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CONJUNCTIVELY POLYNOMIAL-LIKE BOOLEAN
FUNCTIONS

J. GONDA

Abstract. In this article we apply the notion of the modified conjunctive
normal form of a Boolean function which is equal to the canonical conjunc-
tive normal form of the complement of the dual of the same Boolean func-
tion. In the article a linear algebraic transform is given between the mod-
ified conjunctive normal form and the Zhegalkin polynomial of a Boolean
function and then the notion of the conjunctively polynomial-like Boolean
functions as the functions having the same series of the coefficients in their
modified conjunctive normal forms and in their Zhegalkin polynomials is
introduced.

In this article disjunction and logical sum, conjunction and logical product,
exclusive or and modulo two sum, as well as complementation and negation
are used in the same sense and they are denoted respectively by +, · (or
simply without any operation sign), ⊕ and . The elements of the field with
two elements and the elements of the Boolean algebra with two elements are
denoted by the same signs, namely by 0 and 1; N0 denotes the non-negative
integers, and N the positive ones.

1. Introduction

Logical functions and especially the two-valued ones have important roles in
our everyday life, so it is easy to understand that they are widely investigated.
A scope of the investigations is the representations of these functions and the
transforms from one representation to another ([3, 4, 5, 7]). Another area of
the examinations is the search of special classes of the set of the functions.
Post determined the closed classes of the switching functions [9], but there
are a lot of another classes of the Boolean functions invariant with respect to
some property. Such properties can be for example linear transforms. In the
following article we examine such a class of the logical functions of two values.
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It is well-known that an arbitrary two-valued logical function of n variables
can be written in the uniquely determined canonical disjunctive normal form,
i.e. as a logical sum whose members are pairwise distinct logical products of n
factors, where all of such logical products contain every logical variable exactly
once, either negated or not negated exclusively. Clearly, there exist exactly
2n such products. Supposing that the variables are indexed by the integers
0 ≤ j < n, these products can be numbered by the numbers 0 ≤ i < 2n

in such a way that we consider the non-negative integer containing 0 in the
j-th position of its binary expansion if the j-th variable of the given product is
negated, and 1 in the other case. Of course, this is a one to one correspondence
between the 2n distinct products and the integers of the interval [0 . . . 2n − 1],

and if i =
∑n−1

j=0 a
(i)
j 2j, where a

(i)
j is either 0 or 1, then the product belonging

to it is

(1) m
(n)
i =

n−1∏
j=0

(
a

(i)
j ⊕ xj

)
.

Such a product is called minterm (of n variables).
With the numbering given above we numbered the Boolean functions of n

variables, too. A Boolean function is uniquely determined by the minterms
contained in its canonical disjunctive normal form, so a Boolean function is
uniquely determined by a 2n-long series of 0-s and 1-s, where a 0 in the j-th

position (now 0 ≤ j < 2n) means that m
(n)
j doesn’t occur in that function, and

1 means that the canonical disjunctive normal form of the function contains the
minterm of the index j (this series is the spectrum of the canonical disjunctive
normal form of the function, and similarly will be defined the spectrum with

respect to other representation of the function), i.e. for k =
∑2n−1

i=0 α
(k)
i 2i with

α
(k)
i ∈ {0, 1}

(2) f
(n)
k =

2n−1∑
i=0

α
(k)
i m

(n)
i .

Now, f
(n)
k denotes the k-th Boolean function of n variables.

A similar representation of a Boolean function is the canonical conjunctive
normal form of the function. Let’s consider

(3) M
(n)
i =

n−1∑
j=0

(
a

(i)
j ⊕ xj

)

for 2n > i ∈ N0. This function, the i-th maxterm of n variables is equal to 0

if and only if xj = a
(i)
j for every 0 ≤ j < n. By these maxterms a Boolean

function can be expressed as

(4) f (n) =
2n−1∏
i=0

(
αi + M

(n)
i

)



CONJUNTIVELY POLYNOMIAL-LIKE BOOLEAN FUNCTIONS 91

where αi = f (n)
(
a

(i)
n−1, . . . , a

(i)
0

)
. From this last property follows that f (n) =

∏2n−1
i=0

(
αi + M

(n)
i

)
= f

(n)
l where l =

∑2n−1
i=0 αi2

i.

