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ON THE RECTILINEAR EXTREMALS OF GEODESICS IN
SOL GEOMETRY

SÁNDOR BÁCSÓ AND BRIGITTA SZILÁGYI

Abstract. In this paper we deal with one of the homogeneous geometries,
the Sol geometry. The goal of this publication is to show that there does
not exist rectilinear extremals of geodesics. During the proof we consider
the Riemannian space with Sol metric as a special Finsler space and applied
Finslerian methods.

1. Introduction

Let (M, g) be a Riemannian manifold. If for any x, y ∈ M there does exists
an isometry Φ: M → M such that y = Φ(x), then the Riemannian manifold is
called homogeneous.

Homogeneous geometries have main roles in the modern theory of three-
manifolds.

Homogeneous spaces are, in a sense, the nicest examples of Riemannian mani-
folds and have applications in physics (e.g. the Sol geometry is useful for studying
holography, Yang–Mills theory) [7].

Sol geometry can be obtained by giving a group structure to T = R n R2 as
follows:

(
1 a b c

)



1 x y z
0 e−z 0 0
0 0 ez 0
0 0 0 1


 =

(
1 x + ae−z y + bez z + c

)

is the right action by translation (1, x, y, z) on (1, a, b, c) expressed in homoge-
neous coordinates, for (x, y, z) and (a, b, c) ∈ T .

Then an invariant metric on Sol(O, T ) is given by

(ds)2 = (dx)2e2z + (dy)2e−2z + (dz)2,
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where O denotes the origin.
The well-known equation of geodesics

d2uk

dt2
+ Γk

ij

dui

dt

duj

dt
= 0

in Sol Geometry leads to the system:

d2x(t)
dt2

+ 2
dx(t)

dt

dz(t)
dt

= 0,

d2y(t)
dt2

− 2
dy(t)
dt

dz(t)
dt

= 0,

d2z(t)
dt2

− e2z(t) dx(t)
dt

dx(t)
dt

+ e−2z(t) dy(t)
dt

dy(t)
dt

= 0.

For simplification we abbreviate the notation:

ẍ + 2ẋż = 0
ÿ − 2ẏż = 0
z̈ − e2z(ẋ)2 + e−2z(ẏ)2 = 0.

We solve this differential equation system as a Cauchy problem:

x(0) = 0 ẋ(0) = u

y(0) = 0 and ẏ(0) = v

z(0) = 0 ż(0) = w.

Table 1. contains the solutions of the geodesics from the paper [5].

Remarks. 1. While computed the formulas above, we used u2+v2+w2 = 1 that
can be assumed without loss of generality (meaning arc-length parametrisa-
tion).

2. From the conditions ẋ(0) and ẏ(0) = 0 alone, it immediately follows the
results of the fourth row.

Naturally arises the question whether these equations can be given ‘in a sim-
plier form’. As it is well-known, V. I. Arnold examined the problem whether the
solution of

d2p(α)
dα2

= Φ
(

α, p(α),
dp(α)
dα

)
,

which is a two-parametric array of curves could be transformed to array of
rectilinear extremals by a diffeomorphism [2]. We cite here the famous result:

Theorem. A differential equation of the form
d2p(α)
dα2

= Φ
(

α, p(α),
dp(α)
dα

)

can be reduced to the form
d2p̄(α)
dᾱ2

= 0 if and only if the right-hand side is a
polynomial in the derivative of order not greater 3 both for the equation and for
its dual.



ON THE RECTILINEAR EXTREMALS OF GEODESICS 27

ẋ(0) 6= 0 x(t) = u
∫ t

0
e−2z(τ)dτ

ẏ(0) 6= 0 y(t) = v
∫ t

0
e2z(τ)dτ

z(t) comes from the separable differential equation

dz√
1− u2e−2z − v2e2z

= dt

whose solution cannot be expressed in terms of a
finite number elementary functions

ẋ(0) 6= 0 x(t) =
1
u

{
sinh t +

√
1− u2 cosh t

cosh t +
√

1− u2 sinh t
−

√
1− u2

}

ẏ(t) ≡ 0 y(t) = 0

z(t) = ln (cosh t +
√

1− u2 sinh t)

ẋ(t) ≡ 0 x(t) = 0

ẏ(0) 6= 0 y(t) =
1
v

{
sinh t +

√
1− v2 cosh t

cosh t +
√

1− v2 sinh t
−

√
1− v2

}

z(t) = ln (cosh t +
√

1− v2 sinh t)

ẋ(t) ≡ 0 x(t) = 0

ẏ(t) ≡ 0 y(t) = 0

z(t) = t

Table 1
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The examination for the condition of a differential equation’s dual is rather
complicated and tedious. So let us consider a Riemannian space with Sol metric
as a Finsler space.

In the tangent space of each point of a Finsler space, there is a general norm
defined, which is not necessarily induced by an inner product.

2. Some important notations and theorems

First of all let us give the concept of Finsler metric precisely:

Definition ([8]). Let an n-dimensional differentable manifold M be given with
a tangent space TxM in the point (xi) (i = 1, 2, . . . , n) of M . Let us de-
note the coordinates of vectors of TxM by (yi). The function L(x, y) : TM(=⋃

x TxM) → R is Finsler metric, if the following properties holds:
(1) Regularity: L(x, y) is a function C∞ on the manifold TM\{0} of nonzero

tangent vectors.
(2) Positive homogeneity: L(x, λy) = λL(x, y) for all λ > 0.

(3) Strong convexity: the n×n matrix gij(x, y) =
∂2L2(x, y)

∂yi∂yj
is positive definite

at every y 6= 0.

