and SN̂ denotes the Weingarten map in the direction of

the normal N̂ which is SN̂ : X(TM) → X(TM), and is related to the second
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fundamental form h by
〈
h(X, Y ), N̂

〉
=

〈
S̄N̂(X), Y

〉
.

Also we observe that for X ∈ X(M) the vertical lift Xv of X to TM , as
Xv ∈ ker dπ we have dπ(Xv) = 0 that is df(dπ(Xv)) = 0 or equivalently we get
d(f ◦ π)(Xv) = 0, that is d(π̃ ◦F )(Xv) = 0 which gives dF (Xv) ∈ ker dπ̃ = V.
Moreover we have the following lemmas:

Lemma 3.1. For P = (p,Xp) ∈ TM

dFP (Xv
P ) = (dfp(Xp))

v.

Proof. For X = ξi ∂
∂xi we know that Xv

P = ξi ∂
∂yi . Thus we have

dFP (Xv
P ) =




0
...
0

∂f1

∂xi (p)ξi

...
∂fn+1

∂xi (p)ξi




and on the other hand

dfp(Xp) =




∂f1

∂xi (p)ξi

...
∂fn+1

∂xi (p)ξi


 .

Thus we get (dfp(Xp))
v = dFP (Xv

P ). ¤

Remark. On a Riemannian manifold (M, g) for a smooth function f ∈ C∞(M),
the Hessian of the function f is defined by Hf (X, Y ) = X(Y (f)) −∇XY (f),
X, Y ∈ X(M), where ∇ is the Riemannian connection on M . If X = ξi ∂

∂xi and

Y = ηj ∂
∂xj then we have

Hf (X, Y ) = X(ηj ∂f

∂xj
)− ξi(∇ ∂

∂xi
ηj ∂

∂xj
)(f)

= X(ηj)
∂f

∂xj
+ ηjX(

∂f

∂xj
)− ξiηjΓk

ij

∂f

∂xk
− ξi ∂ηj

∂xi

∂f

∂xj

= ξiηj ∂2f

∂xi∂xj
− ξiηjΓk

ij

∂f

∂xk

where Γk
ij are the Christoffel symbols for the Riemannian connection. Thus at

a point p if Xp = λi( ∂
∂xi )p and Yp = µj( ∂

∂xj )p we have

Hf (Xp, Yp) = λiµj ∂2f

∂xi∂xj
(p)− λiµjΓk

ij(p)
∂f

∂xk
(p).
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Lemma 3.2. Let N be the unit normal vector field to the hypersurface M and
P = (p,Xp) ∈ TM . Then the horizontal lift Y h

P of Yp ∈ TpM satisfies

dFP (Y h
P ) = (dfp(Yp))

h + VP

where VP ∈ VP is given by VP = 〈Sp(Xp), Yp〉N v
P .

Proof. Since

dFP =




dfp 0
∂2f1

∂x1∂xk (p)yk(P ) · · · ∂2f1

∂xn∂xk (p)yk(P )
...

...
...

∂2fn+1

∂x1∂xk (p)yk(P ) · · · ∂2fn+1

∂xn∂xk (p)yk(P )

dfp




for Xp = ξi
(

∂
∂xi

)
p

and Yp = ηj
(

∂
∂xj

)
p

as Y h
P = ηi

(
∂

∂xi

)
P
− ξkηjΓi

jk(p)
(

∂
∂yi

)
P

we have

dFP (Y h
P ) =




dfp(Yp)
∂2f1

∂xα∂xk (p)yk(P )ηα − ξkηjΓα
jk(p) ∂f1

∂xα (p)
...

∂2fn+1

∂xα∂xk (p)yk(P )ηα − ξkηjΓα
jk(p)∂fn+1

∂xα (p)




=

[
dfp(Yp)

0

]
+




0
Hf1(Yp, Xp)

...
Hfn+1(Yp, Xp)


 .

