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ZERMELO PROBLEM OF NAVIGATION ON HERMITIAN
MANIFOLDS

NICOLETA ALDEA

Abstract. In this paper we describe the complex Randers metrics as the
solutions of Zermelo problem of navigation on Hermitian manifolds. Based
on it, we construct such examples of complex Randers metrics and we study
some of their geometrical properties.

1. Introduction

Zermelo navigation problem was first discussed by E. Zermelo in [16]. To-
gether with its variants, it has served as a rich example of various problems in
the Calculus of Variations and Optimal Control ([8]).

The aim of Zermelo navigation problem on a Riemannian manifold (M, h) is
to find the paths of shortest travel time in M , under the influence of a current
which is represented by a vector field W on M . Recently, in the paper [7]
it was shown that the real Randers metrics are solutions to Zermelo navigation
problem on a Riemannian manifold and the classification of real Randers metrics
of constant flag curvature was finally completed.

In the previous paper, [5], we initiated the study of complex Finsler spaces
with (α, β)− metric, i.e. complex metrics constructed from just two pieces of
familiar data: a purely Hermitian metric and a differential 1-form both globally
defined on an underlying complex manifold. A special approach was dedicated
to the complex Randers metrics F := α + |β| in [4]. By this class of complex
Finsler spaces we extended the examples number of complex Finsler metrics
known: Kobayashi and Caratheodory metrics (see [1]), which quickened the
study of such Finsler geometry, and two rather trivial classes of complex Finsler
metrics (the complex Finsler metrics which come from Hermitian metrics on the
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base manifold, so-called the purely Hermitian metrics in [12], and the locally
Minkowski complex metrics).

In the present paper we describe the complex Randers metrics as the solutions
of Zermelo problem of navigation on Hermitian manifolds (section 3). This
technique permits us to construct such examples of complex Randers metrics and
we study some of their geometrical properties. Namely, in section 4 we perturb
the purely Hermitian metrics: Euclidean metric on C2, Cn and Bergman metric
on the unit disk ∆n ⊂ Cn by the vector field W which satisfy some conditions.
These perturbations generate the complex Randers metrics which are not of
holomorphic constant curvature.

2. Complex Randers metrics

We recall here only the basic notions which are needed; for more information
see [1, 12]. For the beginning, we shall make an introduction to the complex
Finsler geometry and then we present the complex Randers metrics, [4].

Let M be a complex manifold, dimC M = n, with (zk)k=1,n complex co-
ordinates in a local chart. The complexified of the real tangent bundle TCM
splits into the sum of holomorphic tangent bundle T ′M and its conjugate T ′′M .
The bundle T ′M is in its turn a complex manifold, the local coordinates in
a chart will be denoted by u = (zk, ηk) and these are changed by the rules:
z′k = z′k (z) , η′k = ∂z′k

∂zj ηj . The complexified tangent bundle of T ′M is decom-
posed as TC(T ′M) = T ′(T ′M)⊕ T ′′(T ′M). A natural local frame for T ′u(T ′M)
is { ∂

∂zk , ∂
∂ηk }, which have changes by the rules obtained with Jacobi matrix of

above transformations. Note that the change rule of ∂
∂zk contains the second

order partial derivatives.
Let V (T ′M) = kerπ∗ ⊂ T ′(T ′M) be the vertical bundle, spanned locally by

{ ∂
∂ηk }. A complex nonlinear connection, briefly (c.n.c.), determines a supple-

mentary complex subbundle to V (T ′M) in T ′(T ′M), i.e. T ′(T ′M) = H(T ′M)⊕
V (T ′M). It determines an adapted frame { δ

δzk = ∂
∂zk −N j

k
∂

∂ηj }, where N j
k(z, η)

are the coefficients of the (c.n.c.), ([1], [2], [12]).
A continuous function F : T ′M → R+ is called complex Finsler metric on M

if it satisfies the conditions:
i) L := F 2 is smooth on T̃ ′M := T ′M\{0};
ii) F (z, η) ≥ 0, the equality holds if and only if η = 0;
iii) F (z, λη) = |λ|F (z, η) for ∀λ ∈ C;
iv) the Hermitian matrix

(
gij̄(z, η)

)
, with gij̄ = ∂2L

∂ηi∂η̄j , called the fundamental
metric tensor, is positive definite.

