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ON THE RHEONOMIC FINSLERIAN MECHANICAL
SYSTEMS

CAMELIA FRIGIOIU

Abstract. In this paper it will be studied the dynamical system of a
rheonomic Finslerian mechanical system, whose evolution curves are given,
on the phase space TM×R, by Lagrange equations. Then one can associate
to the considered mechanical system a vector field S on TM ×R, which
is called the canonical semispray. All geometric objects of the rheonomic
Finslerian mechanical system one can be derived from S. So we have the
fundamental notion as the nonlinear connection N , the metrical N -linear
connection, etc.

1. The geometry of phases space (TM ×R, π, M)

Let be M a smooth C∞ manifold of finite dimension n, called the space of con-
figurations and (TM, π,M) be its tangent bundle.The 2n-dimensional manifold
TM is called the phases space of M .

We denote by (xi), i = 1, 2, . . . , n, the local coordinates on M and by (xi, yi)
the canonical local coordinates on TM .

We consider the manifold TM×R and we shall use the differentiable structure
on TM ×R as product of the manifold TM fibered over M with R.

The manifold E = TM × R is a 2n + 1−dimensional, real manifold. In a
domain of a local chart U × (a, b), the point u = (x, y, t) ∈ E have the local
coordinates (xi, yi, t).

A change of local coordinates on E has the following form:

(1.1) x̃i = x̃i(x1, x2, . . . , xn); ỹi =
∂x̃i

∂xj
yj ; t̃ = φ(t)

with rank
(

∂x̃i

∂xj

)
= n and φ′ := dφ

dt 6= 0.
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Of course, we may take on R only one chart, that is t̃ = t or we may consider
the affine change of charts on R, that is t̃ = at + b, a 6= 0, a, b ∈ R.

The natural basis of tangent space TuE at the point u ∈ U × (a, b) is given
by

(1.2)
(

∂

∂xi
,

∂

∂yi
,

∂

∂t

)
.

The transformation of coordinates (1.1) determines the transformations of the
natural basis as follows

∂

∂xi
=

∂x̃j

∂xi

∂

∂x̃j
+

∂ỹj

∂xi

∂

∂ỹj

∂

∂yi
=

∂ỹj

∂yi

∂

∂ỹj
;

∂

∂t
= φ′

∂

∂t̃

(1.3)

where
∂ỹj

∂yi
=

∂x̃j

∂xi
;

∂ỹj

∂xi
=

∂2x̃j

∂xi∂xh
yh.

In [4], it is introduced on the manifold E, a vertical distribution V , generated
by n + 1 local vector fields

(
∂

∂y1 , ∂
∂y2 , . . . , ∂

∂yn , ∂
∂t

)

(1.4) V : u ∈ E → Vu ⊂ TuE.

It follows:
Vu = Vn,u⊕V0,n ∀u ∈ E,

where the linear space V0,n is generated by the vector field ∂
∂t |u and it is an 1-

dimensional linear subspace of the tangent space TuE. Also, the n-dimensional
linear space Vn,u generated by the fields

(
∂

∂y1 , ∂
∂y2 , . . . , ∂

∂yn

)
|u is a linear sub-

space of TuE.
On the manifold E there exists a tangent structure, [1],[4],[10],

J : χ(E) → χ(E),

given by

(1.5) J

(
∂

∂xi

)
=

∂

∂yi
;J

(
∂

∂yi

)
= 0; J

(
∂

∂t

)
= 0; i = 1, 2, . . . , n.

J is an integrable structure. [1],[4],[10].
On TM ×R there exists a globally defined vector field

C = yi ∂

∂yi
.

It is the Liouville vector field.
A semispray on E is a vector field S ∈ χ(E) which has the property

(1.6) JS = C.
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Proposition 1 ([8]). a) Locally a semispray S has the form

(1.7) S = yi ∂

∂xi
− 2Gi(x, y, t)

∂

∂yi
−G0(x, y, t)

∂

∂t

where Gi(x, y, t) and G0(x, y, t) are the coefficients of S.
b) The functions {Gi(x, y, t) , G0(x, y, t)} transform under a change of coor-

dinates (1.1), as follows:

(1.8) 2G̃i = 2
∂x̃i

∂yj
Gj − ∂ỹi

∂xj
yj ; G̃0 = φ′G0.

The integrals curves of S are the solutions of the following system of differ-
ential equations

dxi

dτ
= yi(τ);

dyi

dτ
+ 2Gi(x(τ), y(τ), t(τ)) = 0

dt

dτ
+ G0(x(τ), y(τ), t(τ)) = 0.

(1.9)

We shall say that S is a dynamical system on the phases manifold TM ×R and
the equations (1.9) are the evolution equations of dynamical system S.