For our present investigations it will be more convenient to introduce the
notion of the modified maxterm defined by

(5) M
(n)′
i =

n−1∑
j=0

(
a

(i)
j ⊕ xj

)
.

It is easy to see that M
(n)
i = M

(n)′
2n−1−i. Now if f (n) =

∏2n−1
i=0

(
βi + M

(n)′
i

)
= f

(n)
k

then αi = f (n)
(
a

(i)
n−1, . . . , a

(i)
0

)
= β2n−1−i. From now on we refer to this form

of the function given by the modified maxterms as the modified conjunctive

normal form of the function. For u ⊕ v = u ⊕ v, so a
(i)
j ⊕ xj = a

(i)
j ⊕ xj and

M
(n)′
i =

∑n−1
j=0

(
a

(i)
j ⊕ xj

)
. If g(n) =

∏2n−1
i=0

(
βi + M

(n)
i

)
, then

f (n) (xn−1, . . . , x0) =
2n−1∏
i=0

(
αi +

n−1∑
j=0

(
a

(i)
j ⊕ xj

))

=
2n−1∏
i=0

(
αi + M

(n)
i

)
=

2n−1∏
i=0

(
βi + M

(n)′
i

)

=
2n−1∏
i=0

(
βi +

n−1∑
j=0

(
a

(i)
j ⊕ xj

))

= g(n) (xn−1, . . . , x0) = g(n) (xn−1, . . . , x0)

= g(n)D (xn−1, . . . , x0)

(6)

where D denotes the dual of the function. As if f = gD then g = fD so g(n) is
the complement of the dual of f (n) in (6).

Another possibility for giving a Boolean function is the so-called Zhegalkin-

polynomial. Let S
(n)
i =

∏n−1
j=0

(
a

(i)
j + xj

)
, where i =

∑n−1
j=0 a

(i)
j 2j again. This

product contains only non-negated variables, and the j-th variable is contained
in it if and only if the j-th digit is 1 in the binary expansion of i. There
exist exactly 2n such products which are pairwise distinct. Now, any Boolean
function of n variables can be written as a modulo two sum of such terms, and
the members occurring in the sum are uniquely determined by the function.
That means that we can give the function by a 2n-long 0 - 1 series, and if the
i-th member of such a series is ki then

(7) f (n) =
2n−1⊕
i=0

kiS
(n)
i .



92 J. GONDA

Between the first and the third representations of the same Boolean function
there is a very simple linear algebraic transform. Considering the coefficients
of the canonical disjunctive normal form of a Boolean function of n variables
and the coefficients of the Zhegalkin polynomial of a function of n variables,
respectively, as the components of an element of a 2n-dimensional linear space
over F2, the relation between the vectors belonging to the two representations
of the same Boolean function of n variables can be given by k = A(n)α. Here
k is the vector containing the components of the Zhegalkin polynomial, α is
the vector, composed of the coefficients of the disjunctive representation of the
given function, and A(n) is the matrix of the transform in the natural basis.
For the matrix of the transform it is true that

(8) A(n) =





(1) if n = 0(
A(n−1) 0(n−1)

A(n−1) A(n−1)

)
if n ∈ N

(see for instance in [4]) and as a consequence that

(9) A(n)2 = I(n),

where I(n) and 0(n) denote the 2n-dimensional identity and zero matrix, re-
spectively. From this follows that if k = A(n)α, then α = A(n)k. In the special
case when α = k, the corresponding function is a polynomial-like Boolean
function [6]. As A(0) = (1), so each of the two zero variable Boolean functions
is polynomial-like. Now, let u = u0u1 be the spectrum of the canonical dis-
junctive normal form of a Boolean function f of n + 1 variables, where n is a
nonnegative integer. Then

