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ON THE GEOMETRY OF TWO-STEP NILPOTENT GROUPS
WITH LEFT INVARIANT FINSLER METRICS

ANNAMÁRIA TÓTH AND ZOLTÁN KOVÁCS

Abstract. We begin a systematic study of these spaces following Eber-
lein’s comprehensive study in the Riemannian case. In particular, for some
special groups (including Heisenberg groups) we give an explicit form for
the Chern-Rund connection, study the curvature and the flag curvature,
and derive the equations of relative geodesics.

1. Introduction

In this paper we study the differential geometry of simply connected, two-step,
nilpotent Lie groups with left-invariant Finsler metric. There are some recent
papers on invariant Finsler metrics on homogeneous manifolds (see e.g. [2, 4]),
however the literature does not seem to contain much discussion of geometry of
nilpotent Lie groups with a left invariant metric. The straight motivation of our
present study is the first three sections of P. Eberlein’s comprehensive work [3].
We generalize Eberlein’s results (on curvature, sectional curvature, Ricci tensor
and geodesics) to the Finsler setting, and this enumeration gives the outline of
the present paper.

In possible connections determined by the Finslerian structure we consistently
use the Chern-Rund connection. Following the usual approach, the Chern-Rund
connection is a linear connection in the (splitted) pull-back bundle π∗(τN ) =
(TN ×π TN, pr1, TN), i.e.

D : X(TN)× Sec π∗(τN ) → Sec π∗(τN ).

However, starting from this connection and a nowhere vanishing vector field
W , it is possible to define a linear connection on the base manifold N by the
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156 A. TÓTH AND Z. KOVÁCS

following way (see e.g. [6]):

∇W : X(N)× X(N) → X(N),

(X, Y ) 7→ ∇XY = pr2 ◦DXh pr]
2(Y ) ◦W,

where ] is the usual raising of a vector field on the base manifold to the pull-back
bundle and the horizontal lift of a vector field is determined by the Finslerian
structure (see Section 3.) This linear connection on the base manifold is called
the Chern-Rund connection, too.

The discussion in the present work is restricted in the sense that the reference
vector field is a (fixed) left-invariant vector field determined by a nonzero element
of the center of the Lie algebra, moreover, our approach employs an additional
condition, the so called compatibility condition. This compatibility condition
formulates a relationship between the algebraic and geometric structure (see
Definition 4). For example, this condition is true for the Heisenberg algebra ([3,
Example 1]).

Generally, we assume that the two-step nilpotent Lie algebra N is equipped
with a positive definite scalar product 〈, 〉. Let Z denote the center of N , and let
V denote the orthogonal complement of the center with respect to 〈, 〉. For each
element Z ∈ Z we define a skew-symmetric linear transformation j(Z) : V → V
by

(1) j(Z)X = (adX)∗Z, X ∈ V.

Note, for the Heisenberg algebra j(Z)2 = −‖Z‖2 id. The transformations {j(Z) |
Z ∈ Z} capture all the geometry of N equipped with the left invariant Riemann-
ian metric determined by 〈, 〉 ([3, 5]). The Finslerian structure on the manifold
N determines a Riemannian structure with respect to the reference vector field
W , thus in our approach the above skew-symmetric transformation depends on
the reference vector field and it is denoted by jW .

2. Preliminaries

This section is a quick review of notions of Finsler spaces with left-invariant
metrics. For basic notions of Finsler geometry we refer to the monograph [1].

Left invariant Finsler metrics.

Definition 1. Let V be a finite dimensional vector space with the canonical
differentiable structure. The function f : V → [0,∞) is called a Minkowski-
functional if it is smooth on V \ {0}, positively 1-homogeneous and for all W ∈
V \ {0} the symmetric bilinear form

〈, 〉W : V × V → R,

(X, Y ) 7→ 〈X,Y 〉W =
1
2

∂2f2(W + rX + sY )
∂r∂s

∣∣∣∣
r=s=0

(2)
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is positive definite.

