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A SPECIAL NONLINEAR CONNECTION IN SECOND ORDER
GEOMETRY

NICOLETA BRINZEI

Abstract. We show that, for mechanical system with external forces, the
equations of deviations of solution curves of the corresponding Lagrange
equations, determine a nonlinear connection on the second order tangent
bundle. In particular, Jacobi equations in Finsler and Riemann spaces
determine such a nonlinear connection.

1. Introduction

As shown in [27], nonlinear connections on bundles can be a powerful tool
in integrating systems of differential equations. A way of obtaining them is
that of deriving them from the respective systems of DE’s, in particular, from
variational principles, [2], [16], [15]. For instance, an ODE system of order 2
on a manifold M induces a nonlinear connection on its tangent bundle TM . A
remarkable example is here the Cartan nonlinear connection of a Finsler space,
which has the property that its autoparallel curves correspond to geodesics of
the base manifold:

δyi

dt
:=

dyi

dt
+ N i

jy
j = 0.

Further, an ODE system of order three determines a nonlinear connection on
the second order tangent (jet) bundle T 2M = J2

0 (R,M). For instance, Craig-
Synge equations (R. Miron, [16])

d3xi

dt3
+ 3!Gi(x, ẋ, ẍ) = 0,

lead to:
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a) Miron’s connection:

(1) M
(1)

i
j =

∂Gi

∂y(2)j
, M

(2)

i
j =

1
2

(
SM

(1)

i
j + M

(1)

i
mM

(1)

m
j

)
,

where S = yi ∂

∂xi
+ 2y(2)i ∂

∂yi
− 3Gi ∂

∂y(2)i
is a semispray on T 2M .

b) Bucătaru’s connection

M
(1)

i
j =

∂Gi

∂y(2)j
,M
(2)

i
j =

∂Gi

∂yj
.

With respect to the last one, if Gi are the coefficients of a spray on T 2M (i.e.,
3-homogeneous functions), then the Craig-Synge equations can be interpreted
as:

(2)
δy(2)i

dt
= 0,

where
δy(2)i

dt
:=

dy(2)i

dt
+ M

(1)

i
j

dyj

dt
+ M

(2)

i
j

dxj

dt
.

In Miron’s and Bucătaru’s approaches, nonlinear connections on T 2M are ob-
tained from a Lagrangian of order 2, L(x, ẋ, ẍ), by computing the first variation
of its integral of action.

Here, we propose a different approach, which, we consider, could be at least
as interesting as the above one from the point of view of Mechanics - namely,
we start with a first order Lagrangian L(x, ẋ) and compute its second variation.

This way, for a mechanical system (M, L(x, ẋ), F (x, ẋ)) with external force
field F , we obtain a nonlinear connection on T 2M, with respect to which the
equations of deviations of evolution curves have a simple invariant form.

As a remark, our nonlinear connection is also suitable for modelling the solu-
tions of a (globally defined) ODE system, not necessarily attached to a certain
Lagrangian, together with the deviations of these solutions.

More precisely, in the following our aims are:

(1) to obtain the Jacobi equations for the trajectories

δyi

dt
=

1
2
F i(x, y)

(for extremal curves of a 2-homogeneous Lagrangian L(x, ẋ) in presence
of external forces).

(2) to build a nonlinear connection such that:

w ∈ X (M) Jacobi field along c ⇔ δw(2)i

dt
= 0,
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where
d

dt
denotes directional derivative with respect to ċ and

δw(2)i

dt
=

1
2

d2wi

dt2
+ M

(1)

i
j

dwj

dt
+ M

(2)

i
jw

j .

For F = 0, this nonlinear connection has as additional properties:
I. In Finsler spaces M , c is a geodesic of M if and only if its extension T 2M

is horizontal.
II. A vector field w along a geodesic c on M is parallel along c if and only if

δwi

dt
= 0.

Throughout the paper, by ‘differentiable’ or ‘smooth’ we mean C∞-differen-
tiable.