When G0 ≡ 1, we may take t = τ and the system (1.9) reduces to the second
order differential equation (SODE):

d2xi

dt2
+ 2Gi(x(t), y(t), t) = 0; yi =

dxi

dt
.

In the following, we put t = y0 and we introduce the Greek indices α, β, . . .
ranging on the set {0, 1, 2, . . . , n}.

A non-linear connection in E is a smooth distribution:

(1.10) N : u ∈ E → Nu ⊂ Tu, E

which is supplementary to the vertical distribution V:

(1.11) TuE = Nu ⊕ Vu, ∀u = (x, y, t) ∈ E.

The local basis adapted to the descomposition (1.11), is

(1.12)
(

δ

δxi
,

∂

∂yα

)

where

(1.13)
δ

δxi
=

∂

∂xi
−N j

i (x, y, t)
∂

∂yj
−N0

i (x, y, t)
∂

∂t
.

(N0
i (x, y, t), N j

i (x, y, t)) are the local coefficients of the non-linear connection
N on E.

The following transformation rule, under (1.1), hold:

(1.14) Ñ j
m

∂x̃m

∂xi
=

∂x̃j

∂xm
Nm

i − ∂ỹj

∂xi
;

∂x̃j

∂xi
Ñ0

j = φ′N0
i



68 CAMELIA FRIGIOIU

Conversely, a set of local functions (N0
i (x, y, t), N j

i (x, y, t)) satisfying (1.14)
determines δ

δxi , hence it uniquely determines a non-linear connection N .
The dual basis of (1.12) is (δxi, δyi, δt) with

(1.15) δxi = dxi; δyi = dyi + N i
jdxj ; δt = dt + N0

i dxi.

2. Rheonomic Finsler Spaces. Preliminaries

Definition 1. A rheonomic Finsler space is a pair RFn = (M, F (x, y, t)), for
which F : TM ×R → R satisfy the following axioms:

(1) F is a positive scalar function on E = TM ×R;
(2) F is a positive 1−homogenous with respect to the variables yi;
(3) F is differentiable on Ẽ = E \ {0} and continuous in the points (x,0,t);
(4) The Hessian of F , with the entries:

(2.1) gij(x, y, t) =
1
2

∂2F 2

∂yi∂yj

is positively defined on ˜TM ×R.
F is called the fundamental function and gij(x, y, t) is the fundamental tensor
of space RFn.

Remark 1. (1) F is a scalar function with respect to (1.1).
(2) gij(x, y, t) is a tensor field with respect to (1.1). It is covariant of order

2, symmetric and nesingular.
(3) The pair (M, L = F 2(x, y, t)) is a rheonomic Lagrange space.

The geometrical theory of rheonomic Finsler space Fn can be found in the
books [8],[10].

Using Remark 1 we can use the theory of rheonomic Lagrange spaces [1], [5],
[8], for developing the geometry of rheonomic Finsler spaces.

The variational problem for the rheonomic Lagrangian L(x, y, t) = F 2(x, y, t)
lead us to the Euler-Lagrange equations:

(2.2)
d2xi

dt2
+ γi

jk(x, y, t)
dxj

dt

dxk

dt
+ gih ∂ghj

∂t
yj = 0; yi =

dxi

dt

where γi
jk are the Christoffel symbols of the fundamental tensor gij(x, y, t).

Theorem 2. The Euler-Lagrange equations are equivalent with the Lorentz
equations:

(2.3)
d2xi

dt2
+ γi

jk(x, y, t)
dxj

dt

dxk

dt
= F i

j (x,
dx

dt
, t)

dxj

dt
where

F i
j (x, y, t) = −gih ∂ghj

∂t
is the electromagnetic tensor field determined by the fundamental tensor field
gij.
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The system of equations (2.3) locally determine a dynamical system on the
phase space TM ×R. We consider the following functions on ˜TM ×R

2Gi(x, y, t) = γi
jk(x, y, t)yjyk

N i
0(x, y, t) = gih ∂ghj

∂t
yj

Using the theory of the rheonomic Lagrange spaces it is obtain the canonical
spray S of RFn, as follows

(2.4) S = yi ∂

∂xi
− (N i

0(x, y, t) + N i
k(x, y, t)yk)

∂

∂yi
+

∂

∂t

with

(2.5) N i
j(x, y, t) =

1
2

∂

∂yj
(γi

rs(x, y, t)yrys); N0
j (x, y, t) =

1
2

∂gjk

∂t
yk.

Equations of evolution (2.3) are the equations of the integral curves of the semis-
pray S.

The semispray S determines the Cartan non-linear connection N , [8], [10],
with the coefficients (N i

j(x, y, t), N0
j (x, y, t)).

Then N is a differentiable distribution on ˜TM × R, supplementary to the
vertical distribution V , i.e.:

(2.6) Tu
˜TM ×R = N(u)⊕ V (u),∀u ∈ ˜TM ×R.

