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SOME EXAMPLES OF RANDERS SPACES

M. ANASTASIEI AND M. GHEORGHE

Abstract. A Riemannian almost product structure on a manifold induces
on a submanifold of codimension 1 a structure generalizing the paracontact
structures and containing a Riemannain metric and an one form . We
show that the pair consisting of this Riemannian metric and one form
defines a strongly convex Randers metric on submanifold. We establish
some properties of this Randers metric and we provide some examples.

1. Randers metrics provided by induced structures

Let (M̃, g̃, P̃ ) be a Riemannian almost product manifold. This means that P̃

is an almost product structure on M̃ i.e. P̃ 2 = I (identity) and g̃ is a Riemannian
structure on M̃ which is compatible with P̃ , i.e. g̃(P̃X, P̃Y ) = g̃(X, Y ) for any
vector fields X, Y on M̃ .

Let M be a submanifold of codimension 1 in M̃ . We denote by g the Rie-
mannian metric induced by g̃ on M and by N a field of unitary vectors that are
normal to M .

Then for any vector field X tangent to M , the vector field P̃X decomposes
in a tangent and a normal component:

(1.1) P̃X = PX + b(X)N, X ∈ X (M),

(X (M) denotes the Lie algebra of vector fields on M). It is clear that b is an
1-form on M . Also, the vector field P̃N decomposes in the form

(1.2) P̃N = ξ + aN,

where ξ is a vector field tangent to M and a is a function on M .
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Based on the properties of P̃ , g̃ and on the uniqueness in the decomposition
of type (1.1) and (1.2) the following formulae can be derived. For details and
arbitrary codimension see [3].

P 2X = X − b(X)ξ,(1.3)
b(PX) = −ab(X), X ∈ X (M),(1.4)

b(ξ) = ‖ξ‖2 = 1− a2, (norm is taken with respect to g)(1.5)
Pξ = −aξ,(1.6)

b(X) = g(X, ξ),(1.7)
g(PX, Y ) = g(X, PY ),(1.8)

g(PX, PY ) = g(X, Y )− b(X)b(Y ), X, Y ∈ X (M).(1.9)

We say that (P̃ , g̃) induces on M a (P, ξ, b, a)-structure. By (1.5) we have
a ∈ (−1, 1). If a = 0, this structure reduces to a paracontact structure on M .
We assume in the following that a 6= 0 and ξ 6= 0.

Let (xi), i, j, k . . . = 1, . . . , n = dim M be local coordinates on M and (xi, yi)
be local coordinates on tangent bundle TM . We set gij := g( ∂

∂xi ,
∂

∂xj ) and
bi := b( ∂

∂xi ) and consider the real functions on TM :

α(x, y) =
√

gij(x)yiyj , β(x, y) = bi(x)yi.

It is well known that the function F (x, y) = α(x, y) + β(x, y) defines a Finsler
structure on M whenever ‖b‖ < 1, cf. [1], Ch. 11. Such a Finsler structure is
called a Randers structure and the pair (M, F ) is called a Randers space. The
function F is also called a Randers metric. Here ‖b‖ :=

√
bibi where bi = gijbj .

By (1.7) we have bi = ξi if ξ = ξi ∂
∂xi . Hence ‖b‖ :=

√
biξi =

√
1− a2 by (1.5).

Therefore, ‖b‖ < 1.
Thus, we have

Theorem 1.1. Any submanifold with ξ 6= 0, a 6= 0 of codimension 1 of a
Riemannian almost product manifold carries a Randers structure i.e. it is a
Randers space.

2. Some properties of Randers spaces provided by induced
structures

In this section assume that the almost product structure P̃ is integrable. It
is well known that this assumption is equivalent with the condition ∇̃P̃ = 0.

Recall that the Gauss and Weingarten formula for the immersion M ↪→ M̃
are respectively

∇̃XY = ∇XY + h(X, Y )N,

∇̃XN = −AX,

and the equality h(X,Y ) = g(AX, Y ), holds for X, Y ∈ X (M).
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Based on this condition as well as on the Gauss and Weingarten formulae, in
[3], one proves that for a (P, ξ, b, a) on M the following formulae hold

(∇XP )(Y ) = h(X, Y )ξ + b(Y )AX,(2.1)
(∇Xb)(Y ) = −h(X,PY )ξ + ah(X,Y ),(2.2)

∇Xξ = −P (AX)ξ + aAX,(2.3)
X(a) = −2b(AX), for any X, Y ∈ X (M).(2.4)

Let α + β be the Randers structure on M provided by the Theorem 1.1. It is
known that a Randers structure reduces to a Berwald one if and only if ∇Xb = 0,
for any X ∈ X (M).

