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PRIMARY DECOMPOSITION OF MODULES OVER
DEDEKIND DOMAINS USING GRÖBNER BASES

OSWALDO LEZAMA AND HÉCTOR SUÁREZ

Abstract. In [6] was proved that if R is a principal ideal domain and
N ⊂ M are submodules of R[x1, . . . , xn]s, then the primary decomposition
for N in M can be computed using Gröbner bases. In this paper we extend
this result to Dedekind domains. The procedure that computed the primary
decomposition is illustrated with an example.

1. Introduction

Let N ⊂ M be submodules of R[X]s, where R[X] = R[x1, . . . , xn] is the
polynomial ring over the Noetherian commutative ring R. In [6] is presented
the algorithm MPD that computes the primary decomposition of N in M
using Gröbner bases when R is a principal ideal domain. In this paper we
prove that the procedure MPD could be adapted if we assume that R is a
Dedekind domain.

The algorithm MPD in [6] is supported in some preliminary results that we
will adapt in Section 3. For this purpose we will establish other additional
results that we will prove in Section 2. Examples illustrating the algorithm
MPD are not included in [6], we will show in Section 4 an example for this
algorithm following the procedure described in Theorem 15 of Section 3.

2. Preliminary results

In this section we present some preliminary results that we will use in Sec-
tion 3.

Proposition 1. Let R be an integral domain and f, g ∈ R − {0}. Then
T = {fµgν |µ, ν ≥ 0} is a multiplicative system of R and

R[X]f,g
∼= R[X, y, z]/〈yf − 1, zg − 1〉.
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Proof. 0 /∈ T , 1 = f 0g0 ∈ T and (fκgλ)(fµgν) = fκ+µgλ+ν ∈ T . We define

R[X, y, z]
α−→ R[X]f,g ⊂ K(X)

p(X, y, z) 7→ p
(
X,

1

f
,
1

g

)
,

where K is the field of fractions of R and K(X) is the field of fractions of
R[X]. We note that α is a ring homomorphism. Moreover, α is surjective since
a(X)
fµgν = α

(
a(X)yµzν

)
. Now, we will prove that ker(α) = 〈yf − 1, zg − 1〉. Let

p(X, y, z) ∈ 〈yf−1, zg−1〉 then p(X, y, z) = h(X, y, z)(yf−1)+t(X, y, z)(zg−
1), with h(X, y, z), t(X, y, z) ∈ R[X, y, z], and hence, α(p(X, y, z)) = 0. Thus,
〈yf − 1, zg − 1〉 ⊆ ker(α). On the other hand, let p(X, y, z) ∈ ker(α), then
p(X, 1

f
, 1

g
) = 0, but p(X, y, z) ∈ (R[X])[y, z] ⊂ K(X)[y, z], from this we get

that ( 1
f
, 1

g
) is a zero of p(X, y, z). Thus, {( 1

f
, 1

g
)} ⊆ V (〈p〉), where V (〈p〉) is the

variety of the ideal generated by p = p(X, y, z) (see [3]). Then, I(V (〈p〉)) ⊆
I({(V ( 1

f
, 1

g
)}), i.e., 〈p〉 ⊆ 〈y − 1

f
, z − 1

g
〉. Hence, p(X, y, z) = a′(X, y, z)(y −

1
f
) + b′(X, y, z)(z − 1

g
) with a′(X, y, z), b′(X, y, z) ∈ K(X)[y, z].

Eliminating denominators we find w ∈ R[X]−{0} such that wfgp(X, y, z) =
a(X, y, z)(yf − 1) + b(X, y, z)(gz − 1) with a(X, y, z), b(X, y, z) ∈ R[X, y, z].
Then, wfgp(X, y, z) ∈ 〈yf − 1, gz − 1〉 ⊆ R[X, y, z]. But, 〈yf − 1, gz − 1〉 is a
prime ideal of R[X, y, z]. In fact, {( 1