The pair (M, F ) is called a complex Finsler space. The iv)-th assumption
involves the strongly pseudoconvexity of the Finsler metric F on complex indi-
catrix IF,z = {η ∈ T ′zM | F (z, η) < 1}.
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Further, in a complex Finsler space a Hermitian connection of (1, 0)−type
has a special meaning, named in [1] the Chern-Finsler connection. In notations
from [12] it is DΓN = (Li

jk, 0, Ci
jk, 0), where

(2.1)
CF

N i
j= gm̄i ∂glm̄

∂zj
ηl ; Li

jk = gm̄i δgjm̄

δzk
=

∂N i
k

∂ηj
; Ci

jk = gm̄i ∂gjm̄

∂ηk
.

Recall that a complex Finsler space is weakly Kähler iff gil(L
i
jk−Li

kj)η
jηl = 0

and the holomorphic curvature of F in direction η, with respect to the Chern-
Finsler (c.l.c.), briefly holomorphic curvature is

(2.2) KF (z, η) :=
2ηjηkRjk

L2(z, η)
,

where Rj̄k := Rij̄kh̄ηiη̄h = −glj̄δh̄(N l
k)η̄h and Rij̄kh̄ = glj̄R

l
ih̄k

is hh̄ Riemann
tensor associated to the Chern-Finsler (c.l.c.) (see [1, 12, 3]). It depends both
on the position z ∈ M and the direction η.

We consider z ∈ M, η ∈ T ′zM, η = ηi ∂
∂zi , a := aij̄(z)dzi ⊗ dz̄j a purely

Hermitian positive metric and b = bi(z)dzi a differential 1−form. By these
objects in [4] we defined the complex Randers metric on T ′M by

(2.3) F (z, η) := α(z, η) + |β(z, η)|,
where

α(z, η) :=
√

aij̄(z)ηiη̄j ;

|β(z, η)| =
√

β(z, η)β(z, η) with β(z, η) = bi(z)ηi.

(2.4)

A natural question: when is the function (2.3) a complex Finsler metric?
Some remarks are immediate. Due the presence of |β| the complex Randers
metric F := α + |β| is positive and smooth on T ′M\{0}. The complex Randers
metric is purely Hermitian if and only if β vanishes identically. The function
L := F 2 = (α + |β|)2 depends on z and η by means of α := α(z, η) ∈ R
and β := β(z, η) ∈ C. Moreover α and β are homogeneous with respect to η,
i.e. α(z, λη) = |λ|α(z, η), β(z, λη) = λβ(z, η) for any λ ∈ C, thus L(z, λη) =
λλ̄L(z, η) for any λ ∈ C.

So, the main issue that needs to be checked is the strongly pseudoconvexity
of the complex Randers function. For this in [4], we considered the settings

∂α

∂ηi
=

1
2α

li;
∂|β|
∂ηi

=
β̄

2|β|bi;

bi := aj̄ibj̄ ; ||b||2 := aj̄ibibj̄ ; γ := L + α2(||b||2 − 1);

ηi :=
∂L

∂ηi
= Lα

∂α

∂ηi
+ L|β|

∂|β|
∂ηi

=
F

α
li +

F β̄

|β| bi,

(2.5)
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where li := aij̄ η̄
j and

(
aj̄i

)
is the Hermitian inverse of

(
aij̄

)
matrix, and we

proved

Proposition 1. [4]For the complex Randers metric F := α + |β| we have
i) The fundamental metric tensor

gij̄ =
∂2(α + |β|)2

∂ηi∂η̄j
=

F

α
hij̄ +

F

2|β|bibj̄ +
1

2L
ηiηj̄ ,

where hij̄ := aij̄ − 1
2α2 lilj̄.

ii) gj̄i =
α

F
aj̄i +

|β|(α||b||2 + |β|)
Lγ

ηiη̄j − α3

Fγ
bib̄j − α

Fγ

(
β̄ηib̄j + βbiη̄j

)
.

iii) det
(
gij̄

)
=

(
F

α

)n
γ

2α|β| det
(
aij̄

)
.