We have

Theorem 2.1. The Randers structure on M induced by (P̃ , g̃) on M̃ reduces to
a Berwald one if and only if

PA = aA

holds

Indeed, by (2.2) we have

(∇Xb)(Y ) = ag(AX,Y )− g(AX,PY ) =
= ag(AX,Y )− g(PAX, Y ) =
= g(Y, (aA− PA)X), for any X,Y ∈ X (M)

and
∇Xb = 0, for any X ∈ X (M)

it is obviously equivalent to PA = aA.
Recall that 2db(X, Y ) = (∇Xb)(Y )−(∇Y b)(X), for any X, Y ∈ X (M). Thus,

if ∇b = 0, then db = 0 i.e. the 1-form b is closed.
One easily check that 2db(X, Y ) = −g((PA − AP )X, Y ), for any X, Y ∈

X (M).
Thus, we have

Theorem 2.2. The 1-form b is closed if and only if PA=AP.

Let be again (P, g, ξ, b, a) the structure induced on M by (P̃ , g̃). In [3] one
proves

Theorem 2.3. The vector field ξ is Killing if and only if

PA + AP = 2aA

holds.

Notice that since A and P are both selfadjoint operators with respect to g,
the condition (∇Xb)(Y ) = 0 is also equivalent to AP = aA.

If one combines the Theorem 2.1 and Theorem 2.3 one gets
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Theorem 2.4. The Randers structure on M induced by (P̃ , g̃) is Berwald if
and only if the 1-form b is closed and ξ is Killing.

If M is totally umbilical, i.e. A = λI then clearly b is closed and it follows

Corollary 2.5. The Randers structure induced by (P̃ , g̃) on a totally umbilical
submanifold M , is Berwald if and only if ξ is Killing.

This Corollary applies for spheres in En.

3. Examples

Let be E2m the Euclidean space of dimension 2m. We denote its elements
by (xi, x′i), i = 1, . . . ,m and consider the almost product structure P̃ given by
P̃ (xi, x′i) = (x′i, xi). This is compatible with the usual dot product 〈, 〉 and
so (E2m, P̃ , 〈, 〉) is a Riemannian locally product manifold. Notice that P̃ has
m eigenvalues equal to 1 and m eigenvalues equal to −1. The tangent spaces
TxE2m, x ∈ E2m is isomorphic to E2m and we denote by (yi, y′i) its elements.

Now we consider the sphere of radius 1 in E2m:

S2m−1 =
{

(xi, x′i) |
∑

i

(xi)2 +
∑

i

(x′i)2 = 1
}

.

The unitary vector field normal to S2m−1 is N = (xi, x′i) and the tangent space
in a point x ∈ S2m−1 is

TxS2m−1 =
{

(yi, y′i) |
∑

i

(xiyi + x′iy′i) = 0
}

.

We decompose P̃N = (x′i, xi) into the tangent and normal parts P̃N = (ξi, ξ′i)+
a(xi, x′i) and by identification we find

(3.1) ξi = x′i − axi, ξ′i = xi − ax′i

and using
∑
i

(xiξi + x′iξ′i) = 0 one gets

(3.2) a = 2
∑

i

xix′i.

Then (3.1) yields
ξ = (x′i − axi, xi − ax′i),

with a given by (3.2). We note that a vanishes in the points (0, x′i) and (xi, 0)
of S2m−1.

We insert ξ in b(X) = 〈X, ξ〉 with X = (Xi, X ′i) tangent to S2m−1 and we
find the 1-form

b(X) =
∑

i

(xiX ′i + x′iXi).
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For S2m−1 the Weingarten operator is A = λI (where λ = −1) and the general
formulae from [3] reduce to

(∇XP )(Y ) = −g(Y, ξ)X − g(X, Y )ξ,
(∇Xb)(Y ) = g(X,PY )− ag(X,Y ),

∇Xξ = PX − aX,

X(a) = 2g(X, ξ), for any X, Y ∈ X (S2m−1).

We remark that the Randers metric provided by g and b is never Berwald since
(∇Xb)(Y ) = 0 is equivalent with P = aI (I is identity) and this contradicts the
equation (1.6). In order to explicitly write the Randers function F = α + β we
need a basis in the tangent space of the sphere S2m−1. We do this in the case
m = 2 that is for the sphere S3 in E4.

We parameterize S3 as (x, y, z) → (ε, x, y, z)/
√

1 + x2 + y2 + z2, with ε =
±1.