A geodesic is a curve given by the differential equations

(2.1)
d2xi

ds2
+ 2Gi (x, dx/ds) = 0,

where s is the normalized parameter, that is the arc-length,

2Gj = gij(x, y)Gi(x, y) =
∂2F (x, y)
∂yj∂xi

yi − ∂F (x, y)
∂xj

(2.2)

and F (x, y) = (L(x, y))2 /2.

Definition ([8, 1]). Let Fn = (Mn, L(x, y)) and F̄n =
(
Mn, L̄(x, y)

)
be Finsler

spaces with common differentiable manifold. If any geodesic of Fn coincides with
a geodesic of F̄n as a set of points and vice versa, then the change L(x, y) →
L̄(x, y) of the metric is called projective and Fn is said to be projective to F̄n.

Definition ([1]). A Finsler space Fn = (Mn, L(x, y)) is said to be with rectilin-
ear extremals (or projectively flat), if Mn is covered by coordinate neighborhoods(
U, (xi)

)
in which any geodesic is represented by n linear equations xi = xi

0 + tai

of a parameter t.

The projectively flat spaces are such affine path spaces whose paths are
straight. (If we are about to determined all the Finsler spaces which admit
a path mapping onto projectively flat space, than we come to Hilbert’s fourth
problem.)

If a Finsler space Fn = (Mn, L(x, y)) is a locally Minkowski space, then we
have the covering of Mn by the domains of adapted coordinate systems

(
U, (xi)

)
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in which L is a function of yi alone, the quantities Gi vanish in U from (2.2)
and the equation (2.1) of geodesics reduces to d2xi/ds2 = 0, that is why Fn has
rectilinear extremals (projectively flat). To sum it up a projectively flat Finsler
space is projective to a locally Minkowski space.

In the studies of projective Finsler geometry the Douglas tensor plays a fun-
damental role. The definition of the Douglas tensor can be found in [6].

Definition ([3]). A Finsler space is said a Douglas space, if Dij = Giyj −Gjyi

are homogeneous polynomials in yi of degree three.

The notion of Douglas space may be regarded as a generalization of projectively
flat space.

Theorem ([3]). A Finsler space is a Douglas space, if and only if the Douglas
tensor vanishes identically.

Furthermore there are two more invariant tensors. The Weyl torsion and the
projective Weyl curvature tensor. The Weyl tensor was introduced by H. Weyl
in 1921 [9].

It is well known that a Finsler space is projectively flat, if and only if its
Douglas tensor and Weyl tensor vanish identically. Most of the papers in this
subject are difficult to understand. On the contrary, Sndor Bácsó and Makoto
Matsumoto’s method of characterization is easier to comprehend [4].

A projective change Fn =
(
Mn, L(x, y)

) −→ F̄n =
(
Mn, L̄(x, y)

)
of the

Finsler metric gives rise to various projective invariants. First we have

Q0-invariants: Qh = Gh − 1
n + 1

Gyh,

Q1-invariants: Qh
i =

∂Qh

∂yi
= Gh

i −
1

n + 1
(
Giy

h + Gδh
i

)
,

Q2-invariants: Qh
ij =

∂Qh
i

∂yj
= Gh

ij −
1

n + 1
(
Gijy

h + Giδ
h
j + Gjδ

h
i

)
,

where G = Gr
r, Gi = Gr

ri and Gij = Gr
rij is the hv-Ricci tensor in Berwald

connection.
The above mentioned Douglas tensor is projectively invariant, satisfying Dh

ijk =
∂Qh

ij

∂yk
.

Starting from the Q2-invariants we shall introduce the following quantities in
a way similar to constructing the h-curvature tensor: Q3-invariants

Qh
ijk = δkQh

ij + Qr
ijQ

h
rk − δjQ

h
ik −Qr

ikQh
rj ,

where δkQh
ij =

∂Qh
ij

∂xk
− ∂Qh

ij

∂yr
Gr

k.
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Therefore the Bácsó and Matsumoto with the help of Qij = Qr
ijr Ricci type

tensor produce two tensors, which are very important in projective Finsler ge-
ometry:

Π1-tensor: Πh
ijk = Qh

ijk +
1

n− 1
(
δh
j Qik −Qh

kQij

)
,

Π2-tensor: Πijk = δkQij + Qr
ijQrk − δjQik −Qr

ikQrj .

That is how we can obtain a new characteristic property for the flat projectively
space:

Theorem ([4]). A Finsler space Fn is projectively flat if and only if Fn is a
Douglas space and its characteristic satisfies

(1) n > 2 : Πh
ijk = 0 or (2) n = 2 : Πijk = 0.

Proposition ([4]). The Weyl tensor coincides with the Π1 tensor.

Using the Bácsó–Matsumoto paper [4] from the previous theorems and defini-
tions we obtain:

Proposition. A Finsler space F 3 = (M3, L(x, y)) with Sol metric is not pro-
jectively flat.

Proof. Considering the differential equations (2.1) and (2.2), it follows

2Gi = Γi
00, where Γi

00 = Γi
jkyjyk, and

G1 =
1
2
y1y3

G2 = −1
2
y2y3

G3 =
1
2

(
−e2x3

(y1)2 + e−2x3
(y2)2

)
.

The computation of the Q-invariants lead to the components of Π1.
The non-vanishing entries are listed below:

Π1
221 = Π1

212 =
1
2
e−2x3

,

Π2
121 = Π2

112 =
1
2
e2x3

,

Π3
113 = Π3

213 = Π3
313 = Π3

123 = Π3
223 = Π3

323 = Π3
133 = Π3

233 = Π3
333 =

= −e−2x3
(y1)2 − e−2x3

(y2)2.

Since our space in question is trivially Douglas type (it is Riemannian), the
statement is proved. ¤
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