Definition 2. Let N be a Lie algebra and N is the simply connected Lie group
with Lie algebra N . The Finslerian fundamental function F : TN → [0,∞) is
called left-invariant when

(3) ∀a ∈ N, ∀X ∈ TeN : F ((dLa)eX) = F (X),

where
La : N → N, x 7→ La(x) = a · x

is the left translation and e is the unit element of the group.

By left translations, for every Minkowski functional on N we can define a left
invariant Finsler metric on N :

F ((dLa)(Xe)) = f(Xe), (Xe ∈ TeN, a ∈ N).

Our starting point in this paper is a two-step nilpotent Lie algebra N with a
Minkowski functional f : N → [0,∞) which generates a Finsler space with left
invariant Finsler metric (N, F ) as written above.

Osculating objects. In the sequel we fix a nowhere vanishing vector field, the
so called reference vector field. Generally such a vector field does not exist
globally and we arrange that all objects live on an open subset U ⊂ N , where
the reference vector field exists. However, in our notations we do not distinguish
between U and N .

Definition 3. Let W be a nowhere vanishing vector field on N . We refer to W
as reference vector field. The osculating Riemann metric 〈, 〉W is determined by
the Finslerian fundamental function F and by the reference vector field W in
the following way:

(4) 〈Xp, Yp〉W =
1
2

∂2F 2(Wp + sXp + tYp)
∂s∂t

∣∣∣∣
s,t=0

, p ∈ N, X, Y ∈ X(N).

Moreover for X, Y, Z ∈ X(N),

C[(Xp, Yp, Zp)W =
1
4

∂3

∂r∂s∂t

∣∣∣∣
r,s,t=0

F 2 (Wp + rXp + sYp + tZp)

is the (osculating) Cartan tensor, its (1, 2)-type version is defined by

CW : X(N )× X(N ) → X(N ), 〈C(X, Y )W , Z〉W = C[(X,Y, Z)W .

For the Cartan tensor we have

(5) C[(W,X, Y )W = C[(X,W, Y )W = C[(X,Y, W )W = 0.

It is easy to see that if F is a left-invariant Finsler fundamental function,
moreover the reference vector field is left invariant also, then the osculating
Riemann metric and the Cartan tensor are left invariant objects. Thus we may
regard the osculating Riemannian metric as a positive definite scalar product,
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the Cartan tensor as a trilinear form (its (1, 2) version as a bilinear vector-valued
form) on N .

The osculating scalar product 〈, 〉W determines the orthogonal complement of
the center which is denoted simply by V (without any indication of the reference
vector field) and the skew-symmetric linear transformation

(6) jW : V → V, jW (Z)X = (ad X)∗Z,

where ∗ refers to 〈, 〉W , see (1).

Definition 4. The left invariant Finsler metric is compatible with N , if ∀X, Y ∈
N , ∀Z ∈ Z:

(7) CW (X,Y )Z = 0, CW (Z, Y )V = 0,

where CW (, ) = CW (, )Z +CW (, )V is the orthogonal decomposition of the Cartan
tensor.

We note that if W ∈ Z then by (5) the condition (7) is true for a Lie algebra
with one-dimensional center.

Lastly, we introduce the following notation: DW : V × V → V,

DW (X, Y ) = CW (jW (W )X, Y ) + CW (jW (W )Y,X)

+ jW (W )CW (X,Y )V .
(8)

3. The Chern-Rund connection

Definition 5 ([8]). The Chern-Rund connection

∇W : X(N)× X(N) → X(N)

(with respect to the reference vector field W ) is defined by

2
〈∇W

X Y , Z
〉

W
= X 〈Y, Z〉W + Y 〈Z, X〉W − Z 〈X, Y 〉W +

+ 〈[X, Y ], Z〉W − 〈[Y, Z], X〉W + 〈[Z, X], Y 〉W −
− 2C[(∇W

X W,Y, Z)W − 2C[(∇W
Y W,Z,X)W +

+ 2C[(∇W
Z W,X, Y )W .