f
, 1

g
)} is an irreducible algebraic set, then

〈y− 1
f
, z− 1

g
〉 is a prime ideal of K(X)[y, z], but 〈y− 1

f
, z− 1

g
〉 = 〈yf−1, zg−1〉

in K(X)[y, z]. Thus, 〈yf−1, zg−1〉 is a prime ideal of K(X)[y, z]. We consider

the canonical inclusion R[X, y, z]
ι−→ K(X)[y, z], then ι−1(〈yf − 1, gz − 1〉) =

〈yf − 1, gz − 1〉 is a prime ideal of R[X, y, z].
Now, we can conclude the proof. From wfgp(X, y, z) ∈ 〈yf − 1, gz − 1〉 we

get that wfg ∈ 〈yf − 1, gz − 1〉 or p(X, y, z) ∈ 〈yf − 1, gz − 1〉. If wfg ∈
〈yf − 1, gz − 1〉, then wfg = c(yf − 1) + d(gz − 1) with c, d ∈ R[X, y, z].
Setting y = 1

f
and z = 1

g
we get wfg = 0, but this is impossible. Hence,

p(X, y, z) ∈ 〈yf − 1, gz − 1〉. ¤

The previous result can be extended to any finite set of nonzero elements of
R including the well known case t = 1.

Corollary 2. Let R be an integral domain and f1, . . . , ft ∈ R − {0}, t ≥ 1.
Then,

R[X]f1,...,ft
∼= R[X, y1, . . . , yt]/〈y1f1 − 1, . . . , ytft − 1〉.

From this corollary we get the following computational property.

Proposition 3. Let R be an integral domain, f1, . . . , ft ∈ R−{0}, t ≥ 1, and
I an ideal of R[X]. Then,

IR[X]f1,...,ft ∩R[X] = 〈I, y1f1 − 1, . . . , ytft − 1〉R[X, y1, . . . , yt] ∩R[X].
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Proof. We consider the canonical homomorphism

ϕ :R[X] → R[X]f1,...,ft

p(X) 7→ p(X)

1
.

IR[X]f1,...,ft is the ideal of R[X]f1,...,ft generated by ϕ(I), so

IR[X]f1,...,ft =
{ h(X)

fµ1 · · · fµt
|h(X) ∈ I, µ1, . . . , µt ≥ 0

}
.

By the above corollary we have the isomorphism

R[X, y1, . . . , yt]/〈y1f1 − 1, . . . ytft − 1〉 α∼= R[X]f1,...,ft

and also

α(〈I, y1f1−1, . . . ytft−1〉R[X, y1, . . . , yt]/〈y1f1−1, . . . ytft−1〉) = IR[X]f1,...,ft .

We observe that R[X] ↪→ R[X, y1, . . . , yt]/〈y1f1 − 1, . . . ytft − 1〉. In fact, we

define p(X) 7→ p(X), if p(X) = 0 then p(X) ∈ 〈y1f1−1, . . . ytft−1〉, and hence
p(X) = c1(y1f1 − 1) + · · · + ct(ytft − 1) with ci ∈ R[X, y1, . . . , yt], 1 ≤ i ≤ t.
Setting yi = 1

fi
we get p(X) = 0. From this we have that IR[X]f,g ∩ R[X]

coincides with 〈I, y1f1 − 1, . . . ytft − 1〉R[X, y1, . . . , yt] ∩R[X]. ¤
This result is a particular case of the following more general property.

Theorem 4. Let N, M be submodules of R[X]s and f1, . . . , ft ∈ R[X] − {0},
t ≥ 1, then

Nf1,...,ft ∩M = (NR[X, y1, . . . , yt] + (y1f1 − 1)R[X, y1, . . . , yt]
s + · · ·+

+ (ytft − 1)R[X, y1, . . . , yt]
s) ∩M.

Proof. The proof is an easy adaptation of the proof of the previous proposition.
¤

Proposition 5. Let R be an integral domain, S a multiplicative set of R
and I an ideal of R[X]. If for a1, . . . , at ∈ S and t ≥ 1, Lt(I)S ∩ R[X] =
(Lt(I)Ra1,...,at [X]) ∩R[X], then

IS ∩R[X] = IRa1,...,at [X] ∩R[X].

Proof. This is a direct consequence of Lemma 3.5 in [4] taking the multiplica-
tive subset V = {aµ1

1 · · · aµt
t |µi ≥ 0, 1 ≤ i ≤ t} ⊂ S. ¤

More generally, we have the following property.