2. Tangent bundle of first and second order

Let M be a real differentiable manifold of dimension n and class C∞;
the coordinates of a point x ∈ M in a local chart (U, φ) will be denoted by
φ (x) =

(
xi

)
, i = 1, . . . , n. Let (TM, π,M) be its tangent bundle and (xi, yi)

the coordinates of a point in a local chart.
The 2-tangent bundle (T 2M, π2,M) is the space of jets of order two at 0 of

all smooth functions f : (−ε, ε) → M, t 7→ (f i(t)), on (−ε, ε), ε > 0, ([19]-[24],
[16], [10]).

In a local chart, a point p of T 2M will have the coordinates (xi, yi, y(2)i).
This is,

xi = f i(0), yi = ḟ i(0), y(2)i =
1
2

··
f i(0), i = 1, . . . , n,

for some f as above. Then,
(
T 2M, π2,M

)
is a differentiable manifold of class

C∞ and dimension 3n, and TM can be identified with a submanifold of T 2M .
The local coordinate changes induced by local coordinate changes on M are,
[16], [19]-[24],

x̃i = x̃i
(
x1, . . . , xn

)
, det

(
∂x̃i

∂xj

)
6= 0

ỹi =
∂x̃i

∂xj
yj

2ỹ(2)i =
∂ỹi

∂xj
yj + 2

∂ỹi

∂yj
y(2)j .

(3)

For a curve c : [0, 1] → M, t 7→ (xi(t)) on the base manifold M , let us denote:

• by ĉ its extension to the tangent bundle TM :

ĉ : [0, 1] → M, t 7→ (xi(t), ẋi(t));
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along ĉ, there holds:

yi = ẋi(t), i = 1, . . . , n;

• by c̃ its extension to T 2M :

c̃ : [0, 1] → T 2M, t 7→ (xi(t), ẋi(t),
1
2
··
xi(t));

along such an extension curve, there holds

yi(t) = ẋi(t), y(2)i(t) =
1
2
··
xi(t), i = 1, . . . , n.

A tensor field on TM (or T 2M) is called a distinguished tensor field, or simply,
a d-tensor field if, under a change of local coordinates induced by a change of
coordinates on the base manifold M, its components transform by the same rule
as the components of a corresponding tensor field on M, [16].

3. Nonlinear connections on TM

Let (TM, π, M) be the tangent bundle of a differentiable manifold M as above
and (xi, yi) the coordinates of a point p ∈ TM in a local chart. For simplicity,
we shall also denote (x, y) = (xi, yi)i=1,n.

Let dπ : T (TM) → TM denote the tangent linear mapping of the projection
π : TM → M and V (TM) = ker dπ, the vertical subbundle of T (TM). Its fibres
generate the vertical distribution V on TM of local dimension n, V : p ∈ TM

7→ V (p) ⊂ Tp (TM), locally spanned by { ∂

∂yi
}.

A nonlinear (Ehresmann) connection on TM, [16], [18], is a distribution
N : p ∈ TM 7→ N(p) ⊂ Tp(TM), which is supplementary to the vertical dis-
tribution:

(4) Tp(TM) = N (p)⊕ V (p) , ∀p ∈ TM.

Let

B =
{

δ

δxi
,

∂

∂yi

}
,

where:
δ

δxi
=

∂

∂xi
−N j

i

∂

∂yj
, i = 1, . . . , n,(5)

denote a local adapted basis to the direct decomposition (4). The quantities
N i

j = N i
j(x, y), [16], [18], are called the coefficients of the nonlinear connection

N .
With respect to local coordinate changes on TM induced by changes of local

coordinates (xi) 7→ (x̃i) on the base manifold M,
δ

δxi
transform by the rule:

δ

δxi
=

∂x̃j

∂xi

δ

δx̃j
.
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The dual basis of B is B∗ =
{
dxi, δyi

}
, given by

(6) δyi = dyi + N i
jdxj .

With respect to changes of local coordinates on TM induced by local coordinate

changes on M, there holds: δỹi =
∂x̃i

∂xj
δyj .

Any vector field X ∈ X (TM) is represented in the local adapted basis as

(7) X = X(0)i δ

δxi
+ X(1)i ∂

∂yi
,

where the components X(0)i δ

δxi
and X(1)i ∂

∂yi
are d-vector fields.