(9)

The Chern-Rund connection is torsion-free, that is,

(10) ∇W
X Y −∇W

Y X − [X, Y ] = 0,

and almost metric, that is,

(11) X 〈Y,Z〉W =
〈∇W

X Y , Z
〉

W
+

〈
Y,∇W

X Z
〉

W
+ 2C[(∇W

X W,Y, Z)W .
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For left invariant vector fields X,Y, Z, W , the first three terms of the right
hand side of (9) vanish:

2
〈∇W

X Y , Z
〉

W
= 〈[X, Y ], Z〉W − 〈[Y, Z], X〉W + 〈[Z, X], Y 〉W −
− 2C[(∇W

X W,Y, Z)W − 2C[(∇W
Y W,Z, X)W +

+ 2C[(∇W
Z W,X, Y )W .

(12)

Proposition 6. If the reference vector field W is from the center of the two-step
nilpotent Lie algebra N , then ∀X, Y, Z ∈ N we have

2∇W
X Y = [X, Y ]− (ad Y )∗X − (ad X)∗Y

+ CW ((ad X)∗W,Y ) + CW ((ad Y )∗W,X)

+ (ad CW (X,Y ))∗W,

(13)

Proof. At first, we substitute X = Y = W ∈ Z into (12). Considering (5) we
get ∇W

W W = 0.
Now, for any Y = W ∈ Z and Z ∈ N ,

(14) 2
〈∇W

X W, Z
〉

W
= 〈[Z, X], W 〉W = −〈Z, (ad X)∗W 〉W ,

i.e. ∇W
X W = − 1

2 (ad X)∗W . Thus the right hand side of (12) can be expressed
without any explicit reference to the Chern-Rund connection:

2
〈∇W

X Y , Z
〉

W
= 〈[X, Y ], Z〉W − 〈Z, (ad Y )∗X〉W − 〈Z, (ad X)∗Y 〉W
− 〈CW ((ad X)∗W,Y ), Z〉W + 〈CW ((ad Y )∗W,X), Z〉W
− 〈CW (X, Y ), (adZ)∗W 〉W .

Here the last term:
−〈CW (X,Y ), (adZ)∗W 〉W = −〈[Z, CW (X, Y )],W 〉W

= 〈Z, (ad CW (X,Y ))∗W 〉W ,

which gives the result. ¤

As a consequence, we have the following theorem and corollaries.

Theorem 7. If the reference vector field W is from the center of the two-step
nilpotent Lie algebra N and X, Y ∈ N then ∇W

X Y ∈ N .

Proposition 8.

(a) ∇W
X Y = 1

2 [X, Y ] + 1
2DW (X, Y ) for all X, Y ∈ V;

(b) ∇W
X Z = − 1

2jW (Z)X + 1
2CW (jW (W )X,Z) + 1

2jW (W )CW (X, Z)V , and
∇W

X Z = ∇W
Z X for all X ∈ V, Z ∈ Z;

(c) ∇W
Z Z∗ = 1

2jW (W )CW (Z,Z∗)V for all Z, Z∗ ∈ Z.
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Proof. If X,Y ∈ V and Z ∈ N then

〈(adY )∗X, Z〉W = 〈X, (ad Y )Z〉W = 〈X, [Y, Z]〉W = 0,

which implies (ad Y )∗X = 0. Moreover, if X ∈ V then (ad W )∗X = jW (W )X.
This observation with (8) gives (a).

By the identity (adX)∗Z = 0 (X ∈ Z) we see that the second and the fifth
terms of the right hand side of (13) vanish. The remaining terms give statement
(b).

The proof of (c) follows from the same fact as the proof of (b). ¤

For the compatibility case, one routinely obtains from the above proposition
the following corollary.