A basis of TxS3 is as follows:

h1 = (−εx, 1 + y2 + z2,−xy,−xz)/A3,

h2 = (−εy,−yx, 1 + x2 + z2,−yz)/A3,

h3 = (−εz,−zx,−zy, 1 + x2 + y2)/A3,

where A :=
√

1 + x2 + y2 + z2.
The induced metric g has the matrix:

1
A4




1 + y2 + z2 −xy −xz
−xy 1 + x2 + z2 −yz
−zx −zy 1 + x2 + y2




The form of ξ in the given parameterization is

ξ = (yε− a, zε− axε, 1− ayε, xε− azε)/A,

where a = 2
xz − εy

A2
. Thus, we have

ξ =
1

A3
(εyA2 − 2(xz + εy)ε, εzA2 − 2(xzε + y)x,

A2 − 2(xzε + y)y, εxA2 − 2(xzε + y)z).

We write ξ = αh1 + βh2 + γh3 and by an identification we determine α, β, γ
and we find that ξ in the basis h = (h1, h2, h3) is as follows:

ξ = (zε− xy)h1 + (1− y2)h2 + (xε− yz)h3.

We compute the components bi = b(hi) = g(hi, ξ) of b in the basis (h1, h2, h3)
and we find

b =
1
A

(εzA2 − 2(εxz + y)x,A2 − 2(xzε + y)y, εxA2 − 2(εxz + y)z).
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We denote by (u, v, w) the components of an arbitrary tangent vector in the
basis h. The above calculations show that the Randers function F = α + β, for
ε = 1 has the form:

F (x, y, z; u, v, w) =
√

(A2 − x2)u2 + (A2 − y2)v2 + (A2 − z2)w2

−2xyuv − 2xzuw − 2yzvw +
(zA2 − 2(xz + y)x)u

A

+
(A2 − 2(xz + y)y)v

A
+

(xA2 − 2(xz + y)z)w
A

.

Recall that A =
√

1 + x2 + y2 + z2.
Let Em+1 be an Euclidean space of dimension m + 1. Every almost product

structure P̃ : Em+1 −→ Em+1 has let say k = 0, m + 1 eigenvalues equal to
+1 and m + 1 − k eigenvalues equal to −1. For a convenient choice of coor-
dinates on Em+1, the operator P̃ takes the standard form P̃ (x1, . . . , xm+1) =
(x1, . . . , xk,−xk+1, . . . ,−xm+1). Then (Em+1, P̃ , 〈, 〉) is a locally product Rie-
mannian manifold.

Let M be a hypersurface in Em+1 (dimM = m). Assume it is given in
an explicit form: xm+1 = f(x1, . . . , xm) with f a smooth function and denote

pi :=
∂f

∂xi
, i = 1, . . . , m.

A natural basis in TxM , x ∈ M is given by hi = (0, . . . , 1
i
, . . . , pi), i = 1,m

and an unitary normal vector field is N = (p1, p2, . . . , pm,−1)/A, where A =√
1 + p1

2 + · · ·+ pm
2. We have

P̃ (N) = (p1, . . . , pk,−pk+1, . . . ,−pm, 1)/A.

On the other hand P̃ (N) is decomposed in the form

P̃ (N) = ξ1h1 + · · ·+ ξmhm + aN.

An identification gives:

ξ1 =
(1− a)p1

A
, . . . , ξk =

(1− a)pk

A
,

ξk+1 =
−(1 + a)pk+1

A
, . . . , ξm =

−(1 + a)pm

A
,

p1ξ
1+ . . . +pmξm =

1 + a

A

By inserting (ξi) in the very last equation, one obtains

a =
p2
1 + · · ·+ p2

k − p2
k+1 − · · · − p2

m − 1
A2
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Moving a in the form of ξi we find

ξ =
2

A3
(1 + p2

k+1 + · · ·+ p2
m)(p1, . . . , pk, 0, . . . , 0)

− 2
A3

(p2
1 + · · ·+ p2

k)(0, . . . , 0, pk+1, . . . , pm).

As to the induced metric g, we have

gij =

{
1 + p2

i , i 6= j

pipj , i = j.

We compute bi = gihξh and obtain:

bi =
2pi

A
, i = 1, 2, . . . , k,

bi = 0, i = k + 1, . . . , m.

Let (yi) be the components of an arbitrary element of TxM . The Randers
metric derived from (gij) and (bi) has the form:

F (x, y) =
√∑

i

(1 + p2
i )(yi)2 +

∑

i,j

pipjyiyj +
2
A

k∑

h=1

phyh, or

F (x, y) =

√√√√
(

m∑

i=1

piyi

)2

+
m∑

i=1

(yi)2 +
2
A

k∑

h=1

phyh.