Similarly, a 1-form ω ∈ X ∗ (TM) will be decomposed as the sum of two
d-1-forms:

(8) ω = ω
(0)
i dxi + ω

(1)
i δyi.

In particular, if ĉ : t → (xi(t), yi(t)) is an extension curve to TM , then its
tangent vector field is expressed in the adapted basis as

(9)
·
ĉ =

dxi

dt

δ

δxi
+

δyi

dt

∂

∂yi
.

In our further considerations, an important role will be played by the notions
of semispray and spray, [25], [10]. A semispray S ∈ X (TM) is a vector field

locally described in the natural basis by S = yi ∂

∂xi
− 2Gi(x, y)

∂

∂yi
, where the

functions Gi (called the coefficients of the semispray) obey, with respect to
coordinate changes induced by a change of local coordinates (xi) 7→ (x̃i) on

M, the rule: 2G̃i = 2
∂x̃i

∂xj
Gj − ∂ỹi

∂xj
yj , i = 1, . . . , n. If Gi are 2-homogeneous

functions in y, then the semispray is called a spray.
As shown by Grifone, [12], a semispray (in particular, a spray) on M deter-

mines a nonlinear connection on TM .
Also, evolution curves of mechanical systems with external forces, can be

described in terms of semisprays on TM , (R. Miron, [15]):

Proposition 1. Let L = L(x, ẋ) be a nondegenerate Lagrangian:

det
(

∂2L

∂yi∂yj

)
6= 0,

and gij =
1
2

∂2L

∂yi∂yj
, the induced (Lagrange) metric tensor. Then, the equations

of evolution of a mechanical system with the Lagrangian L and the external force
field F = Fi(x, ẋ)dxi are

(10)
d2xi

dt2
+ 2Gi(x, ẋ) =

1
2
F i(x, ẋ),
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where

2Gi =
1
2
gis

(
∂2L

∂ys∂xj
yj − ∂L

∂xs

)
,

yield a semispray (called the canonical semispray of the Lagrange space (M, L))
and F i = gijFj , i = 1, . . . , n.

In the following, we shall use the above results in the case when G is a spray ;
this is, we shall have

2Gi =
∂Gi

∂yj
yj .

Then, [12], [2], [5], [18], the quantities

N i
j =

∂Gi

∂yj

are the coefficients of a nonlinear connection on TM . Moreover, N i
j = N i

j(x, y)
are 1-homogeneous in y.

With respect to the above nonlinear connection, equations (10) take the form:

(11)
δyi

dt
=

1
2
F i, i = 1, . . . , n.

In particular, if there are no external forces, this is, if F i = 0, then the
extremal curves t 7→ xi(t) of the Lagrangian L have horizontal extensions and
vice-versa: horizontal extension curves ĉ project onto solution curves of the
Euler-Lagrange equations of L.

4. Nonlinear connections on T 2M

Let dπ2 : T
(
T 2M

) → TM denote the tangent linear mapping of the pro-
jection π2 : T 2M → M and V

(
T 2M

)
= ker dπ2, the vertical subbundle of

T
(
T 2M

)
. Its fibres generate the vertical distribution V on T 2M of local dimen-

sion 2n, V : p ∈ T 2M 7→ V (p) ⊂ Tp

(
T 2M

)
, locally spanned by

{
∂

∂yi
,

∂

∂y(2)i

}
.

In the same way, if the projection π2
1 : T 2M → TM is given by(

xi, yi, y(2)i
)
7→ (

xi, yi
)
,

then V2 := ker dπ2
1 generates a distribution V2 : p ∈ T 2M 7→ V2 (p) ⊂ Tp

(
T 2M

)

of local dimension n, locally spanned by
{

∂

∂y(2)i

}
.

Then, at any p ∈ T 2M, there exists a chain of vector spaces

V2 (p) ⊂ V (p) ⊂ Tp

(
T 2M

)
.