Theorem 6. Let R be an integral domain, S a multiplicative set of R and N
a submodule of R[X]s. If for a1, . . . , at ∈ S and t ≥ 1, Lt(N)S ∩ R[X]s =
(Lt(N)Ra1,...,at [X]) ∩R[X]s, then

NS ∩R[X]s = NRa1,...,at [X] ∩R[X]s.
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Proof. This is a direct consequence of Lemma 4.4 in [6] taking the multiplica-
tive subset V = {aµ1

1 · · · aµt
t |µi ≥ 0, 1 ≤ i ≤ t} ⊂ S. ¤

Proposition 7. Let R be a Noetherian integral domain and P a prime ideal
of R such that PRP is principal. Then, for a given ideal I of R[X] there exists
a ∈ R− P such that

IRP [X] ∩R[X] = IRa[X] ∩R[X].

Proof. Let PRP =< p
1

> with p ∈ P . Since, RP is a Noetherian integral

domain, by the Krull Intersection Theorem we have ∩∞k=0〈p
1
〉k = 0, let r 6=

0, r ∈ R, then r
1
6= 0

1
∈ RP and hence there exists k ≥ 0 such that r

1
∈ 〈p

1
〉k

and r
1

/∈ 〈p
1
〉k+1. From this we have r

1
= a

a′
pk

1
with a

a′ /∈ 〈p
1
〉. Then a

1
/∈ 〈p

1
〉 and

a′ /∈ P . Moreover, 〈a
1
〉+ 〈p

1
〉 = RP , hence 1

1
= b

u
a
1

+ c
v

p
1
, where u, v /∈ P . Thus,

uv = abv + cup, and since p ∈ P , then a /∈ P .
Let G = {g1, . . . , gm} be a Gröbner basis for I, with lt(gi) = riXi, where

ri ∈ R − {0} and Xi is the leading monomial of gi. There exist ai, a
′
i /∈ P

and ki ≥ 0 such that ri

1
= ai

a′i
pki

1
, 1 ≤ i ≤ t. Since, Lt(G) = Lt(I), then

Lt(G)S = Lt(I)S with S = R−P . Moreover, in R[X]S = RS[X] = RP [X] the
set {g1

1
, . . . , gm

1
} is a Gröbner basis for IS = IR[X]S = IRS[X] = IRP [X] (see

Proposition 4.4.2 in [1]). Thus,

Lt(I)S = Lt(I)R[X]S = Lt(I)S[X] = Lt(I)RP [X]

= 〈a1

a′1
pk1X1, . . . ,

at

a′t
pktXt〉RP [X]

= 〈a1p
k1X1, . . . , atp

ktXt〉RP [X]

= 〈p
k1

1
X1, . . . ,

pkt

1
Xt〉RP [X], since a1, . . . , at /∈ P.

Then,
Lt(I)RP [X] ∩R[X] = 〈pk1X1, . . . , p

ktXt〉R[X].

Setting a = a1 · · · ata
′
1 · · · a′t we get

Lt(I)Ra[X] = 〈a1(a
′
1)
−1pk1X1, . . . , at(a

′
t)
−1pk1Xt〉Ra[X]

= 〈p
k1

1
X1, . . . ,

pkt

1
Xt〉Ra[X].

Then,

Lt(I)Ra[X] ∩R[X] = 〈pk1X1, . . . , p
k1Xt〉Ra[X] ∩R[X]

= 〈pk1X1, . . . , p
k1Xt〉R[X].

By Proposition 5 with t = 1 we have

IRP [X] ∩R[X] = IRa[X] ∩R[X].

¤
For modules we have the following more general result.
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Theorem 8. Let R be a Noetherian integral domain, N a submodule of R[X]s

and P a prime ideal of R such that PRP is principal. Then, there exists
a ∈ R− P such that

NRP [X] ∩R[X]s = NRa[X] ∩R[X]s.

Proof. We can repeat the previous proof. But, considering the fact that if
G = {g1, . . . , g t} is a Gröbner basis for N , then {g1

1
, . . . , gm

1
} is a Gröbner

basis for NS = NR[X]S = NRS[X] = NRP [X], with S = R− P . ¤

Another elementary and probably known result we need in the next section
is the following lemma.