(Note that Xp = ξi( ∂
∂xi )p = yi(P )( ∂

∂xi )p, that is, ξi = yi(P )). Consequently we
get

dFP (Y h
P ) = (dfp(Yp))

h + VP

where VP ∈ VP and VP = Hfα(Yp, Xp)
∂

∂vα . We know that to compute the

horizontal lift Y h
P at P = (p,Xp) we need to assume that ∇Y X = 0 (that is, X

is parallel along integral curves of Y ) (cf. [3], p.8 ). Thus we have from Gauss
equation

Ddf(Y )df(X) = ∇Y X + 〈S(X), Y )〉N = 〈S(X), Y )〉N.

Now for df(X) = λα ∂
∂uα , λα = df(X)(uα) = X(uα ◦ f) = X(fα) and that D

being Euclidean connection:

Ddf(Y )df(X) = Y X(fα)
∂

∂uα

= (Y X(fα)− (∇Y X)(fα))
∂

∂uα

= Hfα(Y, X)
∂

∂uα
.
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Thus

Hfα(Y,X)
∂

∂uα
= 〈S(X), Y )〉N = 〈S(X), Y )〉 (hα ∂

∂uα
)

implies Hfα(Y,X) = 〈S(X)Y )〉hα that is

VP =

(
〈S(X), Y )〉hα ∂

∂vα

)
(P ) = 〈Sp(Xp), Yp〉N v

P

¤
Lemma 3.3. Let N = (N, 0) ∈ X(R2n+2), where N is the unit normal vector
field of the hypersurface M in Rn+1. Then

(1) N = Nh.
(2) N is a normal vector field to TM as a submanifold of R2n+2.

Proof. 1. We denote by H and V the horizontal and vertical distributions of
the tangent bundle TRn+1. Then clearly N ∈ H, which implies K(N) = 0,
where K is the connection map of the connection D, and since the matrix of
dπ̃ is dπ̃ = [I 0], we get dπ̃(N) = N ◦ π̃. This proves Nh = N . Note that
we can prove this part from the known formula for the horizontal lift given in
Lemma 2.1 as follows:

Since N = hα ∂
∂uα and Γk

ji for the connection D vanish, Nh = (hα◦π̃) ∂
∂uα = N .

2. It is enough to prove that for any X, Y ∈ X(M)〈
dF (Xh), N

〉
= 0 and

〈
dF (Y v), N

〉
= 0.

Now since π̃ is a Riemannian submersion we have〈
dF (Xh), N

〉
=

〈
(df(X))h, Nh

〉

=
〈
dπ̃(df(X))h), dπ̃(Nh)

〉
= 〈df(X), N〉 ◦ π̃ = 0

as df(X) ∈ X(Rn+1) and N be the normal vector field to M in Rn+1. Also by
Lemma 3.1 since dF (Y v) = (df(Y ))v we have

〈
dF (Y v), N

〉
= 0. This proves

that N is normal vector field to TM . ¤
Remark. The Euclidean space R2n+2 has natural complex structure J , and if
we put Ñ = JN then from the definition of J we have Ñ = JNh = N v. Now

for X,Y ∈ X(M) we have
〈
dF (Xh), Ñ

〉
=

〈
(df(X))h + V, N v

〉
= 〈V,N v〉 and〈

dF (Y v), Ñ
〉

= 〈(df(Y ))v, N v〉. Let Y = ηj ∂
∂xj , then we have

df(Y ) = (
∂fα

∂xi
ηi)

∂

∂uα
, (df(Y ))v = ((

∂fα

∂xi
ηi) ◦ π̃)

∂

∂vα

and N v = (hα ◦ π̃) ∂
∂vα which implies

〈
dF (Y v), Ñ

〉
= ((

∂fα

∂xi
ηi)hα) ◦ π̃ = 〈df(Y ), N〉 ◦ π̃ = 0.