Let us consider the F (
T 2M

)
-linear mapping J : X (

T 2M
) → X (

T 2M
)
,

(12) J

(
∂

∂xi

)
=

∂

∂yi
, J

(
∂

∂yi

)
=

∂

∂y(2)i
, J

(
∂

∂y(2)i

)
= 0,
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called the 2-tangent structure on T 2M. J is globally defined on T 2M and ImJ =
V, KerJ = V2, J (V ) = V2.

A nonlinear connection on T 2M, [16], is a distribution on T 2M, N : p ∈
T 2M → N(p) ⊂ Tp(T 2M), such that

(13) Tp(T 2M) = N0 (p)⊕ V (p) , ∀p ∈ T 2M.

By setting N1(p) := J(N0(p)), ∀p ∈ T 2M, we get:
• the horizontal distribution N0 : p 7→ N(p);
• the v1-distribution N1 : p 7→ N1(p);
• the v2-distribution V2 : p 7→ V2(p), and there holds

Tp(T 2M) = N0 (p)⊕N1 (p)⊕ V2 (p) , ∀p ∈ T 2M.

We denote by h = v0, v1 and v2 the projectors corresponding to the above
distributions.

Let B denote a local adapted basis to the decomposition (13):

B =
{

δ(0)i :=
δ

δxi
, δ(1)i :=

δ

δyi
, δ(2)i :=

δ

δy(2)i

}
,

this is, N0 = Span(δ(0)i), N1 = Span(δ(1)i), V2 = Span(δ(2)i). The elements of
the adapted basis are locally expressed as

δ(0)i =
δ

δxi
=

∂

∂xi
− N

(1)

j
i

∂

∂yj
− N

(2)

j
i

∂

∂y(2)j

δ(1)i =
δ

δyi
=

∂

∂yi
− N

(1)

j
i

∂

∂y(2)j

δ(2)i =
δ

δy(2)i
=

∂

∂y(2)i
.

(14)

With respect to changes of local coordinates on T 2M, induced by changes (xi) 7→
(x̃i) of local coordinates on the base manifold M, for δ(α)i, α = 0, 1, 2, there

holds: δ(α)i =
∂x̃j

∂xi
δ̃(α)j .

The dual basis of B is B∗ =
{
dxi, δyi, δy(2)i

}
, given by

δy(0)i = dxi,

δyi = dyi + M
(1)

i
jdxj ,

δy(2)i = dy(2)i + M
(1)

i
jdyj + M

(2)

i
jdxj .

(15)

The above δy(α)i, α = 0, 1, 2, i = 1, . . . , n, are d-1-forms on T 2M .
The quantities N

(1)

j
i , N

(2)

j
i are called the coefficients of the nonlinear connection

N, while M
(1)

i
j and M

(2)

i
j are called its dual coefficients. The link between the two
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sets of coefficients is, [16]:

(16) M
(1)

i
j = N

(1)

i
j , M

(2)

i
j = N

(2)

i
j + N

(1)

i
f N
(1)

f
j .

In the following, the next result will be very useful to us:

Theorem 2 ([16],[19]-[24]). 1. A transformation of coordinates (3) on the dif-
ferentiable manifold T 2M implies the following transformation of the dual coef-
ficients of a nonlinear connection

∂x̃i

∂xk
M
(1)

k
j = M̃

(1)

i
k

∂x̃k

∂xj
+

∂ỹi

∂xj

∂x̃i

∂xk
M
(2)

k
j = M̃

(2)

i
k

∂x̃k

∂xj
+ M̃

(1)

i
k

∂ỹk

∂xj
+

∂ỹ(2)i

∂xj
.

(17)

2. If on each domain of local chart on T 2M it is given a set of functions(
M
(1)

i
j ,M

(2)

i
j

)
, such that, with respect to (3), there hold the equalities (17), then

there exists on T 2M a unique nonlinear connection N which has as dual coeffi-
cients the given set of functions.

In presence of a nonlinear connection, a vector field X ∈ X (
T 2M

)
is repre-

sented in the local adapted basis as

(18) X = X(0)iδ(0)i + X(1)iδ(1)i + X(2)iδ(2)i,

with the three right terms (which are d-vector fields) belonging to the distribu-
tions N, N1 and V2 respectively.