Corollary 9. If the left invariant Finsler metric is compatible with the Lie
algebra, then for the Chern-Rund connection we have

(A) ∇W
X Y = 1

2 [X, Y ] + 1
2DW (X, Y ) for all X, Y ∈ V,

(B) ∇W
X Z = ∇W

Z X = − 1
2jW (Z)X for all X ∈ V, Z ∈ Z,

(C) ∇W
Z Z∗ = 0 for all Z,Z∗ ∈ Z.

4. Curvature

Recall that if X, Y, Z are vector fields on N then the curvature tensor is given
by

R(X, Y )Z = ∇W
X ∇W

Y Z −∇W
Y ∇W

X Z −∇W
[X,Y ]Z.

If X, Y, Z are left invariant vector fields, then R(X, Y )Z is also left invariant,
and we may regard R as a trilinear map N ×N ×N → N .

Proposition 10. If the left invariant Finsler metric is compatible with the Lie
algebra, then for the curvature of the Chern-Rund connection we have

(a)
R(Z1, Z2)Z3 = 0

for all Z1, Z2, Z3 ∈ Z.

(b)

R(X,Z1)Z2 = −1
4
jW (Z1)(jW (Z2)X),

R(Z1, Z2)X =
1
4
jW (Z2)(jW (Z1)(X)− 1

4
jW (Z2)(jW (Z1)X)

for all X ∈ V, all Z1, Z2 ∈ Z.



NILPOTENT GROUPS WITH LEFT INVARIANT FINSLER METRICS 161

(c)

R(X, Y )Z = −1
4
[X, jW (Z)Y ] +

1
4
[Y, jW (Z)X]−

− 1
4
DW (X, jW (Z)Y ) +

1
4
DW (Y, j(Z)X),

R(X, Z)Y = −1
4
[X, jW (Z)Y ]− 1

4
DW (X, jW (Z)Y )

+
1
4
jW (Z)(DW (X, Y ))

for all X, Y ∈ V, all Z ∈ Z.

(d)

R(X, Y )X∗ = −1
4
jW ([Y,X∗])X +

1
4
jW ([X, X∗])Y +

1
2
jW ([X, Y ])X∗+

+
1
4
[X,DW (Y, X∗)] +

1
4
DW (X,DW (Y, X∗))−

− 1
4
[Y,DW (X, X∗)]− 1

4
DW (Y,DW (X, X∗))

for all X, Y, X∗ ∈ V.

Proof. Assertion (a) follows directly from part (C) of Corollary 9.
By properties (C) and (B) of Corollary 9 it follows that

R(X, Z1)Z2 = −∇W
Z1
∇W

X Z2 =
1
2
∇W

Z1
(jW (Z2)X)

= −1
4
jW (Z1) (jW (Z2)X)

and
R(Z1, Z2)X = ∇W

Z1
∇W

Z2
X −∇W

Z2
∇W

Z1
X

= −1
2
∇W

Z1
(jW (Z2)X) +

1
2
∇W

Z2
(jW (Z1)X)

=
1
4
jW (Z1) (jW (Z2)X)− 1

4
jW (Z2) (jW (Z1)X)

which gives part (b) of the proposition.
Assertion (c) follows routinely from (C), (B) and (A):

R(X,Y )Z = ∇W
X ∇W

Y Z −∇W
Y ∇W

X Z

= −1
2
∇W

X (jW (Z)Y ) +
1
2
∇W

Y (jW (Z)X)

= −1
4
[X, jW (Z)Y ]− 1

4
DW (X, jW (Z)Y )

+
1
4
[Y, jW (Z)X] +

1
4
DW (Y, jW (Z)X).
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Similarly,

R(X,Z)Y = ∇W
X ∇W

Z Y −∇W
Z ∇W

X Y

= −1
2
∇W

X (jW (Z)Y )− 1
2
∇W

Z ([X,Y ] +DW (X, Y ))

= −1
2
∇W

X (jW (Z)Y )− 1
2
∇W

Z [X, Y ]︸ ︷︷ ︸
=0

−1
2
∇W

Z DW (X,Y )

=
1
4
(− [X, jW (Z)Y ]−DW (X, jW (Z)Y )

+ jW (Z)DW (X, Y )
)
.