Lemma 9. Let R be a Noetherian commutative ring, Pi ⊂ R ideals of R
such that Pi + Pj = R for i 6= j, 1 ≤ i, j ≤ t. Let Q =

∏t
i=1 P νi

i and
Qi = P ν1

1 · · ·P νi−1

i−1 P
νi+1

i+1 · · ·P νt
t . Then,

Q1 + · · ·+ Qt = R.

Proof. First, we will prove that P νi
i + P

νj

j = R for each i 6= j. Since, (Pi +
Pj)

νi+νj = R we can express 1 as a finite sum of elements of the form x1 · · ·xs

with s = νi+νj and xl ∈ Pi+Pj, 1 ≤ l ≤ s. In order to prove that 1 ∈ P νi
i +P

νj

j

we will see that each of these elements belongs to P νi
i + P

νj

j . In fact,

xl = al + bl with al ∈ Pi, bl ∈ Pj, 1 ≤ l ≤ s.

Hence, x1 · · · xs = (a1 + b1) · · · (as + bs), expanding this product we get
a summa such that each summand has of the form ai1 · · · aiubj1 · · · bjv with
ai1 , . . . , aiu ∈ Pi and bj1 , · · · , bjv ∈ Pj.

We note that u + v = s = νi + νj, where 0 ≤ u, v ≤ s. Thus, u ≥ νi or
v ≥ νj (if u < νi and v < νj then u + v < νi + νj). So ai1 · · · aiu ∈ P νi

i or
bj1 · · · bjv ∈ P

νj

j . Hence, x1 · · ·xs ∈ P νi
i + P

νj

j .
From this we get that

∏
1≤i<j≤t

(P νi
i + P

νj

j ) = R,

so 1 ∈ ∏
1≤i<j≤t(P

νi
i + P

νj

j ). Each element in
∏

1≤i<j≤t(P
νi
i + P

νj

j ) is a finite

summa of products with t(t−1)
2

factors, each of these factors is an element in
P νi

i with 1 ≤ i ≤ t. But, in each product there is at least t − 1 factors taken
from t−1 different ideals of collection {P ν1

1 , . . . P νt
t }, i.e., each product belongs

to some Qi, and hence 1 ∈ Q1 + · · ·+ Qt. ¤

3. The main result

With the results of the previous section we can extend Theorem 8.5 of [6]
to Dedekind domains. The preliminary results of [6] could be reformulated in
the following way.
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Proposition 10. Let R be a Dedekind domain, P ⊂ R a maximal ideal of R
and J ⊆ R[x] an ideal. We suppose that J∩R is a P−primary and J * PR[x].
Then, J = R[x] or dim(J) = 0.

Proof. We can repeat the proof of the Lemma 8.1 in [6] but changing the prime
element p there by the maximal ideal P . ¤
Proposition 11. Let R be an integral domain, N a submodule of R[X]s,
P ⊂ R a prime ideal of R such that PRP is principal. Then, there exists
g ∈ R− P such that

N = (N + gR[X]s) ∩ (NRP [X] ∩R[X]s).

Proof. We can repeat the proof of Lemma 8.2 in [6] but using Theorem 8
instead of Proposition 4.6 of [6]. ¤
Proposition 12. Let R be an integral domain, N ⊂ M submodules of R[X]s,
P ⊂ R a prime ideal of R such that PRP is principal. Then, there exists
g ∈ R− P such that N = (N + gM) ∩ (NRP [X] ∩M).

Proof. We can repeat the proof of Corollary 8.3 of [6] but using the previous
proposition instead of Lemma 8.2 of [6]. ¤

The following lemma is the key for the proof of the main theorem.

Lemma 13. Let R be a Dedekind domain. Then, for each prime ideal P of R
the maximal ideal Q of R[x]P [x] is principal, and hence, R[x]P [x] is a principal
ideal domain.

Proof. By Corollary 6.2.4 of [2], R[X] is a G−GCD domain (an integral domain
S is a G − GCD domain if the intersection of any two integral invertible
ideals of S is invertible. This is equivalent to the intersection of any finite
set of fractional invertible ideals of R is invertible). But the localizations of
G−GCD domains by prime ideals are GCD domains (see [2], Corollary 6.2.2.
An integral domain S is a GCD domain if the intersection of any two integral
principal ideals of R is principal. This is equivalent to the intersection of any
finite set of fractional principal ideals of R is principal).