But since 〈V,N v〉 6= 0 in general, so Ñ can not be a normal vector field to
TM .
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We choose N∗ as a unit normal vector field to TM in R2n+2 which is or-
thogonal to N so that for X, Y ∈ X(TM) we have

h(X, Y ) =
〈
h(X, Y ), N

〉
N+〈h(X, Y ), N∗〉N∗ =

〈
S̄NX, Y

〉
N+

〈
S̄N∗X,Y

〉
N∗.

Lemma 3.4. The unit normal N∗ to TM is a vertical vector field on the
tangent bundle TRn+1.

Proof. Take U ∈ X(Rn+1) |M . Then we can express it as U = df(X) + ϕN ,
ϕ ∈ C∞(M), X ∈ X(M), consequently we have

(5) Uh = (df(X))h + (ϕ ◦ π)N = dF (Xh)− Vp + (ϕ ◦ π)N

Now since dF (Xh) = (df(X))h+V, if (df(X))h = Y h+bN and Vp = γN v where
Y h, bN are the tangential and normal components of (df(X))h respectively and
γ = g(S(X), Y ). We have dF (Xh) = Y h+bN +γN v, where bN +γN v must be
tangential to TM (as dF (Xh) is tangent to TM). Thus g(bN +γN v, N∗) = 0
which implies γg(N v, N∗) = 0. Also g(bN +γN v, N) = 0 proves b = 0, that
is γN v = Vp must be tangential. Taking inner product in equation (3.5) with
N∗, we get

〈
Uh, N∗〉 = 0 for eachU ∈ X(Rn+1) |Mwhich implies N∗ must be

vertical. ¤

Lemma 3.5. For X ∈ X(M) and N = (N, 0) ∈ X(R2n+2) we have

D̄XhN = (DXN)h and D̄XvN = 0.

Proof. Expressing locally N = (hα ◦ π̃) ∂
∂uα , hα ∈ C∞(Rn+1) we compute

D̄XhN = (dF (Xh))(hα ◦ π̃)
∂

∂uα
= (df(X))h(hα ◦ π̃)

∂

∂uα

= ((df(X))h(hα) ◦ π̃)
∂

∂uα

On the other hand we have DXN = (df(X))(hα) ∂
∂uα and

(DXN)h = ((df(X))h(hα) ◦ π̃)
∂

∂uα
= D̄XhN

For the second relation we have

D̄XvN = (dF (Xv))(hα ◦ π̃)
∂

∂uα
= ((df(X))v(hα ◦ π̃)

∂

∂uα
= 0.

¤

Corollary 3.1. For X ∈ X(M) we have (S(X))h = −D̄XhN .

Proof. From equation (3.2) and Lemma 3.5 we have (S(X))h = −(DXN)h =
−D̄XhN . ¤
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Example. Take M = S2 and f : S2 → R3 the inclusion f(z1, z2, z3) = (z1, z2, z3)
for (z1, z2, z3) ∈ S2. Let p = (z1, z2, z3) ∈ S2 be a point with z3 > 0 and take
a chart (U, φ) around p where U = {(z1, z2, z3) ∈ S2 : z3 > 0 } and

φ : U → B1(0) ⊂ R2,φ(z1, z2, z3) = (z1, z2),

φ−1(u1, u2) = (u1, u2,
√

1− (u1)2 − (u2)2).

Let x1, x2 be the local coordinates on U and u1, u2, u3 be the Euclidean coor-
dinates on R3. Then

fα = uα ◦ f = zα, α = 1, 2, 3

∂f i

∂xj
(p) = δi

j, i, j = 1, 2.

∂f 3

∂xi
(p) =

∂(f 3 ◦ φ−1)

∂ui
(φ(p)) =

∂(
√

1− (u1)2 − (u2)2)

∂ui
(φ(p))

=
−ui

√
1− (u1)2 − (u2)2

(φ(p))

=
−zi

z3
, i = 1, 2

and

dfp =




1 0
0 1
−z1

z3
−z2

z3


 .