(10)

(
u0

u1

)
=

(
A(n) 0(n)

A(n) A(n)

)(
u0

u1

)

if and only if u0 = A(n)u0 and u1 = A(n)u0+ A(n)u1 = u0+ A(n)u1, that is f is
polynomial-like if and only if u0 =

(
A(n) + I(n)

)
u1, where u1 is the spectrum

of the canonical disjunctive normal form of an arbitrary Boolean function of
n variables. As a consequence we get that the number of the n + 1 variable
polynomial-like Boolean functions is equal to 22n

. It is easy to see, too, that
the spectra of the canonical disjunctive normal forms of the polynomial-like
Boolean functions of n + 1 variables make up a 2n-dimensional subspace of
the 2n+1-dimensional linear space of the spectra of the canonical disjunctive
normal forms of all of the n + 1 variable Boolean functions.

Now, in the following parts of this article we deal with the relationship
between the modified conjunctive normal form and the Zhegalkin polynomial
of the function.

2. Development

Let β← denote the vector the i-th component of which is equal to the 2n−1−
i-th component of β ∈ Fn

2 . If P(n) is a 2n× 2n matrix with the elements Pi,j =
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δ2n−1−i,j, that is with 1 in the side diagonal and with 0 at the other positions
of the matrix, then α=β← = P(n)β. As k = A(n)α, so k =

(
A(n)P(n)

)
β, that

is, denoting A(n)P(n) by U(n),

(11) k = U(n)β.

Let’s investigate U(n).

Theorem 1. U(0) = (1) and for n ∈ N0

(12) U(n+1) =

(
0(n) U(n)

U(n) U(n)

)
.

Proof. U(0) = A(0)P(0) = (1) (1) = (1) = I(0), and

U(n+1) = A(n+1)P(n+1)

=

(
A(n) 0(n)

A(n) A(n)

)(
0(n) P(n)

P(n) 0(n)

)

=

(
0(n) A(n)P(n)

A(n)P(n) A(n)P(n)

)

=

(
0(n) U(n)

U(n) U(n)

)
.

(13)

¤
Theorem 2. U(n) is regular for any n ∈ N0. The order of U(n) is equal to 1
if n = 0 and to 3 if n > 0.

Proof. U(0)3 = I(0)3 = I(0). Supposing that U(n)3 = I(n) for an n ∈ N0,

U(n+1)2 =

(
0(n) U(n)

U(n) U(n)

)(
0(n) U(n)

U(n) U(n)

)

=

(
U(n)2 U(n)2

U(n)2 0(n)

)(14)

and

U(n+1)3 =

(
U(n)2 U(n)2

U(n)2 0(n)

)(
0(n) U(n)

U(n) U(n)

)

=

(
U(n)3 0(n)

0(n) U(n)3

)

=

(
I(n) 0(n)

0(n) I(n)

)
= I(n+1)

(15)

so for any non-negative integer n, U(n)3 = I(n). (13) and (14) show that

neither U(n+1) nor U(n+1)2 is equal to I(n+1), so the order of U(n+1) is equal to
3. Finally it is obvious that the order of (1) is equal to 1. ¤

Now, we determine the invariant factors of U(n).
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Theorem 3.

(16) U(n) + λI(n) ∼




I(rn×rn) 0(rn×1) 0(rn×sn)

0(1×rn) 1 + λ + εnλ2 0(1×sn)

0(sn×rn) 0(sn×1) (1 + λ3) I(sn×sn)


 ,

where εn = n mod 2, sn =
⌊

2n

3

⌋
and rn = 2n − 1− sn.

Proof. If n = 0 then ε0 = s0 = r0 = 0 and U(0) = I(0), so

(17) U(0) + λI(0) = (1 + λ) .