Let P a prime ideal of R and let S = R[x]P [x], then S is a GCD domain. By
Theorem 16.2 of [5], each v-ideal of finite type of S is principal (a fractional
ideal I of an integral domain S is a v-ideal of finite type if there exists a finitely
generated fractional ideal J of S such that I = Jv, where Jv = (J−1)−1 with
J−1 = {α ∈ K|αJ ⊆ S} and K is the field of fractions of S). Let Q be the
maximal ideal of S, in order to prove that Q is principal we will prove that Q
is generated by two elements and Q = Qv.

Since R is Noetherian, then S is also Noetherian and Q is finitely generated,

Q =< pi(x)
si(x)

>1≤i≤n, with pi(x) ∈ P [x] and si(x) /∈ P [x], this implies that

Q =< pi(x) >1≤i≤n. Let pi(x) = p
(0)
i + p

(1)
i x + · · · + p

(m)
i xm with p

(j)
i ∈ P ,

1 ≤ j ≤ m, then since R is a Dedekind domain there exists r, s ∈ R such
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that < p
(j)
i > 1≤i≤n

1≤j≤m
=< r, s >, so < r, s >⊆ P . We observe that each pi(x) ∈

< r, s >R[x] (the ideal of R[x] generated by r and s). Thus, Q ⊆< r, s >S, but
< r, s >S⊆ P [x]P [x] = Q, and hence, Q =< r, s >S.

On the other hand, by Lemma 6.1.1 of [2] and since R is Dedekind we have

(< r, s >R R[x])v = (< r, s >R)vR[x] = (< r, s >−1
R )−1R[x] =< r, s >R R[x].

Moreover,

(R[x] :< r, s >R[x]) = (< r, s >R[x])
−1 = (< r >R[x] + < s >R[x])

−1

=< r >−1
R[x] ∩ < s >−1

R[x]=<
1

r
>K(x) ∩ <

1

s
>K(x),

where K is the field of fractions of R and K(x) is the field of fractions of R[x].
Since R[x] is a GCD domain, then < 1

r
>K(x) ∩ < 1

s
>K(x) is principal. This

implies that (R[x] :< r, s >R[x]) is finitely generated. Hence,

Q = (< r, s >R R[x])P [x] = ((< r, s >R R[x])v)P [x]

= (R[x] : (R[x] :< r, s >R R[x]))P [x]

= (R[x]P [x] : (R[x]P [x] : (< r, s >R R[x])P [x]))

= (R[x]P [x] : (R[x]P [x] : Q))

= Qv.

The last statement of the lemma is a direct consequence of we just proved (see
also Proposition 4 of Chapter 2 in [3]). ¤
Proposition 14. Let R be a Dedekind domain, N ⊂ M be submodules of
R[X]s. Let Ann(M/N)∩R be a Q−primary ideal, where Q ⊂ R is a maximal
ideal. Then the primary decomposition for N in M can be computed.

Proof. By the previous lemma, for each 1 ≤ i ≤ n, R[xi]QR[xi] is a principal
ideal domain and we can use Proposition 11 and repeat the proof of Lemma
8.4 of [6], but using Proposition 10 instead of Lemma 8.1 of [6]. ¤

Now, we are able to prove the main result that gives a procedure for com-
puting the primary decomposition of N in M (compare with the Theorem 8.5
of [6]).

Theorem 15. Let R be a Dedekind domain and N ⊂ M be submodules of
R[X]s. Then the primary decomposition for N in M can be computed.

Proof. If dim(Ann(M/N)∩R) 6= 0 then Ann(M/N)∩R = 〈0〉 and R is not a
field. By Proposition 12, we find a ∈ R− 〈0〉 such that

N = (N + aM) ∩N ec, where N ec = NR〈0〉[X] ∩M.

As in the proof of Lemma 8.4 in [6], we have N 6= N + aM . Thus, we can
decompose N ec and N + aM . We start with N ec. Since, R〈0〉 is a Dedekind
domain we can use Proposition 14 for computing a primary decomposition of
N e in M e, where N e = NR〈0〉[X] and M e = MR〈0〉[X] are submodules of
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R〈0〉[X]s, and then we can make the contraction with M . We observe that
Ann(M e/N e) ∩R is a 0− primary ideal.