Having the formula for det
(
gij̄

)
, we can say that gij̄(z, η) is positive definite

if and only if γ > 0 at each nonzero η in T ′zM . So we have proved

Theorem 1 ([4]). A complex Randers metric with γ > 0 is a complex Finsler
metric.

If the quadratic form h(z, η) := (aij̄ − bibj̄)ηiη̄j is positive definite, then
substituting ηiη̄j with bib̄j it follows that ||b||2(1 − ||b||2) > 0, which says that
||b||2 ∈ (0, 1) and then γ > 0, since γ = 2α|β|+ |β|2 + α2||b||2. Equivalently the
positive definite of the quadratic form means that α2 > |β|2, or in other words
sup |β|

α < 1, for all (z, η) ∈ T ′M\{0}.
From [4], we have the expression of the weakly Kähler condition for a complex

Randers space

α2|β|
γδ

[
β

α||b||2 + |β|
|β|

∂bm̄

∂zr
η̄m + β̄

(
∂br

∂zl
− bm̄ ∂alm̄

∂zr

)
ηl − α|β|bm̄ ∂bm̄

∂zr

]
ηrCk

−
(

αβ̄Fkl + αbl
∂br̄

∂zk
η̄r + 2|β|alr̄Γr̄

j̄kη̄j

)
ηl + αbk

∂bm̄

∂zr
η̄mηr = 0,

where Cj := δ
(

1
α2 lj − β̄

|β|2 bj

)
, δ := α2||b||2−|β|2

2γ − n|β|
2F , Γr̄

j̄i
= 1

2ar̄k{∂akj̄

∂zi −∂aij̄

∂zk }
are the coefficients of Levi-Civita connection of aij̄ and Fil := ∂bl

∂zi − ∂bi
∂zl .

3. Zermelo navigation

Following the ideas and the same interpretation as in Zermelo navigation on
Riemannian manifolds, [7], we shall describe Zermelo problem of navigation on
Hermitian manifolds.

Let M be a complex manifold, dimC M = n, and z ∈ M be the base point of
the tangent vectors η ∈ T ′zM, η = ηi ∂

∂zi . Considering the purely Hermitian met-
ric h := hij̄(z)dzi⊗dz̄j on M , the norm of η is ||η|| :=

√
h(η, η̄) =

√
hij̄(z)ηiη̄j .
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As in [7], ||η|| is the necessary time to travel from the base point z of the tangent
vector η to its tip, using an engine with a fixed power output.

We set a tangent vector u ∈ T ′zM, u = ui ∂
∂zi with ||u|| = 1, i.e. a travel from

z to the tip of u would take one unit of time and another tangent vector W
∈ T ′zM, W = W i ∂

∂zi , where ||W || is the time to travel from z to the tip of W,
under the influence of a current on the Hermitian manifold (M,h). We suppose
that ||W || < 1. The current has to produce a deviation from the path such that
the travel time is not equal with one unit time. Note that, in the travel from z
to the tip of u, the current is absent. Now, we navigate along the tangent vector
v := u −W, which starts from z, too. The norm of v is not 1. For example, if
u = 3W, then ||W || = 1

3 and ||v|| = 2
3 . Else, if u = −3W, then ||W || = 1

3 and
||v|| = 4

3 . So, by the presence of the current, the purely Hermitian metric h does
not give the travel time along the tangent vectors. Therefore, we have to build
a function F : T ′M → R+ which keeps the path of travel under the influence of
a current on (M, h), such that the travel time is one unit time, along tangent
vector v = u−W . So, F (z, v) = 1.