In the case of n = 1, ε1 = 1 = r1, s1 = 0 and

U(1) + λI(1) =

(
λ 1
1 1 + λ

)

∼
(

1 0
0 1 + λ + λ2

)(18)

and the two cases together give the following result for n = 0 and n = 1:

(19) U(n) + λI(n) =




I(rn×rn) 0(rn×1) 0(rn×sn)

0(1×rn) 1 + λ + εnλ2 0(1×sn)

0(sn×rn) 0(sn×1) (1 + λ3) I(sn×sn)


 .

Now, let n ∈ N0. Then

(20)

U(n+2) + λI(n+2) =

(
λI(n+1) U(n+1)

U(n+1) U(n+1) + λI(n+1)

)

∼
(

U(n+1) U(n+1) + λI(n+1)

0(n+1) U(n+1) + λI(n+1) + λ2U(n+1)2

)

∼
(

I(n+1) 0(n+1)

0(n+1) U(n+1)2 + λU(n+1) + λ2I(n+1)

)

where in the second step we multiplied by

(
U(n+1)2 U(n+1) + λI(n+1)

0(n+1) U(n+1)

)
from

the right. Furthermore

U(n+1)2 + λU(n+1) + λ2I(n+1) =

(
U(n)2 + λ2I(n) U(n)2 + λU(n)

U(n)2 + λU(n) λU(n) + λ2I(n)

)

∼
(

U(n) + λI(n) λI(n) + λ2U(n)2

U(n)2 + λ2I(n) U(n)2 + λU(n)

)

∼
(

U(n) + λI(n) λI(n) + λ2U(n)2

0(n) U(n)2 + λ3U(n)2

)

∼
(

U(n) + λI(n) 0(n)

0(n) (1 + λ3) I(n)

)
.

(21)
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Putting this result into the matrix we got previously in (20)

U(n+2) + λI(n+2) ∼
(

I(n+1) 0(n+1)

0(n+1) U(n+1)2 + λU(n+1) + λ2I(n+1)

)

∼




I(n+1) 0(2n+1×2n) 0(2n+1×2n)

0(2n×2n+1) U(n) + λI(n) 0(n)

0(2n×2n+1) 0(n) (1 + λ3) I(n)


 .

(22)

Let’s suppose that

(23) U(n) + λI(n) ∼




I(rn×rn) 0(rn×1) 0(rn×sn)

0(1×rn) 1 + λ + εnλ2 0(1×sn)

0(sn×rn) 0(sn×1) (1 + λ3) I(sn×sn)




and let’s take into consideration that

(24) 2n + sn = 2n +

⌊
2n

3

⌋
=

⌊
2n+2

3

⌋
= sn+2

and

2n+1 + rn = 2n+1 + 2n − 1− sn

= 2n+2 − 1− (2n + sn)

= 2n+2 − 1− sn+2 = rn+2.

(25)

Then substituting U(n) + λI(n) in (22) by the right hand side of (23), after
repartitioning the matrix we get that

U(n+2) + λI(n+2) ∼

∼




I(rn+2×rn+2) 0(rn+2×1) 0(rn+2×sn+2)

0(1×rn+2) 1 + λ + εn+2λ
2 0(1×sn+2)

0(sn+2×rn+2) 0(sn+2×1) (1 + λ3) I(sn+2×sn+2)


 .

(26)

¤

With these results we know the minimal and the characteristic polynomial
of the transform belonging to U(n), too, namely

Corollary 1. Let n ∈ N0. The minimal polynomial of U(n) is

(27) m(n) (λ) =





λ + 1 n = 0
λ2 + λ + 1 n = 1
λ3 + 1 n ≥ 2

and the characteristic polynomial of the transform given by U(n) in the natural
basis of the 2n-dimensional Boolean space is

c(n) (λ) =
(
λ3 + 1

)sn
(λ + 1)1−εn

(
λ2 + λ + 1

)εn

= (λ + 1)sn+(1−εn) (
λ2 + λ + 1

)sn+εn
.