Now, we must decompose N + aM . Since a ∈ Ann(M/N + aM) ∩ R, then
Ann(M/N + aM) ∩ R 6= 〈0〉, and dim(Ann(M/N + aM) ∩ R) = 0. Hence, in
this case we have

Ann(M/N) ∩R =
t∏

i=1

P νi
i , where Pi ⊂ R is a prime ideal.

Let

Ni = N + P νi
i M for i = 1, . . . , t,

then the following properties hold for each i = 1, . . . , t:

(i) P νi
i ⊆ Ann(M/Ni) ∩R.

(ii) Ann(M/Ni) ∩R ⊆ Pi.
(iii) Ann(M/Ni) ∩R is Pi−primary.

In fact, since P νi
i M ⊆ Ni then P νi

i ⊆ Ann(M/Ni)∩R. If x ∈ Ann(M/Ni)∩R
and x /∈ Pi then Pi + 〈x〉 = R, so pi + rx = 1, where pi ∈ Pi and r ∈ R.
Thus, pνi

i + νip
νi−1rx + · · · + (rx)νi = 1 = pνi

i + r′x. For m ∈ M we have
pνi

i m + r′xm = m ∈ Ni. Thus, M ⊆ Ni, but this is a contradiction.

In order to prove (iii) we will see that
√

Ann(M/Ni) ∩R = Pi. From (i) we

have P νi
i ⊆ Ann(M/Ni)∩R, and hence, Pi ⊆

√
Ann(M/Ni) ∩R. Finally, from

(ii) we have Ann(M/Ni) ∩R ⊆ Pi, and then
√

Ann(M/Ni) ∩R ⊆ √
Pi = Pi.

Thus, we have that R is a Dedekind domain, and for 1 ≤ i ≤ n, Ni ⊂ M ,
Ann(M/Ni) ∩ R is Pi−primary, Pi ⊂ R is a maximal ideal and the maximal
ideal of R[xi]QR[xi] is principal. Then, by the Proposition 14, we can compute
the primary decomposition of Ni in M .

In order to conclude the proof we will show that N = ∩t
i=1Ni. Since, N ⊆ Ni

for each i = 1, . . . t, then N ⊆ ∩t
i=1Ni. Let f ∈ ∩t

i=1Ni. Then for each
i = 1, . . . , t there exist n i ∈ N , m i ∈ M and pi ∈ P νi

i such that

f = n1 + p1m1,

...

f = n t + ptm t.

Using Lemma 9 we get Q1 + · · ·+ Qt = R, and then

1 = q1r1 + · · ·+ qtrt, where qi ∈ Qi, ri ∈ R.

Hence,

f = q1r1f + · · ·+ qtrtf

and f = q1r1(n1 + p1m1) + · · · + qtrt(n t + ptm t) = q1r1n1 + q1r1p1m1 +
· · ·+ qtrtn t + qtrtptm t. Since, pi ∈ P νi

i and qi ∈ Qi = P ν1
1 · · ·P νi−1

i−1 P
νi+1

i+1 · · ·P νt
t ,

then piqi ∈ Q = P ν1
1 · · ·P νt

t = Ann(M/N) ∩ R, and hence, qiripim i ∈ N , for
i = 1, . . . , t. Thus, f ∈ N . ¤
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4. Examples

In this section we illustrate the algorithm MPD of [6] using the procedure
described in Theorem 15.

Example 16. Let N = 〈(0, x3), (y − x2, 0), (x3 + 1, x), (0, y − x2)〉 and M =
(Q[x])[y]2 be submodules of (Q[x])[y]2. Using Theorem 15 we will compute a
primary decomposition of N in M . With the lexicographical order in (Q[x])[y]
and the POT order in (Q[x])[y]2 we get a Gröbner basis for N , denoted by
G = {g1,g2,g3,g4}, where g1 = (0, x3), g2 = (y − x2, 0), g3 = (x3 + 1, x)
and g4 = (0, y − x2). With this we can compute Ann(Q[x])[y]2/N) = (N :
M) = 〈y − x2, x6 + x3〉, we observe that {y − x2, x6 + x3} is a Gröbner basis
for the ideal 〈y − x2, x6 + x3〉. Then, Ann(Q[x])[y]2/N) ∩ R = 〈x6 + x3〉.
Since, dim(Ann(Q[x])[y]2/N) ∩ R) = dim(〈x6 + x3〉) = 0 then, according to
the proof of the Theorem 15, we have Ann(Q[x])[y]2/N) ∩ R = 〈x6 + x3〉 =
〈x〉3〈x2 − x + 1〉〈x + 1〉.