Let ( δ
δxi ,

∂
∂yi ,

∂
∂t )u be the adapted basis to decomposition (2.6), with

(2.7)
δ

δxi
=

∂

∂xi
−N j

i (x, y, t)
∂

∂yj
−N0

i (x, y, t)
∂

∂t
.

The canonical metrical (or Cartan) N− connection CΓ(N) has the coefficients
(F i

jk(x, y, t), Ci
jα(x, y, t)) given by the generalized Christoffel symbols:

F i
jk =

1
2
gis

(
δgsk

δxj
+

δgjs

δxk
− δgjk

δxs

)
,(2.8)

Ci
jk =

1
2
g

is

(
∂gsk

∂yj
+

∂gjs

∂yk
− ∂gjk

∂ys

)
,(2.9)

Ci
j0 =

1
2
g

is

(
∂gs0

∂yj
+

∂gsj

∂t
− ∂gj0

∂ys

)
.(2.10)

3. Rheonomic Finslerian Mechanical Systems

The dynamical system of a nonconservative Lagrangian mechanical system
can not be correctly defined without geometrical frameworks of the phases man-
ifold TM . The Lagrangian mechanical systems, their equations and the asso-
ciated dynamical systems were studied in [1],[2],[4],[5],[7],[3],[10], and the Fins-
lerian mechanical systems in [6],[9]. The geometric study of the sclerhonomic
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Finslerian mechanical systems given by equations with the external forces a
priori given was studied in [4], [9].

Definition 2. A rheonomic Finslerian mechanical system is a triple

Σ = (M, F 2(x, y, t), σ(x, y, t))

where F (x, y, t) is the fundamental function of a rheonomic Finsler space RFn =
(M, F (x, y, t)) and σ(x, y, t) = σi(x, y, t) ∂

∂yi is a vertical vector field called the
external force of Σ.

A rheonomic Lagrange space RLn = (M,L(x, y, t)) reduces to a Finsler space
RFn = (M,F (x, y, t)) if the Lagrangian function is second order homogeneous
with respect to the velocity coordinates.

A first consequence of the homogeneity condition is the energy of a Finsler
space coincides with the square of the fundamental function of the space:

(3.1) EF 2(x, y, t) = yi ∂F 2

∂yi
− F 2 = 2F 2 − F 2 = F 2 = gij(x, y, t)yiyj ,

and it is verified the next equality

(3.2)
dF 2

dt
= −dxi

dt
Ei(F 2)− ∂F 2

∂t
,

where

Ei(F 2) =
∂F 2

∂xi
− d

dt

(
∂F 2

∂yi

)
.

Taking into account the variational problem of the integral action of L(x, y, t)
= F 2(x, y, t) we introduce the evolution equations of Σ by:

The evolutions equations of the rheonomic Finslerian mechanical system Σ
are the following Lagrange equations:

(3.3)
d

dt

(
∂L

∂yi

)
− ∂L

∂xi
= σi(x, y, t); yi =

dxi

dt

where σi(x, y, t) = gij(x, y, t)σj(x, y, t).
One can write an equivalent form of Lagrange equations (3.3) as a system of

second order differential equations, given by

(3.4)
d2xi

dt2
+ 2Γi(x, y, t) =

1
2
σi(x, y, t),

where
2Γi = 2Gi(x, y, t) + N i

0(x, y, t),

2Gi(x, y, t) = γi
jk(x, y, t)yjyk and N i

0(x, y, t) = 1
2gih ∂2L

∂t∂yh .
The equations (3.4) are called equations of evolution of the mechanical system

Σ. The solutions of these equations are called evolution curves of the mechanical
system Σ.
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With respect to (1.1), the functions Γ̆i :

(3.5) 2Γ̆i(x, y, t) = (2Gi(x, y, t)− 1
2
σi(x, y, t)) + N i

0(x, y, t)

transform as

2
˘̃i
Γ(x, y, t) = 2Γ̆j(x, y, t)

∂x̃i

∂xj
− ∂ỹi

∂xj
yj .

We can prove:

Theorem 3. a) S̆ given by:

(3.6) S̆ = yi ∂

∂xi
− 2Γ̆i(x, y, t)

∂

∂yi
+

∂

∂t

is a semispray on ˜TM ×R.
b) S̆ is a dynamical system on ˜TM × R depending only on the rheonomic

Finslerian mechanical system Σ. We call this semispray the evolution semispray
of the mechanical system Σ.

c) The integral curves of S̆ are the evolution curves of Σ given by (3.3).

We can say:
The geometry of the rheonomic Finslerian mechanical system Σ is the geom-

etry of the pair (RFn, S̆), where RFn is a rheonomic Finsler space and S̆ is the
evolution semispray.