A 1-form ω ∈ X ∗ (
T 2M

)
will be decomposed as

(19) ω = ω
(0)
i dxi + ω

(1)
i δyi + ω

(2)
i δy(2)i.

Similarly, a tensor field T ∈ T r
s

(
T 2M

)
can be split with respect to (13) into

components, which are d-tensor fields.
In particular, if c̃ : t → (xi(t), yi(t), y(2)i(t)) is an extension curve, then its

tangent vector field is expressed in the adapted basis as

(20)
·
c̃ =

dxi

dt
δ(0)i +

δyi

dt
δ(1)i +

δy(2)i

dt
δ(2)i.

Our goal is to give a precise meaning to the equality v2(
·
c̃) = 0.

5. Berwald linear connection on T 2M

Let Gi = Gi(x, y) be the coefficients of a spray on TM, and

N i
j(x, y) =

∂Gi

∂yj
,

the coefficients of the induced nonlinear connection (on TM).



A SPECIAL NONLINEAR CONNECTION IN SECOND ORDER GEOMETRY 41

Let also

Li
jk(x, y) =

∂N i
j

∂yk
=

∂2Gi

∂yj∂yk
,

the local coefficients of the induced Berwald linear connection on TM, [16].
Now, let on T 2M, a linear connection defined by N

(1)

i
j = N i

j(x, y(1)) as

above, and arbitrary N
(2)

i
j = N

(2)

i
j(x, y, y(2)). The Berwald connection on T 2M ,

[8], is the linear connection defined by

Dδ(0)k
δ(α)j = Li

jkδ(α)i,

Dδ(β)k
δ(α)j = 0, β = 1, 2, α = 0, 1, 2.

(21)

This is, with the notations in [16], the coefficients of the Berwald linear connec-
tion are BΓ(N) = (Li

jk, 0, 0).
For extensions c̃ to T 2M of curves c : [0.1] → M, we can express the v1

component of the tangent vector field
·
c̃, given by

δyi

dt
(the geometric acceleration,

[13]) by means of the Berwald covariant derivative:

(22)
Dyi

dt
:= D·

ec
yi =

δyi

dt
, i = 1, . . . , n.

Let T denote its torsion tensor, and:

Ri
jk = v1T(δ(0)k, δ(0)j) = δ(0)kN i

j − δ(0)jN
i
k,

its v1(h, h) components.
Also, let R be the curvature tensor; then

R i
j kl = δ(0)lL

i
jk − δ(0)kLi

jl + Lm
jkLi

ml − Lm
jlL

i
mk,

P i
j kl = δ(1)lL

i
jk =

∂3Gi

∂yj∂yk∂yl
,

where R i
j klδ(0)i = hR(δ(0)l, δ(0)k), P i

j klδ(0)i = hR(δ(1)l, δ(0)k), define its only
nonvanishing local components, [16].

Taking into account that Li
jk do not depend on y(2) and that Gi = Gi(x, y)

are 2-homogeneous in y, it follows:

(23) yjR i
j kl = Ri

kl.

From the 2-homogeneity of Gi, we also have

(24) P i
j kly

l =
∂3Gi

∂yj∂yk∂yl
yl = 0; P i

j kly
j = P i

j kly
k = 0.
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6. Jacobi equations for systems with external forces

Let us suppose that we know a priori a nonlinear connection on the first

order tangent bundle TM, with (1-homogeneous) coefficients N i
j(x, y) =

∂Gi

∂yj
,

coming from a spray on TM .
Let c : [0, 1] → M, t 7→ xi(t) be a curve on M , such that xi are solutions for

the system of ODE’s (10):
δẋi

dt
=

1
2
F i(x, ẋ),

where F i are the components of a d-vector field on M .
Let α : [0, 1] × (−ε, ε) → M, (t, u) 7→ (αi(t, u)) denote a variation of c (not

necessarily with fixed endpoints): αi(t, 0) = xi(t), ∀t ∈ [0, 1],

yi =
∂αi

∂t
|u=0 =

dxi

dt

the components of the tangent vector field of c and

wi(t) =
∂αi

∂u
|u=0

the components of the deviation vector field attached to the variation α. Let α̃
denote the following extension of α to the second order tangent bundle T 2M :

(25) α̃ : [0, 1]× (−ε, ε) → T 2M, (t, u) 7→ (αi(t, u),
∂αi

∂t
(t, u),

1
2

∂2αi

∂t2
(t, u))

and

αi
t =

∂αi

∂t
, αi

u =
∂αi

∂u
.