Next, we determine the formula of the function F, taking into account the
assumption F (z, v) = 1. We have

1 = ||u||2 = h(u, ū) = h(v + W, v̄ + W̄ ) = ||v||2 + 2 Re h(v, W̄ ) + ||W ||2.
Denoting by θ the angle between directions of v and W, we can write cos θ =

Re h(v,W̄ )
||v||·||W || , thus above relation became

||v||2 + 2||v|| ||W || cos θ − ε = 0, where ε := 1− ||W ||2.
Because ||W || < 1, and so ε > 0, we obtain only the solution

||v|| = −||W || cos θ +
√
||W ||2 cos2 θ + ε.

Multiplying the last relation by ||v||, we obtain

||v||2 = −Re h(v, W̄ ) +
√[

Reh(v, W̄ )
]2 + ε||v||2,

equivalently with

ε = Re h(v, W̄ ) +
√[

Reh(v, W̄ )
]2 + ε||v||2.

Since Re h(v, W̄ ) =
∣∣h(v, W̄ )

∣∣ cosϕ, where ϕ = arg h(v, W̄ ) is a real valued

function which depends on z and
∣∣h(v, W̄ )

∣∣ :=
√

h(v, W̄ )h(v, W̄ ), we write

ε =
√∣∣h(v, W̄ )

∣∣2 cos2 ϕ + ε||v||2 +
∣∣h(v, W̄ )

∣∣ cos ϕ.

So,

(3.1) F (z, v) =

√
ε||v||2 +

∣∣h(v, W̄ )
∣∣2 cos2 ϕ

ε
+

∣∣h(v, W̄ )
∣∣ cos ϕ

ε
.

Note that every η ∈ T ′M\{0} is collinear with some tangent vector v with
property F (z, v) = 1. So, η = cv, c ∈ R, and making use of ϕ = arg h(η, W̄ ) =
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arg h(cv, W̄ ) = arg ch(v, W̄ ) = arg h(v, W̄ ), for any c ∈ R, we deduce F (z, η) =
F (z, cv) = |c|F (z, v) = |c|. This means that the travel time along the tangent
vector η, under the influence of a current, is |c| unit of time and

(3.2) F (z, η) =

√
ε||η||2 +

∣∣h(η, W̄ )
∣∣2 cos2 ϕ

ε
+

∣∣h(η, W̄ )
∣∣ cosϕ

ε
,

where ϕ = ϕ(z).
Some remarks are necessary. First, note that F is purely Hermitian if and

only if W = 0. We have W = 0 if and only if cos ϕ = 0. Without restricting
the generality, we can suppose that cos ϕ > 0. This assumption assure that
the function F (z, η) is positive on T ′M\{0}. If cos ϕ < 0, then we choose the
direction v = u+W, such that F (z, v) = 1. As above, similar computation leads
to a positive function F (z, η) on T ′M\{0}.

An obviously remark is that if ϕ = 0, then cos ϕ = 1 and h(v, W̄ ) is real
valued. Indeed, a natural question is when does this fact occur? It immedi-
ately results that if v and W are collinearity, then h(v, W̄ ) is real. The con-
verse is not true. For example, if we consider the Euclidean metric hij̄ = δij̄

on C2 and we choose W =
(

1
2 + i 1

2 , 1
4 + i 1

4

)
, ||W || = 5

8 < 1, by compu-

tation it results v =
(√

11−5
8 + i

√
11−3
8 , 1

2

)
, which is not collinear with W ,

when h(v, W̄ ) ∈ R and ||u|| = 1. Moreover, we find h(v, W̄ ) =
√

11−3
8 and

u =
(√

11−1
8 + i

√
11+1
8 , 3

4 + i1
4

)
.

On the other hand, the formula of the function F (z, η) permit us to write
F (z, η) := α + |β|, where

α(z, η) =
√

aij̄(z)ηiη̄j ; β(z, η) = bi(z)ηi;

aij̄(z) :=
hij̄

ε
+ bibj̄ ; bi(z) :=

Wi cos ϕ

ε
;

Wi := hij̄W̄
j ; ε = 1−WiW

i.