Now let P = (p,Xp) where X = ξi ∂
∂xi ∈ X(S2), then

F = df = (f 1 ◦ π, f 2 ◦ π, f 3 ◦ π, y1, y2,−ui

u3
yi)

where x1, x2, y1, y2 are the local coordinates with respect to the chart on TS2

corresponding to (U, φ) on S2. We get

∂F 3+α

∂xi
(P ) =

∂(yα)

∂xi
(P ) = 0, α, i = 1, 2

∂F 6

∂xj
(P ) = −∂(uiyi

u3 )

∂xj
(P ) = −(

u3yiδi
j − uiyi(−uj

u3 )

(u3)2
)(P )

=
−(u3)2yj −∑

i u
iyiuj

(u3)3
(P ) =

−(z3)2ξj − ziξizj

(z3)3
j = 1, 2.
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Note that yα(P ) = ξα, α = 1, 2, so we get

dFP =




1 0 0 0
0 1 0 0
−z1

z3
−z2

z3 0 0
0 0 1 0
0 0 0 1

−(z3)2ξ1 −ziξiz1

(z3)3
−(z3)2ξ2 −ziξiz2

(z3)3
−z1

z3
−z2

z3




.

Now for Y = ηi ∂
∂xi ∈ X(S2) we have Y h = ηi ∂

∂xi − ηjξkΓi
jk

∂
∂yi consequently

dFP (Y h
P ) =




η1

η2

−z1η1−z2η2

z3

−ηjξkΓ1
jk

−ηjξkΓ2
jk

{(−(z3)2ξα −ziξizα

(z3)3
)ηα + zα

z3 (ηjξkΓα
jk)}




that is

dFP (Y h
P ) =

[
(df(Yp))

h

0

]
+




0
−ηjξkΓ1

jk

−ηjξkΓ2
jk

{(−(z3)2ξα −ziξizα

(z3)3
)ηα + zα

z3 (ηjξkΓα
jk)}


 .

Now we need to compute the connection coefficients of Γk
ji of the connection

∇ with respect to this chart on S2. Since

∂

∂xi
=

∂

∂ui
− ui

u3

∂

∂u3

we get for i, j = 1, 2

gij = g

(
∂

∂xi
,

∂

∂xj

)
=

〈
∂

∂xi
,

∂

∂xj

〉

=

〈
∂

∂ui
− ui

u3

∂

∂u3
,

∂

∂uj
− uj

u3

∂

∂u3

〉
= δi

j +
uiuj

(u3)2

and consequently

(gij) =


 1 +

(
u1

u3

)2
u1u2

(u3)2

u1u2

(u3)2
1 +

(
u2

u3

)2




and
(
gij

)
=

[
(u3)2 + (u2)2 −u1u2

−u1u2 (u3)2 + (u1)2

]
.
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Using

Γk
ij =

1

2
gαk

{
∂giα

∂uj
− ∂gij

∂uα
+

∂gαj

∂ui

}

we arrive at

Γ1
11 =

u1((u3)2 + (u1)2)

(u3)2

Γ2
11 =

u2((u3)2 + (u1)2)

(u3)2

Γ1
12 = Γ1

21 =
(u1)2u2

(u3)2

Γ2
12 = Γ2

21 =
(u2)2u1

(u3)2

Γ1
22 =

u1((u3)2 + (u2)2)

(u3)2

Γ2
22 =

u2((u3)2 + (u2)2)

(u3)2

which gives

dFP (Y h
P ) =

[
(df(Yp))

h

0

]
+




0
0
0

−u1 〈X,Y 〉
−u2 〈X,Y 〉
−u3 〈X,Y 〉




where N = uα ∂
∂uα ∈ X(R3) is the unit normal vector field to S2 and

〈X, Y 〉 = η1ξ1 + η2ξ2 +
1

(u3)2
(η1u1 + η2u2)(ξ1u1 + ξ2u2).