(28)
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Proof. The minimal polynomial of a transform is its last invariant factor and
it is equal to that indicated in (17), (18) and (23), that is in (27). Similarly,
the characteristic polynomial is the product of all of the invariant factors of
the transform. In (23) we can see that λ3 + 1 is an invariant factor with
a multiplicity of sn, additionally if n is an even integer then λ + 1, and in
the other case λ2 + λ + 1 is a simple invariant factor, and there is no other
invariant factor. As λ3+1 = (λ + 1) (λ2 + λ + 1) and the second operand of the
product is irreducible over F2, we get also the second form of the characteristic
polynomial. ¤

Another consequence of Theorem 3 is the following corollary.

Corollary 2. The eigenvalue of the transform is 1 and the multiplicity of this

only eigenvalue is µn = 2n+2(−1)n

3
.

By Corollary 2 the subspace of the 2n-dimensional Boolean space belonging
to the only eigenvalue of the transform determined by the matrix U(n) =

A(n)P(n) in the natural basis of the space is 2n+2(−1)n

3
-dimensional.

Proof. As the multiplicity of λ + 1 in c(n) (λ) is equal to sn + 1 − εn, and
λ2 + λ + 1 is irreducible over F2, so the only eigenvalue of the transform is 1
with the multiplicity of µn = sn + 1− εn and

µn = sn + 1− εn =

⌊
2n

3

⌋
+ 1− (n mod 2)

=
2n − 2εn

3
+ 1− (n mod 2)

=
2n − 1− (n mod 2)

3
+ 1− (n mod 2)

=
2n + 2− 4 (n mod 2)

3
=

2n + 2 (−1)n

3
.

(29)

¤
Remark 1. Another way to gain µn is the recursion: µ0 = 1 and

µn+1 =
2n+1 + 2 (−1)n+1

3
=

2 · 2n − 2 (−1)n

3

= 2
2n + 2 (−1)n

3
− 2 (−1)n = 2µn − 2 (−1)n .

(30)

We have to find a basis of this subspace.

Theorem 4. Let U(n) + I(n) =

(
Q(n) R(n)

S(n) T(n)

)
where Q(n) is a 2n− µn-order

and T(n) is a µn-order quadratic matrix. Then Q(n) is regular, and the subspace
of the eigenvectors of the transform is

(31)

(
Q(n)−1

R(n)

I(µn×µn)

)
u
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where u is an arbitrary element of the µn-dimensional Boolean space.

Proof. If λ = 1 then U(n) + λI(n) = U(n) + I(n). U(0) + I(0) = (0), so if n = 0,
then every element of the Boolean space, that is all of the Boolean functions of
0 variables are conjunctively polynomial-like. We get the same result by our
theorem, as now µ0 = 1 and so

(32)

(
Q(0)−1

R(0)

I(µ0×µ0)

)
= I(0).

If n = 1 then

U(1) + I(1) =

(
0 1
1 1

)
+

(
1 0
0 1

)
=

(
1 1
1 0

)

∼
(

1 1
0 1

)
∼

(
1 0
0 1

)
.

(33)

This matrix is regular, so its nullspace contains only the nullvector, the trans-
form has no eigenvector, the only conjunctively polynomial-like Boolean func-
tion of one variable is the zero function of 1 variable. It is equal to we get by
the theorem: µ1 = 2µ0 − 2 (−1)0 = 0 and 21 − µ1 = 2, so U(1) = Q(1) and

(34)

(
Q(1)−1

R(1)

I(µ1×µ1)

)
= ()

where () is a 2 × 0-matrix which spans the 0-dimensional subspace of the
2-dimensional Boolean space.

Now let n ≥ 0. Then

U(n+2) + I(n+2) =

(
I(n+1) U(n+1)

U(n+1) U(n+1) + I(n+1)

)

∼
(

I(n+1) U(n+1)

0(n+1) U(n+1)2 + U(n+1) + I(n+1)

)(35)

U(n+1)2 + U(n+1) + I(n+1) =

(
U(n)2 + I(n) U(n)2 + U(n)

U(n)2 + U(n) U(n) + I(n)

)

∼
(

U(n) + I(n) U(n)2 + I(n)

0(n) 0(n)

)(36)

and so

(37) U(n+2) + I(n+2) ∼




I(n) 0(n) 0(n) U(n)

0(n) I(n) U(n) U(n)

0(n) 0(n) U(n) + I(n) U(n)2 + I(n)

0(n) 0(n) 0(n) 0(n)


 .