(3.3)

The first term of F defines the norm of η with respect to a new purely Hermitian
metric a := aij̄(z)dzi ⊗ dz̄j and the second term of F is the value on η of a
differential 1− form b = bi(z)dzi. Therefore, the solution of Zermelo navigation
problem on some Hermitian manifold (M, h), under the influence of a current W
with ||W ||2 < 1 is a function which has the form of a complex Randers metric.
Moreover, the function F (z, η) given by (3.3) is positive, complex homogeneous
with respect to η, i.e. F (z, λη) = |λ|F (z, η), for any λ ∈ C, and smooth on
T ′M\{0}.

The inverse of
(
aij̄(z)

)
from (3.3) is aj̄i = ε

(
hj̄i − cos2 ϕ

1−||W ||2 sin2 ϕ
W iW̄ j

)
and

so,
bi := aj̄ibj̄ = ε

(
hj̄i − cos2 ϕ

1−||W ||2 sin2 ϕ
W iW̄ j

)
Wj̄ cos ϕ

ε = εW i cos ϕ
1−||W ||2 sin2 ϕ

,
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||b||2 := bib
i = ||W ||2 cos2 ϕ

1−||W ||2 sin2 ϕ
< 1, because ||W ||2 < 1.

Taking into account Theorem 2.1, the obtained condition ||b||2 < 1 guarantees
the strongly pseudoconvexity of the function F (z, η) from (3.2) on its complex
indicatrix IF,z. Indeed the function F (z, η) from (3.2) defines a complex Finsler
metric on M of complex Randers type.

Now, it is natural for us to inquire about: can any complex metric F (z, η) =
α + |β| be obtained through by perturbation of some purely Hermitian metric h
with some vector field W satisfying ||W || < 1? The answers come below.

Considering the complex metric F (z, η) = α + |β| , with α =
√

aij̄(z)ηiη̄j ,

β = bi(z)ηi, bi := aj̄ibj̄ , ||b||2 := bibi < 1 and ω := 1−||b||2, we construct h and
W as

(3.4) hij̄(z) = ω(aij̄ − bibj̄); W i(z) =
bi

ω
.

By direct computation we obtain:

||W ||2 := hij̄W
iW̄ j = ω(aij̄ − bibj̄)

bi

ω

b̄j

ω
= ||b||2 < 1.

So ε = ω and Wi := hij̄W̄
j = ω(aij̄ − bibj̄)

b̄j

ω = ωbi.
It results that perturbing the above h by W, we obtain a function

F̃ (z, η) = α̃ + |β̃|
with

α̃(z, η) =
√

ãij̄(z)ηiη̄j , β̃(z, η) = b̃i(z)ηi,

where

ãij̄(z) =
hij̄

ε
+ b̃ib̃j̄ =

hij̄

ε
+

Wi cos ϕ

ε

W̄j cosϕ

ε
= aij̄ + (1− cos2 ϕ)bibj̄ .

We have ãij̄(z) = aij̄(z) if and only if cos ϕ = 1. Therefore, by perturbation (3.4)
we obtain again the complex metric F (z, η) = α + |β| if and only if cos ϕ = 1.
So, the answer of the question is yes, iff cos ϕ = 1.

Corroborating above results, we have proved:

Theorem 2. A complex Finsler metric is of complex Randers type, i.e. it has
the form F (z, η) = α+|β| , if and only if it solves the Zermelo navigation problem
on some Hermitian manifold (M, h), under the influence of a current W with
||W ||2 < 1 and cosϕ = 1.

4. Examples

In the sequel, we construct some examples of complex Randers metrics by
above technique. We perturb a purely Hermitian metric h by any vector field
W , satisfying ||W || < 1 and cos ϕ = 1.
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I. The perturbation of Euclidean metric. hij̄ = δij̄

I.1. We perturb the Euclidean metric on C2 by W := c1
∂

∂z1 + c2
∂

∂z2 , where
ci ∈ C, i = 1, 2, such that ||W ||2 = |c1|2 + |c2|2 < 1. To reduce the clutter,
we denote (z1, z2) := (z, w) and (η1, η2) := (η, θ). The outcome is a complex
Randers metric with

α2(η, θ) =
(|η|2 + |θ|2)(1− |c1|2 − |c2|2) + (c̄1η + c̄2θ)(c1η̄ + c2θ̄)

(1− |c1|2 − |c2|2)2
;

|β(η, θ)|2 =
(c̄1η + c̄2θ)(c1η̄ + c2θ̄)

(1− |c1|2 − |c2|2)2
.