Remark. We observe that the metrics defined on TM using the Riemannian
metric of M (such as Sasaki metric, Cheeger-Gromoll metric, Oproiu metric)
are natural metrics in the sense that the submersion π : TM → M becomes a
Riemannian submersion with respect to these metrics. However, the induced
metric on the tangent bundle TM of a hypersurface M of the Euclidean space
Rn+1, as a submanifold of R2n+2 is not a natural metric because of the presence
of the term VP (see Lemma 3.2).

4. A special case

In this section we study the hypersurfaces f : M → Rn+1 satisfying

dFP (Xh
P ) = (dfp(Xp))

h,
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that is the hypersurfaces for which the vector field V = 0. We call these
hypersurfaces generic hypersurfaces of the Euclidean space Rn+1. A trivial ex-
ample of a generic hypersurface of the Euclidean space, is the totally geodesic
hypersurface Rn of Rn+1 (this follows from Lemma 3.2). The natural embed-
ding f : S1 → R2, f(x, y) = (x, y) of the unit circle gives another example of
a generic hypersurface. The tangent space at each point p ∈ S1 is spanned

by the unit vector ξp =
(
−y ∂

∂x
+ x ∂

∂y

)
p

and that ∇ξξ = 0, that is Γ1
11 = 0

consequently, it can be easily verified that dFP (ξh
P ) = (dfp(ξp))

h.

Lemma 4.1. For a generic hypersurface M of the Euclidean space Rn+1 the
induced metric ḡ on TM as a submanifold of R2n+2 is a natural metric with
respect to g on M .

Proof. For X,Y ∈ X(M) we have:

ḡ(Xh, Y h) =
〈
dF (Xh), dF (Y h)

〉 ◦ F =
〈
(df(X))h, (df(Y ))h

〉 ◦ F

= 〈df(X), df(Y )〉 ◦ π̃ ◦ F = 〈df(X), df(Y )〉 ◦ f ◦ π

= g(X, Y ) ◦ π.

ḡ(Xh, Y v) =
〈
dF (Xh), dF (Y v)

〉 ◦ F =
〈
(df(X))h, (df(Y ))v

〉 ◦ F = 0.

¤
Remark. Note that for a generic hypersurface M of Rn+1 the submersion
π : TM → M is a Riemannian submersion.

Recall that for the unit normal vector field N = hα ∂
∂uα ∈ X(Rn+1) to M

we have a unit normal vector field N = Nh = (hα ◦ π̃) ∂
∂uα ∈ X(R2n+2) to TM .

Now put N∗ = JN = N v = (hα ◦ π̃) ∂
∂vα thus we have the following:

Lemma 4.2. For a generic hypersurface M of Rn+1, N∗ = JN is the normal
vector field to TM in R2n+2 which is orthogonal to N .

Proof. For X,Y ∈ X(M) we have
〈
dF (Xh), N∗〉 =

〈
(df(X))h, N v

〉
= 0 and

we know from the first section that 〈dF (Y v), N∗〉 = 〈(df(Y ))v, N v〉 = 0. That
is N∗ = JN is a normal vector field to TM . ¤
Lemma 4.3. For a generic hypersurface M of Rn+1, X ∈ X(M)

D̄XhN∗ = (DXN)vD̄XvN∗ = 0.

Proof. We have

D̄XhN∗ = (dF (Xh))(hα ◦ π̃)
∂

∂vα
= ((df(X)(hα)) ◦ π̃)

∂

∂vα

and DXN = (df(X)(hα) ∂
∂uα which gives

(DXN)v = ((df(X)(hα)) ◦ π̃)
∂

∂vα
= D̄XhN∗.
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For the other equation we have

D̄XvN∗ = (dF (Xv))(hα ◦ π̃)
∂

∂vα
= (df(X))v(hα ◦ π̃)

∂

∂vα
= 0.