Finally,

R(X,Y )X∗ = ∇W
X ∇W

Y X∗ −∇W
Y ∇W

X X∗ −∇W
[X,Y ]X

∗

=
1
2
∇W

X ([Y, X∗] +DW (Y, X∗))

− 1
2
∇W

Y ([X,X∗] +DW (X, X∗)) +
1
2
jW ([X, Y ])X∗,

and applying Corollary 9 once more, we get statement (d). ¤

5. Ricci tensor

For X,Y ∈ N the Ricci tensor of (N,F ) is given by

Ric(X, Y ) = trace{ξ 7→ R(ξ, X)Y | ξ ∈ N}.
Moreover, let

d1(X,Z) = trace{ξ 7→ DW (X, jW (Z)ξ) | ξ ∈ V}
d2(X,Z) = trace{ξ 7→ DW (ξ, jW (Z)X) | ξ ∈ V}, X ∈ V, Z ∈ Z.

Theorem 11. Let the left invariant Finsler metric be compatible with N .

(a)
4Ric(X,Z) = d2(X, Z)− d1(X, Z)

for all X ∈ V, Z ∈ Z. In particular,

Ric(X, Z) = 0 for all X ∈ V, Z ∈ E = {Z ∈ Z | jW (Z) = 0}.
(b)

Ric(Z,Z∗) = −1
4

trace {jW (Z) ◦ jW (Z∗)}
for all Z, Z∗ ∈ Z.

Remark. Note, in the Riemannian case Ric(X, Z) = 0 for all X ∈ V, Z ∈ Z.
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Proof. (a) Let (V1, . . . , Vn) and (Z1, . . . , Zm) be orthonormal bases of V and Z
respectively. By definition,

Ric(X, Z) =
n∑

i=1

〈R(Vi, X)Z, Vi〉W +
m∑

α=1

〈R(Zα, X)Z, Zα〉W

R(Zα, X)Z ∈ V (see part (b) of Proposition 10) thus the second term is zero.
Concerning the first term, we apply part (c) of Proposition 10:

= −
n∑

i=1

1
4
〈DW (Vi, jW (Z)X), Vi〉W

+
n∑

i=1

1
4
〈DW (X, jW (Z)Vi), Vi〉W .

(b) In a similar way, applying parts (a) and (b) of Proposition 10 we get

Ric(Z,Z∗) =
n∑

i=1

〈R(Vi, Z)Z∗), Vi〉W +
m∑

α=1

〈R(Zα, Z)Z∗︸ ︷︷ ︸
0

, Zα〉W

= −1
4
〈jW (Z)(jW (Z∗))Vi, Vi〉W

= −1
4

trace {jW (Z) ◦ jW (Z∗)} .

¤
Corollary 12. For the Heisenberg algebra

(15) Ric(Z, Z) =
n

4
‖Z‖2W , Z ∈ Z

where n = dimV.

Proof. By (b), if Z = Z∗ then

Ric(Z, Z) = −1
4

trace{jW (Z)2}.
For the Heisenberg algebra jW (Z)2 = −‖Z‖2W id on V which gives the statement.

¤

6. Flag curvature

The flag curvature in Finsler geometry is a natural extension of the sectional
curvature in Riemannian geometry. In general, the flag curvature K(Π, V ) de-
pends not only on the 2-plane Π, but also the pole vector V ∈ Π.

Definition 13. Let Π ⊂ TxN , Π = span(Y, V ) where (Y, V ) is an orthonormal
pair with respect to 〈, 〉V . The flag curvature of (Π, V ) is defined by the formula

K(Π, V ) = 〈R(Y, V )V , Y 〉V .
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In our approach the pole vector coincides with the reference vector W , but
contrary to the previous sections we do not suppose that W ∈ Z, we suppose
only the condition that the reference vector is a geodesic vector, i.e. ∇W

W W = 0.