We have:

• h

(
∂α̃

∂t

)
= αi

tδ(0)i, h

(
∂α̃

∂u

)
= αi

uδ(0)i;

• αi
t(t, 0) = yi(t), αi

u(t, 0) = wi, ∀t ∈ [0, 1].

Let us denote
D

∂t
= D∂eα

∂t

and
D

∂u
= D∂eα

∂u

the covariant derivations with

respect to the Berwald connection on T 2M . Then:

Dαi
t

∂t
=

∂αi
t

∂t
+ N i

j(α, αt)α
j
t ,

Dαi
t

∂u
=

∂αi
t

∂u
+ N i

j(α, αt)αj
u,

Dαi
u

∂t
=

∂αi
u

∂t
+ N i

j(α, αt)αj
u;

(26)

(the covariant derivatives are taken ‘with reference vector
∂α̃

∂t
’, [5]).
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By commuting partial derivatives of αi, we have
∂αi

t

∂u
=

∂αi
u

∂t
, hence that the

last two covariant derivatives (26) coincide:

Dαi
t

∂u
=

Dαi
u

∂t
,

which is,
D

∂u

(
h

∂α̃

∂t

)
=

D

∂t

(
h

∂α̃

∂u

)
.

By applying D∂eα
∂t

again to the above equality, we get:

(27)
D

∂t

D

∂u

(
h

∂α̃

∂t

)
=

D

∂t

D

∂t

(
h

∂α̃

∂u

)
.

In the left hand side, we can commute covariant derivatives by means of the
curvature tensor of D :

D

∂t

D

∂u

(
h

∂α̃

∂t

)
= R

(
∂α̃

∂t
,
∂α̃

∂u

)(
h

∂α̃

∂t

)
+

D

∂u

D

∂t

(
h

∂α̃

∂t

)

+ D»∂eα
∂t ,

∂eα
∂u

–
(

h
∂α̃

∂t

)
.

But,
[

∂eα
∂t , ∂eα

∂u

]
is 0, hence the last term in the above relation vanishes and (27)

becomes

(28)
D

∂t

D

∂t

(
h

∂α̃

∂u

)
= R

(
∂α̃

∂t
,
∂α̃

∂u

)(
h

∂α̃

∂t

)
+

D

∂u

D

∂t

(
h

∂α̃

∂t

)
.

Moreover, at u = 0, we have h
∂α̃

∂t
|u=0 = αi

t(t, 0)δ(0)i = yiδ(0)i, and by means

of (11), we get

D

∂t

(
h

∂α̃

∂t

)
|u=0 =

Dyi

∂t
δ(0)i =

1
2
F iδ(0)i =:

1
2
F

(where F is a d-vector field on T 2M). Then, (28) becomes

(29)
D2

∂t2

(
h

∂α̃

∂u
|u=0

)
= R

(
∂α̃

∂t
,
∂α̃

∂u

)(
h

∂α̃

∂t

)
|u=0 +

1
2
DuF.

At u = 0, we also have h
∂α̃

∂u
= wiδ(0)i. In local writing, by evaluating

R

(
∂α̃

∂t
,
∂α̃

∂u

) (
h

∂α̃

∂t

)

and taking into account (24), we obtain

R

(
∂α̃

∂t
,
∂α̃

∂u

)(
h

∂α̃

∂t

)
|u=0 = yhykR i

h jkwjδ(0)i.

We have thus proved
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Proposition 3. The components of the deviation vector field wi =
∂αi

∂u
|u=0 of

the trajectories

(30)
δyi

dt
=

1
2
F i(x, y),

satisfy, with respect to the Berwald linear connection on T 2M , the Jacobi-type
equation

(31)
D2wi

dt2
=

1
2

DF i

∂u
|u=0 + yhykR i

h jkwj .