¤
Corollary 4.1. For a generic hypersurface M of Rn+1, (S(X))v = −D̄XhN∗,
X ∈ X(M)

Proof. Since S(X) = −DXN we get (S(X))v = −(DXN)v = −D̄XhN∗. ¤
Corollary 4.2. For a generic hypersurface M of Rn+1 with X ∈ X(M) :

1) S̄NXh = (S(X))h,
2) S̄

N∗X
h = (S(X))v,

3) S̄NXv = 0,
4) S̄

N∗X
v = 0.

Proof. 1) From Corollary 3.1 we have

(S(X))h = −D̄XhN = − [−S̄N(Xh) +∇⊥
XhN

]
== S̄N(Xh)−∇⊥

XhN.

Equating the tangential and normal components we get

∇⊥
XhN = 0 and S̄N(Xh) = (S(X))h.

2) Similarly, from Corollary 4.1 we have

(S(X))v = −D̄XhN∗ = S̄N∗(Xh)−∇⊥
XhN

∗.

Equating the tangential and normal components we get:

∇⊥
XhN

∗ = 0 and S̄N∗(Xh) = (S(X))v.

3) From Lemma 3.5 we have

0 = D̄XvN = −S̄N(Xv) +∇⊥
XvN.

Equating the tangential and normal components we get:

∇⊥
XvN = 0 and S̄N(Xv) = 0.

4) From Lemma 4.3 we have

0 = D̄XvN∗ = −S̄N∗(Xv) +∇⊥
XvN∗.

Equating the tangential and normal components we get

∇⊥
XvN∗ = 0 and S̄N∗(Xv) = 0.

¤
Corollary 4.3. For a generic hypersurface M of Rn+1 with X,Y ∈ X(M):

1) h(Xv, Y v) = 0,
2) h(Xv, Y h) = 0,
3) h(Xh, Y v) = 0,
4) h(Xh, Y h) = (〈S(X), Y 〉 ◦ π̃)Nh.
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Proof. Since h(X, Y ) =
〈
S̄NX, Y

〉
N +

〈
S̄N∗X, Y

〉
N∗, using corollary 4.2 we

get

1) h(Xv, Y v) =
〈
S̄NXv, Y v

〉
N +

〈
S̄N∗Xv, Y v

〉
N∗ = 0,

2) h(Xv, Y h) =
〈
S̄NXv, Y h

〉
N +

〈
S̄N∗Xv, Y h

〉
N∗ = 0,

3) h(Xh, Y v) =
〈
S̄NXh, Y v

〉
N +

〈
S̄N∗Xh, Y v

〉
N∗,

=
〈
(S(X))h, Y v

〉
N +

〈
Xh, S̄N∗Y v

〉
N∗ = 0,

4) h(Xh, Y h) =
〈
S̄NXh, Y h

〉
N +

〈
S̄N∗Xh, Y h

〉
N∗,

=
〈
(S(X))h, Y h

〉
N = (〈S(X), Y 〉 ◦ π̃)Nh.

¤
Theorem 4.1. For a generic hypersurface M of Rn+1, the tensor field T of
the Riemannian submersion π : TM → M vanishes.

Proof. We have for E, F ∈ X(TM) (cf. [6])

TEF = H(∇̄VEVF ) + V(∇̄VEHF ).

Thus if X,Y ∈ X(M), then

TXhY h = TXhY v = 0 as TE = T
VE

(6)

TXvY v = H(∇̄XvY v) = H(D̄XvY v − h(Xv, Y v))(7)

but as D̄XvY v = Xv(ηi ◦ π) ∂
∂yi = 0 where Y = ηi ∂

∂xi . Then the Corollary 4.3
gives TXvY v = 0.

(8) TXvY h = V(∇̄XvY h).

For Z ∈ X(M) we use (6) to compute

ḡ(∇̄XvY h, Zv) = −ḡ(Y h, ∇̄XvZv) = −ḡ(Y h,H(∇̄XvZv)) = −ḡ(Y h, TXvZv) = 0

which implies V(∇̄XvY h) = 0 ⇒ TXvY h = 0. Thus T = 0. ¤
Theorem 4.2. For a generic hypersurface M of Rn+1, the tensor field A of
the Riemannian submersion π : TM → M vanishes.