Remark. A W ∈ N non-zero vector is a geodesic vector if and only if

(16) ∀Z ∈ N : 〈[Z, W ],W 〉W = 0,

in particular, a non-zero vector of the center is automatically a geodesic vector.
Indeed, from (12) we have

2
〈∇W

W W,Z
〉

W
= −〈[W,Z], W 〉W + 〈[Z, W ],W 〉W = 2 〈[Z, W ],W 〉W .

Theorem 14. Let N be a two-step nilpotent Lie algebra and N is the sim-
ply connected two-step nilpotent Lie group with Lie algebra N . Let W be a
unit-length geodesic vector of the Finsler manifold N with left invariant Finsler
metric.

a) If Z ∈ Z, Π = span(Z,W ) and (Z,W ) is an orthonormal pair with
respect to 〈, 〉W then

K(Π,W ) =
1
4
‖(adW )∗Z‖2W .

In particular
K(Π, W ) = 0, if W ∈ Z.

b) If V ∈ V, Π = span(V, W ) and (V, W ) is an orthonormal pair with
respect to 〈, 〉W then

K(Π,W ) = −3
4
‖[V, W ]‖2W +

1
4
‖(ad V )∗W‖2W .

In particular

K(Π,W ) =
1
4
‖jW (W )V ‖2W if W ∈ Z.

Proof. If W is a geodesic vector, i.e. ∇W
W W = 0 then for the Chern-Rund con-

nection one obtains

2
〈∇W

X W,Z
〉

W
= 〈[X, W ], Z〉W − 〈[W,Z], X〉W + 〈[Z, X],W 〉W ,

see (12). Thus

∇W
X W =

1
2
{[X, W ]− (ad W )∗X − (adX)∗W} ,

where the adjoint operator ∗ refers to the scalar product 〈, 〉W . The Chern-Rund
connection is torsion-free, thus

∇W
W X =

1
2
{[W,X]− (ad W )∗X − (adX)∗W} .

In particular

∇W
Z W = −1

2
(adW )∗Z = ∇W

W Z if Z ∈ Z,(17)
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∇W
V W =

1
2
{[V, W ]− (ad V )∗W} if V ∈ V,(18)

∇W
W V =

1
2
{[W,V ]− (ad V )∗W} if V ∈ V.(19)

Let Z ∈ Z.

R(Z, W )W = ∇W
Z ∇W

W W −∇W
W∇W

Z W −∇W
[Z,W ]W

= −∇W
W∇W

Z W =
1
2
∇W

W (adW )∗Z.

(adW )∗Z ∈ V, thus applying (19) we immediately obtain

R(Z,W )W =
1
4
{[W, (ad W )∗Z]− [ad((ad W )∗Z)]∗W}

and

〈R(Z,W )W, Z〉W =
1
4
{〈(ad W )∗Z, (ad W )∗Z〉W − 〈W, [(adW )∗Z,Z]〉W }

=
1
4
‖(ad W )∗Z‖2W .

Let V ∈ V. From (17)–(19) we obtain

R(V, W )W = ∇W
V ∇W

W W −∇W
W∇W

V W −∇W
[V,W ]W

= −1
2
∇W

W ([V,W ]− (ad V )∗W ) +
1
2
(ad W )∗[V,W ]

=
1
4
(adW )∗[V, W ] +

1
4
[W, (adV )∗W ]

− 1
4
[ad((ad V )∗W )]∗W +

1
2
(adW )∗[V, W ].

Observe that

〈R(V, W )W, V 〉W = −3
4
〈[V,W ], [V,W ]〉W +

1
4
〈[W, (adV )∗W ], V 〉W

− 1
4
〈W, [(ad V )∗W,V ]〉W

= −3
4
‖[V, W ]‖2W +

1
4
〈(adV )∗W, (adV )∗W 〉W

= −3
4
‖[V, W ]‖2W +

1
4
‖(ad V )∗W‖2W .