We set N1 = N + 〈x〉3M,N2 = N + 〈x2−x + 1〉M and N3 = N + 〈x + 1〉M .
We know that N = N1∩N2∩N3. Thus, N1 = 〈(x3, 0), (0, x3), (y−x2, 0), (x3 +
1, x), (0, y− x2)〉, N2 = 〈(x2− x + 1, 0), (0, x2− x + 1), (0, x3), (y− x2, 0), (x3 +
1, x), (0, y− x2)〉 and N3 = 〈(x + 1, 0), (0, x + 1), (0, x3), (y− x2, 0), (x3 + 1, x),
(0, y − x2)〉. Gröbner bases for these submodules are

G1 = {(0, y − x2), (0, x3), (1, x)},
G2 = {(x2 − x + 1, 0), (0, 1), (y − x + 1, 0)},
G3 = {(x + 1, 0), (0, 1), (y − 1, 0)}.

Now, we apply Proposition 14 in order to compute the primary decomposition
of N1, N2 and N3 in M . We will show how to do this for N1, for N2 and N3

the procedure is identical. First we need to check if dim(Ann(M/N1)) = 0.
For this purpose we consider Corollary 6.9 of [6], i.e., we will verify if N1 ∩R2

is a primary submodule of R2 and dim(R2/N1 ∩ R2) = 0. We have N1 ∩
R2 = 〈(0, x3), (1, x)〉, Ann(R2/〈(0, x3), (1, x)〉) = 〈(0, x3), (1, x)〉 : M = 〈x3〉,
so

√
Ann(R2/N1 ∩R2) = 〈x〉 is a maximal ideal. Thus, Ann(R2/N1 ∩R2) is a

primary submodule of R2 and dim(Ann(R2/N1∩R2)) = 0. Since, Ann(R2/N1∩
R2) is 〈x〉−primary, where 〈x〉 is a maximal ideal of R, then by Lemma 5.1 of
[6], N1∩R2 is 〈x〉−primary in R2. Moreover, in G1 = {(0, y−x2), (0, x3), (1, x)}
the elements w 11 = e1 + xe2 and w 12 = ye2 − x2e2 satisfy the conditions of
Corollary 6.9 of [6], i.e., lt(w 11) = 1y0e1 and lt(w 12) = 1ye2. In both cases
the leader coefficient is 1. Hence, dim(R[y]/N1) = 0.

Now, we can apply the algorithm MZPD of [6]. Ann(M/N1) = 〈y − x2, x3〉,
a minimal Gröbner basis for Ann(M/N1) ∩R[y] is G = {y − x2, x3}, we select
g = y − x2 and we factorize g mod 〈x〉: y − x2 ≡ y (mod 〈x〉). We find t = 2
such that yt ∈ 〈y − x2, x3〉, thus P1 = y2M + N1 = 〈(y2, 0), (0, y2), (0, y −
x2), (0, x3), (1, x)〉 = 〈(1, x), (0, y − x2), (0, x3)〉, i.e., P1 coincides with N1.
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We repeat the above procedure for N2 and N3 and we get the primary
decomposition of N in (Q[x])[y]2,

N = N1 ∩N2 ∩N3

= 〈(0, y − x2), (0, x3), (1, x)〉 ∩ 〈(x2 − x + 1, 0), (0, 1), (y − x + 1, 0)〉
∩ 〈(x + 1, 0), (0, 1), (y − 1, 0)〉.
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polynomial ideals. J. Symbolic Comput., 6(2-3):149–167, 1988. Computational aspects of
commutative algebra.

[5] R. Gilmer. Multiplicative ideal theory. Marcel Dekker Inc., New York, 1972. Pure and
Applied Mathematics, No. 12.
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