The variation of the kinetic energy EF 2 along the evolution curves of the
rheonomic mechanical system Σ, is given by:

dEF 2

dt
= yiσi(x, y, t)− ∂F 2

∂t
.

The kinetic energy of the Finsler space RFn is not conserved along the evo-
lution curves of the mechanical system.

Now we can consider some geometric objects determined by the evolution
semispray S̆ and we will refer to these as the geometric objects of the mechanical
system Σ.

a) The non-linear connection N̆ of mechanical system Σ has the coefficients
(N̆ i

j , N̆
0
j ):

(3.7) N̆ i
j = N i

j −
1
4

∂σi

∂yj
=

∂Ği

∂yj
; N̆0

j =
1
2

∂2L

∂t∂yj
,

with Ği = Gi(x, y, t)− 1
2σi(x, y, t).

N̆ is the canonical non-linear connection of mechanical system Σ.
The adapted basis to the distributions N̆ and V = Vn ⊕ V0 is given by

(3.8) { δ̆i

∂xi
,

∂

∂yi
,

∂

∂t
}
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where

(3.9)
δ̆

δxi
=

∂

∂xi
− N̆ i

j(x, y, t)
∂

∂yj
− N̆0

j (x, y, t)
∂

∂t
+

1
4

∂σj

∂yi

∂

∂yj
.

The Lie brackets of the local vector fields from this basis are as follows:[
δ̆

δxj
,

δ̆

δxh

]
= R̆i

jh

∂

∂yi
+ R̆0

jh

∂

∂t
;

(3.10)

[
δ̆

δxj
,

∂

∂t

]
=

∂N̆ i
j

∂t

∂

∂yi
+

∂N̆0
j

∂t

∂

∂t
;

[
δ̆

δxj
,

∂

∂yh

]
=

∂N̆ i
j

∂yh

∂

∂yi
+

∂N̆0
j

∂yh

∂

∂t
;

[
δ̆

δyj
,

∂

∂yh

]
=

[
∂

∂yj
,

∂

∂t

]
=

[
∂

∂t
,

∂

∂t

]
= 0,

where

(3.11) R̆i
jh =

δ̆N̆ i
j

δxh
− δ̆N̆ i

h

δxj
; R̆0

jh =
δ̆N̆0

j

δxh
− δ̆N̆0

h

δxj
.

The dual basis {dxi, δ̆yi, δ̆t} is given by

(3.12) δ̆yi = dyi + N̆ i
jdxj − 1

4
∂σi

∂yj
dxj ; δ̆t = dt + N̆0

i dxi

and we have

d(dxi) = 0;

d(δ̆yi) =
1
2
R̆i

jhdxh ∧ dxj +
∂N̆ i

j

∂yh
δ̆yh ∧ dxj +

∂N̆ i
j

∂t
δ̆t ∧ dxj ;(3.13)

d(δ̆t) =
1
2
R̆0

jhdxh ∧ dxj +
∂N̆0

j

∂yh
δ̆yh ∧ dxj +

∂N̆0
j

∂t
δ̆t ∧ dxj .

We can prove the following theorem

Theorem 4. a)The canonical non-linear connection N̆ is integrable if and only
if R̆i

jh = 0 and R̆0
jh = 0.

b)The canonical metrical N̆−connection of the rheonomic mechanical system
Σ, CΓ(N̆), has the coefficients given by the generalized Christoffel symbols:

L̆i
jk =

1
2
gih

(
δ̆ghk

δxj
+

δ̆gjh

δxk
− δ̆gjk

δxh

)

(3.14) C̆i
jk =

1
2
gih

(
∂ghk

∂yj
+

∂gjh

∂yk
− ∂gjk

∂yh

)

C̆i
j0 =

1
2
gih ∂gjh

∂t
.
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c)The h− and v−covariant derivation with respect CΓ(N̆) of Liouville vector
field C = yi ∂

∂yi lead us to introduce followings h− and v−deflection tensors of

CΓ(N̆):

(3.15) D̆i
j = yi

|j ; d̆i
α = yi|α.

We may also introduce the h− and v−electromagnetic tensors

(3.16) F̆ij =
1
2

(
D̆ij − D̆ji

)
; f̆ij =

1
2

(
d̆ij − d̆ji

)

where D̆ij = girD̆
r
j , d̆iα = gird̆

r
α.

Let us consider the helicoidal tensor of Σ:

(3.17) σij =
1
2

(
∂σi

∂yj
− ∂σj

∂yi

)
.

We obtain f̆ij = 0 and the following theorem

Theorem 5. Between the h−electromagnetic tensor of the rheonomic Finslerian
mechanical system F̆ij, the h−electromagnetic tensor of the rheonomic Finsler
space Fij and the helicoidal tensor σij of Σ the following relation holds:

(3.18) F̆ij = Fij +
1
4
σij .

The proof is not difficult.
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