¤

7. Relative geodesics

Definition 15. The curve γ : I → N is called a relative geodesic of the Chern-
Rund connection when ∇W

γ′ γ
′ = 0 (see e.g. [7]).
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To describe relative geodesics of (N,F ) it suffices to describe those geodesics
that begin at the identity of N . Let γ be a curve with γ(0) = e (identity of N),
and let γ′(0) = X0+Z0 ∈ N , where X0 ∈ V, Z0 ∈ Z. In exponential coordinates
we write

γ(t) = exp(X(t) + Z(t)), X(t) ∈ V, Z(t) ∈ Z,

and

X ′(0) = X0, Z ′(0) = Z0.

It is easy to see that

(20) γ′(t) = dLγ(t)

(
X ′(t) + Z ′(t) +

1
2
[X ′(t), X(t)]

)

Let S = X ′ + Z ′ + 1
2 [X ′, X].

Theorem 16. Suppose that the left invariant Finsler metric is compatible with
the 2-step nilpotent Lie algebra and W ∈ Z. Then the curve γ is a relative
geodesic of the Chern-Rund connection if and only if the following equations are
satisfied:

Z ′ +
1
2
[X ′, X] = Z0, X ′′ − jW (Z0)X ′ +

1
2
DW (X ′, X ′) = 0.

Proof. Using the left-invariant property of the Chern-Rund connection and (20)
we get

(21) ∇W
γ′ γ

′ = ∇W
S S = ∇W

S X ′ +∇W
S (Z ′ +

1
2
[X ′, X]).

Let (V1, . . . , Vn) and (Z1, . . . , Zm) be orthonormal bases of V and Z respectively
and X = viVi, Z = uαZα. Moreover, the structure constants Aα

ij for the Lie
algebra are given as follows:

[Vi, Vj ] = Aα
ijZα.

At first we determine the first term of the right hand side of (21).

∇W
S X ′ = ∇W

S (v̇iVi) = v̈iVi + v̇i∇W
S Vi

= X ′′ + v̇i∇W
X′Vi + v̇i∇W

Z′+ 1
2 [X′,X]Vi

= X ′′ +
1
2
v̇i[X ′, Vi] +

1
2
v̇iDW (X ′, Vi)

− 1
2
v̇ijW (Z ′ +

1
2
[X ′, X])Vi

= X ′′ +
1
2
DW (X ′, X ′)− 1

2
jW (Z ′ +

1
2
[X ′, X])X ′.
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Now, calculate the second term of the right hand side of (21).

∇W
S

(
Z ′ +

1
2
[X ′, X]

)
= ∇W

S (u̇αZα) +
1
2
∇W

S

(
v̇ivjAα

ijZα

)

= üαZα + u̇α∇W
S Zα

+
1
2

(
v̈ivj + v̇iv̇j

)
Aα

ijZα +
1
2
v̇ivjAα

ij∇W
S Zα

= Z ′′ +
1
2
[X ′′, X] +

(
u̇α +

1
2
v̇ivjAα

ij

)
∇W

X′Zα

= Z ′′ +
1
2
[X ′′, X]− 1

2
jW

(
Z ′ +

1
2
[X ′, X]

)
X ′.

Therefore

∇W
γ′ γ

′ = X ′′ +
1
2
DW (X ′, X ′)− jW

(
Z ′ +

1
2
[X ′, X]

)
X ′

+ Z ′′ +
1
2
[X ′′, X].

Relative geodesics are then characterized by the system

X ′′ +
1
2
DW (X ′, X ′)− jW

(
Z ′ +

1
2
[X ′, X]

)
X ′ = 0

Z ′′ +
1
2
[X ′′, X] = 0.

(22)

The second equation implies

Z ′ +
1
2
[X ′, X] = Z0

and the first equation of (22) reduces to

X ′′ +
1
2
DW (X ′, X ′)− jW (Z0)X ′ = 0.

¤
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