Proof. For E, F ∈ X(TM) we have (cf. [6])

AEF = V(∇̄HEHF ) + H(∇̄HEVF ).

Taking X, Y ∈ X(M) we compute

AXvY h = AXvY v = 0 as AE = A
HE

(9)

AXhY v = H(∇̄XhY v) = H(D̄XhY v − h(Xh, Y v)) = H(D̄XhY v)(10)

As for Y = ηi ∂
∂xi we have

D̄XhY v = Xh(ηi ◦ π)
∂

∂yi
= X(ηi) ◦ π

∂

∂yi
.
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and DXY = X(ηi) ∂
∂xi . Thus we get D̄XhY v = (DXY )v consequently AXhY v =

0.

(11) AXhY h = V(∇̄XhY h).

Taking Z ∈ X(M) we have

ḡ(∇̄XhY h, Zv) = −ḡ(Y h, ∇̄XhZv) = −ḡ(Y h, H(∇̄XhZv)) = −ḡ(Y h, AXhZv) = 0

which implies V(∇̄XhY h) = 0 that is AXhY h = 0. Thus we have A = 0. ¤
Theorem 4.3. If α is the mean curvature of the a generic hypersurface M
of Rn+1 and H be the mean curvature vector field for the submanifold TM of
R2n+2 then we have

H =
1

2
(α ◦ π)N

Proof. Choosing normal coordinates on a normal neighbourhood of M we
choose a local orthonormal frame X1, X2, . . . , Xn with respect to these local
coordinates. Then we get a local orthonormal frame

X1h

, X2h

, . . . , Xnh

, X1v

, X2v

, . . . , Xnv

on TM . We know that α = 1
n

∑n
i=1 g(S(X i), X i), where S : X(M) → X(M) is

the Weingarten map. Using Corollary 4.2 we compute

H =
1

2n

n∑
i=1

{h(X ih , X ih) + h(X iv , X iv)}

=
1

2n

n∑
i=1

{
〈
S̄NX ih , X ih

〉
N +

〈
S̄N∗X ih , X ih

〉
N∗

+
〈
S̄NX iv , X iv

〉
N +

〈
S̄N∗X iv , X iv

〉
N∗}

=
1

2n

n∑
i=1

〈
(S(X i))h, X ih

〉
N =

1

2n

n∑
i=1

(
〈
S(X i), X i

〉 ◦ π̃)N

=
1

2n

n∑
i=1

(g(S(X i), X i) ◦ π)N =
1

2
(α ◦ π)N

¤
Finally, we prove the following theorem:

Theorem 4.4. The tangent bundle TM of a generic hypersurface M of Rn+1

is trivial.

Proof. Since the fundamental tensors A and T of the Riemannian submersion
π : TM → M are zero, both horizontal and vertical distributions H and V are
integrable. Also the leaves of the distributions H and V are totally geodesic
submanifolds of TM (cf. [6] ). Moreover the leaves of V are totally geodesic
submanifolds of R2n+2 by corollary 4.3 and consequently are Rn. Moreover the
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restriction of π to the leaves of H is an isometry thus leaves of H are isometric
to M and consequently we get that TM = M ×Rn that is TM is trivial. ¤
Corollary 4.4. The tangent bundle TS2 of f : S2 → R3, where f is the inclu-
sion does not satisfy dF (Xh) = (df(X))h, X ∈ X(S2), or equivalently S2 not
a generic hypersurface of R3.

Proof. If S2 is a generic hypersurface, then by above theorem we get TS2 is
trivial. Which would imply that the Euler characteristic χ(S2) = 0, which is a
contradiction as χ(S2) = 2. The proof also can be obtained from the example
in section-3 by deriving a contradiction with the assumption that the vector
field V = 0. ¤
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