(4.1)

It is a locally Minkowski metric and so its holomorphic curvature is zero.
I.2. With same notations as above, the perturbing vector field is W :=

zf(z, w) ∂
∂z + 0 ∂

∂w , where f := f(z, w) is a positively real valued function, and
||W ||2 = f2|z|2 < 1. Therefore, the complex Randers metric has the form
Ff := α + |β|, with

α2(z, w, η, θ) =
(|η|2 + |θ|2)(1− f2|z|2) + f2|z|2|η|2

(1− f2|z|2)2 ;

β(z, w, η, θ) =
fz̄η

1− f2|z|2 .

(4.2)

There is not a function f such that the metrics Ff should be at least weakly
Kähler.

I.3. Considering the metric hij̄ = δij̄ on Cn, we perturb it by W := zif(z) ∂
∂zi ,

where f := f(z) is a positively real valued function, such that ||W ||2 = f2|z|2 <
1. It results the complex Randers metrics Ff := α + |β|, where

α2(z, η) =
|η|2

1− f2|z|2 +
f2 |< z, η >|2
(1− f2|z|2)2 ;

β(z, η) =
f |< z, η >|
1− f2|z|2 ,

(4.3)

where |z|2 :=
∑n

k=1z
kzk, < z, η >:=

∑n
k=1z

kηk, |< z, η >|2 =< z, η > < z, η >.
Even in this example there is not f that Ff should be weakly Kähler. In par-
ticular, for f = 1, α2 is the Bergman metric on the unit disk ∆n and

(4.4) F1 :=

√
|η|2 (1− |z|2) + |< z, η >|2

1− |z|2 +
|< z, η >|
1− |z|2

is a complex Randers metric on ∆n of negatively holomorphic curvature

KF1 =
−2αF1

γ
, γ := F 2

1 − α2(1− |z|2).
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II. The perturbation of Bergman metric.

(4.5) hij =
1

1− |z|2
(

δij +
zizj

1− |z|2
)

on the unit disk ∆n by the vector field W := zif(z) ∂
∂zi , where f := f(z) is a

positively real valued function, with ||W ||2 = f2|z|2
(1−|z|2)2 < 1, leads to the complex

Randers metric Ff := α + |β|, where

α2(z, η) =
(1− |z|2)|η|2

(1− (2 + f2)|z|2 + |z|4)

+
(1− |z|2)(1− |z|2 + f2) |< z, η >|2

(1− (2 + f2)|z|2 + |z|4)2 ;

|β(z, η)| = f |< z, η >|
1− (2 + f2)|z|2 + |z|4 .

(4.6)

Though the Bergman metric is Kähler of holomorphic curvature −4, by this
perturbation the complex Randers metric (4.6) is not weakly Kähler, for any
f . Only if f =

√
1− |z|2, the purely Hermitian metric α2(z, η) from (4.6) is

Kähler.
Conclusions. Zermelo navigation on Riemannian manifold produces exam-

ples of real Randers metrics of constant flag curvature. In contrast with the real
case, above examples show that by perturbation of some purely Hermitian met-
rics of constant holomorphic sectional curvature, the obtained complex Randers
metrics are not of constant holomorphic curvature.
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[8] C. Carathéodory. Calculus of variations and partial differential equations of the first
order. AMS Chelsea Publishing, 1999.

[9] M. Fukui. Complex Finsler manifolds. J. Math. Kyoto Univ., 29(4):609–624, 1989.
[10] S. Kobayashi and C. Horst. Topics in complex differential geometry. In Complex differ-

ential geometry, volume 3 of DMV Sem., pages 4–66. Birkhäuser, Basel, 1983.
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