The above generalizes the usual Jacobi equation, in the case of mechanical
systems with external forces.

7. Nonlinear connection

In natural coordinates, (31) becomes:

d2wi

dt2
+

(
2N i

j −
1
2

∂F i

∂yj

)
dwj

dt

+
(

d

dt
(N i

j) + N i
kNk

j − yhykR i
h jk + Li

kj

1
2
F k − 1

2
∂F i

∂xj

)
wj = 0.

(32)

Taking into account (23), we have Ri
hjkyh = Ri

jk. Also, Li
kj =

∂N i
k

∂yj
, hence

the above equality can be seen as:

d2wi

dt2
+

(
2N i

j −
1
2

∂F i

∂yj

)
dwj

dt

+
(
C(N i

j) + N i
kNk

j − ykR i
jk +

1
2

∂N i
k

∂yj
F k − 1

2
∂F i

∂xj

)
wj = 0,

where

C = yk ∂

∂xk
+ 2y(2)k ∂

∂yk
.

There holds:

Theorem 4. (1) The quantities

M
(1)

i
j(x, y) =

1
2

(
2N i

j −
1
2

∂F i

∂yj

)
,

M
(2)

i
j(x, y, y(2)) =

1
2

(
C(N i

j) + N i
kNk

j − ykR i
jk

+
1
2

∂N i
k

∂yj
F k − 1

2
∂F i

∂xj

)
(33)

are the dual coefficients of a nonlinear connection on T 2M .
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(2) With respect to this nonlinear connection, the extensions of deviation
vector fields attached to (10) have vanishing v2-components:

1
2

d2wi

dt2
+ M

(1)

i
j

dwj

dt
+ M

(2)

i
jw

j = 0.

Proof. 1): In the equation (31), both the left hand side and the right hand
side are components of d-vector fields; by a direct computation, it follows that,
with respect to local coordinate changes (3) on T 2M , the quantities M

(1)

i
j and

M
(2)

i
j obey the rules of transformation (17) of the dual coefficients of a nonlinear

connection on T 2M .
2): The deviation vector field attached to the variation α̃ in (25) is

W =
∂α̃

∂u
|u=0 ≡

{
∂αi

∂u

∂

∂xi
+

∂

∂u

(
∂αi

∂t

)
∂

∂yi
+

1
2

∂

∂u

(
∂2αi

∂t2

)
∂

∂y(2)i

}
|u=0

= wi ∂

∂xi
+

dwi

dt

∂

∂yi
+

1
2

d2wi

dt2
∂

∂y(2)i
.

In the adapted basis (δ(0)i, δ(1)i, δ(2)i), this yields:

W = wiδ(0)i +
δwi

dt
δ(1)i +

δw(2)i

dt
δ(2)i,

where
δwi

dt
=

dwi

dt
+ M

(1)

i
j(x, y)wj and

δw(2)i

dt
=

1
2

d2wi

dt2
+ M

(1)

i
j(x, y)

dwj

dt
+ M

(2)

i
j(x, y, y(2))wj .

Taking into account (33), the Jacobi equation (32) is re-expressed as: ¤

δw(2)i

dt
= 0.

In presence of the above nonlinear connection, the extension W to T 2M of
any Jacobi field on M, corresponding to trajectories (10) in presence of external
forces, belongs to the N0 ⊕N1 distribution.

8. Deviations of geodesics

Let us examine the particular case when F = 0. Let TM be endowed with

a spray with coefficients Gi = Gi(x, y) and N i
j =

∂Gi

∂yj
, the coefficients of the

associated nonlinear connection on TM .
If F = 0, then we deal with deviations of autoparallel curves (called geodesics)

δyi

dt
= 0.
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We get

M
(1)

i
j = N i

j ,

M
(2)

i
j =

1
2
(C(N i

j) + N i
kNk

j − yjRi
jk);

taking into account that, in our approach, M
(1)

i
j do not depend on y(2), we notice

that, in the case F = 0, our nonlinear connection only differs by the term
−yjRi

jk from Miron’s one (1), [16].