Recall that pi =
∂f

∂xi
, A =

√
1 + p1

2 + · · ·+ pm
2. With this procedure we

generically find a set of m Randers metrics on M . Notice that for a hyperplane
xm+1 = a1x

1 + · · ·+ amxm all these Randers metrics are locally Minkowski.
We have to separately treat the cases a = ±1 and a = 0. The case a = 1

is equivalent to 1 + p2
k+1 + · · · + p2

m = 0, that never holds. The equality a =
−1 holds in the points of M , where p1 = p2 = · · · = pk = 0. In this case
ξ = 0 and we cannot construct F . Thus we have to delete from M the points
{(x1, . . . , xm)|p1 = p2 = · · · = pk = 0}. Let denote by M0 the new hypersurface
obtained in such a way.

On M0 all functions F from above are Randers metrics but only those ob-
tained for a 6= 0 are strongly convex. Thus in order to obtain only strongly
convex Randers metrics we have to delete from M0 the points {(x1, . . . , xm)|p2

1+
· · ·+ p2

k − p2
k+1− · · · − p2

m− 1 = 0}. Let M00 be the hypersurface obtained after
this elimination. On M00 all Randers metrics from above are strongly convex.
We note that at the same time these Randers metrics are y-global (cf. [1], pg.
304).

Let now confine ourselves to the case m = 2. We have two different types of
product structures obtained for k = 1 and k = 2. The corresponding Randers



22 M. ANASTASIEI AND M. GHEORGHE

metrics are as follows:

k = 1 : F (x, y; u, v) =
√

(pu + qv)2 + u2 + v2 +
2pu√

1 + p2 + q2
,

k = 2 : F (x, y; u, v) =
√

(pu + qv)2 + u2 + v2 +
2(pu + qv)√
1 + p2 + q2

,

where p =
∂f

∂x
, q =

∂f

∂y
and (u, v) are the components of a tangent vector.

Here are some particular cases.
1. For a hyperbolic paraboloid of equation z = xy we get:

k = 1 : F11(x, y;u, v) =
√

(yu + xv)2 + u2 + v2 +
2yu√

1 + x2 + y2

k = 2 : F12(x, y;u, v) =
√

(yu + xv)2 + u2 + v2 +
2(yu + xv)√
1 + x2 + y2

2. For the hemisphere S2 in E3 given by the equation

z =
√

1− x2 − y2, x2 + y2 < 1

we get:

k = 1 : F21(x, y;u, v) =
√

(1− y2)u2 + 2xyuv + (1− x2)v2 − 2xu

1 + x2 + y2

k = 2 : F22(x, y;u, v) =
√

(1− y2)u2 + 2xyuv + (1− x2)v2 − 2(xu + yv)
1 + x2 + y2

3. For the cylinder z =
√

1− x2, |x| < 1 we get:

k = 1 : F31(x, y; u, v) =

√
u2

1− x2
+ v2 + 2xu

k = 2 : F32(x, y; u, v) =

√
u2

1− x2
+ v2 − 2xu

4. If we consider the hemisphere S2 in E3 parameterized by(
x√

1 + x2 + y2
,

y√
1 + x2 + y2

,
1√

1 + x2 + y2

)
,

we get

k = 1 : F41(x, y; u, v) =

√
(xv − yu)2 + u2 + v2

1 + x2 + y2
+

2(xu + yv)
(1 + x2 + y2)2

k = 2 : F42(x, y; u, v) =

√
(xv − yu)2 + u2 + v2

1 + x2 + y2
+

2((1 + y2)u− 2xyv)
(1 + x2 + y2)2
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Notice that the Randers metrics F41 and F42 coincide with F21 and F22 respec-
tively, but are written in different parameterizations.

In [2] one proves that any strongly convex Randers metric F =
√

gijyiyj+biy
i,

‖b‖ < 1 solves a Zermelo’s navigation problem on the Riemannian manifold

(M, h) with hij = ε(gij − bibj) with the vector field (“wind”) W i = −bi

ε
, for

ε = 1−‖b‖2. The Randers metric induced by (P̃ , g̃) solves the following Zermelo’s
navigation problem:

hij = a2(gij − bibj), W i = − ξi

a2

since in our case ε = 1− (1− a2) = a2.
It is also proved in [2] that the Randers metric F =

√
gijyiyj + biy

i is of
constant flag curvature K if and only if

(i) (M,h) is of constant sectional curvature K +
1
16

σ2 for some constant σ,

(ii) LW h = −σh, where LW denotes the Lie derivative with respect to h.
It is easy to see that the condition (ii) is satisfied if ξ is Killing and a is a

constant function.
As we have seen, ξ is Killing if and only if PA + AP = 2aA and a is not a

constant function. Thus it will be hard to find Randers metrics of constant flag
curvature among our examples. Before this theoretical analysis was done, some
checking using Maple showed the same conclusion.
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