From here it is easy to see by induction that the left upper (2n − µn)×(2n − µn)
submatrix of U(n) + I(n) is regular (as we manipulated only the rows of the
matrix, and we added a multiple of a row to another row always downwards),
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and this regular submatrix can’t be extended regularly due to the rank of the
matrix. If

(38) U(n) + I(n) =

(
Q(n) R(n)

S(n) T(n)

)

where Q(n) is the above mentioned regular submatrix, then
(
U(n) + I(n)

)
u = 0

if and only if

0(2n) =

(
Q(n)−1

0((2n−µn)×µn)

S(n)Q(n)−1

I(µn×µn)

) (
U(n) + I(n)

)
u

=

(
Q(n)−1

0((2n−µn)×µn)

S(n)Q(n)−1

I(µn×µn)

)(
Q(n) R(n)

S(n) T(n)

)(
u(0)

u(1)

)

=

(
I((2n−µn)×(2n−µn)) Q(n)−1

R(n)

0(µn×(2n−µn)) 0(µn×µn)

)(
u(0)

u(1)

)
(39)

that is if and only if

(40)
(

I((2n−µn)×(2n−µn)) Q(n)−1

R(n)
) (

u(0)

u(1)

)
= 0(2n−µn).

From this equation we get that

(41)

(
u(0)

u(1)

)
=

(
Q(n)−1

R(n)

I(µn×µn)

)
u(1)

is the solution of the equation

(42)

(
Q(n) R(n)

S(n) T(n)

)(
u(0)

u(1)

)
=

(
0(2n−µn)

0(µn)

)

with an arbitrary u(1) vector of the µn-dimensional Boolean space. ¤
Finally, we define the class of the Boolean functions having the properties

we dealt with in this article.

Definition 1. Let f be a Boolean function of n variables, and let β and k be
the spectra of the modified conjunctive normal form and the Zhegalkin poly-
nomial of f , respectively. Then f is a conjunctively polynomial-like Boolean
function, if β = k.

Example 1. Let n = 2.

U(2) + I(2) =




1 0 0 1
0 1 1 1
0 1 1 1
1 1 1 0


 ∼




1 0 0 1
0 1 1 1
0 1 1 1
0 1 1 1




∼




1 0 0 1
0 1 1 1
0 0 0 0
0 0 0 0


 =

(
I(1) Q(2)−1

R(2)

0(1) 0(1)

)
.

(43)
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Then

(44)

(
Q(2)−1

R(2)

I(2×2)

)
=




0 1
1 1
1 0
0 1




and the two-variable conjunctively polynomial-like Boolean functions are as
follows:

(45)

f
(2)
0 f

(2)
6 f

(2)
13 f

(2)
11

M
(2)′
0 0 0 1 1

M
(2)′
1 0 1 1 0

M
(2)′
2 0 1 0 1

M
(2)′
3 0 0 1 1

Really,
(
0 + M

(2)′
0

)(
0 + M

(2)′
1

)(
0 + M

(2)′
2

)(
0 + M

(2)′
3

)

= M
(2)′
0 M

(2)′
1 M

(2)′
2 M

(2)′
3

= (x1 + x0) (x1 + x0) (x1 + x0) (x1 + x0)

= 0 = 0 · S0 + 0 · S1 + 0 · S2 + 0 · S3

(46)

(
0 + M

(2)′
0

)(
1 + M

(2)′
1

)(
1 + M

(2)′
2

)(
0 + M

(2)′
3

)

= M
(2)′
0 M

(2)′
3 = (x1 + x0) (x1 + x0)