Remark 5. Along an extension curve c̃ : [0, 1] → T 2M, t 7→ (xi(t), yi(t) =

ẋi(t), y(2)i(t) =
1
2
ẍi(t)) there hold the equalities

δyi

dt
=

Dyi

dt
,

δy(2)i

dt
=

D2yi

dt2
,

where
D

dt
denotes the covariant derivative associated to the Berwald connection

on T 2M . For these curves, taking into account the equalities yjykRi
jk = 0

(which can be obtained by direct calculation), it follows that, with the assump-

tions made at the beginning of this section,
δyi

dt
and

δy(2)i

dt
have the same values

as those obtained for the connection (1). Still, along general curves γ on T 2M,
the value of v2(γ̇) does no longer coincide with that one obtained with respect
to (1).

Remark 6. Also, for a vector field w along the projection c of c̃ onto M, we have

δwi

dt
=

Dwi

dt
.

Conclusions:

(1) c is a geodesic if and only if its extension to T 2M is horizontal.
(2) For a vector field w along a geodesic c on M, we have:

(a)
δwi

dt
= 0, if and only if w is parallel along ċ = y.

(b)
δw(2)i

dt
= 0 if and only if w is a Jacobi field along c.

In the case F = 0, we should mention some related results and approaches:
In the geometry of TM : In the case when the base manifold M is endowed

with a linear connection ∇, a linear connection on the tangent bundle TM,
with similar properties to those of (33) is given by the complete lift ∇Cof ∇
(cf. [28] and [10]). Namely, in the two cited monographs, it is shown that, if
a curve σ̄ : [0, 1] → TM, t 7→ (xi(t), wi(t)) is a geodesic with respect to ∇C ,
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then its projection σ : t 7→ (xi(t)) onto M is a geodesic with respect to ∇ and

X(t) = wi(t)
∂

∂xi
is a Jacobi field along σ.

In the geometry of T 2M : In presence of a linear connection ∇ on M , C.
Dodson and M. Radivoiovici, [11] built a covariant derivation law ∇̄ : X (M) ×
Γ(T 2M) → Γ(T 2M) for sections of the second order tangent bundle (regarded
as a vector bundle over M) and used it in order to define a nonlinear connection
in the frame bundle of order 2 L(2)M . In the case when ∇ is torsion-free, the

covariant derivative ∇̄vX, where v =
∂α

∂u
|u=0, and X ≡

(
∂α

∂t
,
D

dt

∂α

∂t

)
(with our

notations in Section 6) would yield our
(

δwi

dt
,
δw(2)i

dt

)
. Still, in the cited paper,

it is not established any link between the defined connection and the Jacobi
equation on M .

The novelty of our approach consists in relating the v2-distribution on T 2M
to deviations of geodesics of the base manifold.

9. External forces in Finsler-locally Minkowskian spaces

Another interesting particular case is that of Finsler-locally Minkowskian
spaces (whose geodesics are straight lines). Let (M, L(y)) be a Finsler-locally
Minkowskian space, [2], [5].

Then, N i
j = 0, Li

jk = 0 (for the Berwald connection), [2], [5]. In presence of
an external force field, the evolution equations of a mechanical system will take
the form

(34)
d2xi

dt2
=

1
2
F i(x, ẋ).

In this case, with the above notations, our nonlinear connection is given by

M
(1)

i
j = −1

4
∂F i

∂yj
,

M
(2)

i
j = −1

4
∂F i

∂xj
.

This is, deviations of the evolution curves (34) can be written simply:

2
δw(2)i

dt
≡ d2wi

dt2
− 1

2
∂F i

∂yj

dwj

dt
− 1

2
∂F i

∂xj
wj = 0.

The result holds valid for any globally defined system of ordinary differential
equations of order 2 on M, of the form (34).
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Chapter 4 by the author and V. Retšnoi; Chapter 5 by the author and Z. Navickas;
Appendix II by the author and T. Mullari.

[28] K. Yano and S. Ishihara. Tangent and cotangent bundles: differential geometry. Marcel
Dekker Inc., New York, 1973. Pure and Applied Mathematics, No. 16.

Transilvania University,
Brasov, Romania
E-mail address: nico.brinzei@rdslink.ro