= x1x0 + x1x0 = x1 ⊕ x0

= 0 · S0 + 1 · S1 + 1 · S2 + 0 · S3

(47)

(
1 + M

(2)′
0

)(
1 + M

(2)′
1

)(
0 + M

(2)′
2

)(
1 + M

(2)′
3

)

= M
(2)′
2 = (x1 + x0)

= 1⊕ x0 ⊕ x1x0

= 1 · S0 + 1 · S1 + 0 · S2 + 1 · S3

(48)

and finally
(
1 + M

(2)′
0

)(
0 + M

(2)′
1

)(
1 + M

(2)′
2

)(
1 + M

(2)′
3

)

= M
(2)′
1 = (x1 + x0)

= 1⊕ x1 ⊕ x1x0

= 1 · S0 + 0 · S1 + 1 · S2 + 1 · S3.

(49)



100 J. GONDA

Example 2. Let n = 3. Now,

(50) A(3) =




1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1




(51) U(3) + I(3) =




1 0 0 0 0 0 0 1
0 1 0 0 0 0 1 1
0 0 1 0 0 1 0 1
0 0 0 1 1 1 1 1
0 0 0 1 1 0 0 1
0 0 1 1 0 1 1 1
0 1 0 1 0 1 1 1
1 1 1 1 1 1 1 0




and µ3 = 2µ2 − 2 (−1)2 = 2, 23 − µ3 = 6, so

(52) Q(3) =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 1
0 0 0 1 1 1
0 0 0 1 1 0
0 0 1 1 0 1




and

(53) R(3) =




0 1
1 1
0 1
1 1
0 1
1 1




.

Then,

(54) Q(3)−1

=




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 1 1 0
0 0 1 0 0 1
0 0 1 0 1 1
0 0 0 1 1 0



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and

(55)

(
Q(3)−1

R(3)

I(2×2)

)
=




0 1
1 1
1 1
1 0
1 1
1 0
1 0
0 1




.

Really,

U(3)

(
Q(3)−1

R(3)

I(1)

)
=




0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 1
0 0 0 0 1 1 1 1
0 0 0 1 0 0 0 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1







0 1
1 1
1 1
1 0
1 1
1 0
1 0
0 1




=




0 1
1 1
1 1
1 0
1 1
1 0
1 0
0 1




=

(
Q(3)−1

R(3)

I(1)

)

(56)

that shows that the columns of

(
Q(3)−1

R(3)

I(2×2)

)

are eigenvectors of the transform. From here we get the four conjunctively
polynomial-like Boolean functions of three variables as the four linear combi-
nations of the two columns of the matrix of the right hand side of the equation
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(55). Namely,

(57)

f
(3)
0 f

(3)
126 f

(3)
233 f

(3)
151

M
(3)′
0 0 0 1 1

M
(3)′
1 0 1 1 0

M
(3)′
2 0 1 1 0

M
(3)′
3 0 1 0 1

M
(3)′
4 0 1 1 0

M
(3)′
5 0 1 0 1

M
(3)′
6 0 1 0 1

M
(3)′
7 0 0 1 1

3. Conclusion

In the article above we dealt with a special transform of the Boolean func-
tions given between the spectrum of the Zhegalkin polynomial of a Boolean
function and the vector containing the elements of the spectrum of the canon-
ical disjunctive normal form of the same function in reversed order. It was
stated that the order of the transform is equal to three (with the exception
of the case of n = 0). The set of the functions of n variables invariant with
respect to this transform is a linear subspace of the linear space of all of the
n-variable Boolean functions and the dimension of this subspace is equal to

µn = 2n+2(−1)n

3
. In the article we gave a basis of this subspace, too. If U(n)

denotes the matrix of the transform then the rank of U(n) + I(n) is equal to

2n − µn and U(n) + I(n) =

(
Q(n) R(n)

S(n) T(n)

)
, where Q(n) is a 2n − µn-order

regular quadratic matrix. Then the columns of

(
Q(n)−1

R(n)

I(µn×µn)

)
make up a

basis of the transform.
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