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INDIVISIBILITY OF CLASS NUMBERS OF REAL
QUADRATIC FIELDS

AYTEN PEKIN

Abstract. Let N denote the sets of positive integers and D ∈ N be square
free, and let χD, h = h(D) denote the non-trivial Dirichlet character, the

class number of the real quadratic field K = Q(
√

D), respectively. Let
L(s, χD) denote the L-function attached to χD. In this paper, by using
an upper bound different from current bounds for L(1, χD) and applying
Dirichlet’s class number formula, we will show indivisibility of h = h(D)
by any prime.

1. Introduction

Let Z, N , Q denote the sets of integers, positive integers and rational num-
bers, respectively. Throughout D ∈ N will be assumed square free, K = Q(

√
D)

will denote the real quadratic field, and the class number of K will be denoted
by h = h(D). Let ∆ denote the discriminant, εD the fundamental unit of K.

One of the main problems deals with the structure of class group of K, and
so one naturally studies the divisibility of h(D) by primes. Many authors have
studied such fields and considered generalizations thereof. Cohen-Lenstra are
among them. They predicted that there are infinitely many real quadratic fields
K = Q(

√
D) whose class numbers are indivisible by any prime p [1].

In this paper, we consider real quadratic fields and we will prove the following
theorem.

Theorem. Let p > 3 be a prime. If p ≡ 1 (mod 4) , then the class numbers of
real quadratic fields K = Q(

√
p2 − 4) and K = Q(

√
p2 − 2) are indivisible by p.
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2. Preliminaries

In order to prove above theorem we obtain an upper bound different from
current bounds for the class numbers of the real quadratic fields and we need
the following lemma for this.

Lemma 2.1. i. If D is a prime with D ≡ 1 (mod 4), we have

εD >

{√
D ∓ 1, D = n2 ∓ 4, (n ∈ Z)√
4D ∓ 1, in the other cases.

ii. If D is a prime with D ≡ 3 (mod 4), we have

εD >

{
2D ∓ 1, D = n2 ∓ 2,

8D ∓ 1, in the other cases.

Proof. i. Let

εD =
t + u

√
D

2
> 1

be the fundamental unit of K = Q(
√

D). Since εD is equal to the fundamental
solution of the Pell’s equation x2 −Dy2 = ∓4, then we can write

εD
2 = (

t + u
√

D

2
)
2

=
1
4
(
√

Du2 ∓ 4 + u
√

D)
2

> Du2 ∓ 1 ≥
{

D ∓ 1, u = 1
4D ∓ 1, u > 1.

Therefore, we have

εD >

{√
D ∓ 1, D = n2 ∓ 4√
4D ∓ 1, in the other cases.

ii. If D ≡ 3 (mod 4), then we have

εD
2 =

(
t + u

√
D

2

)2

from the least positive integer solution (x, y) = (t, u) of the Pell’s equation
x2 −Dy2 = ∓2 [5]. Similarly, we can write

εD >

{
2D ∓ 1, D = n2 ∓ 2, (n : odd integer )
8D ∓ 1, in the other cases.

¤

Lemma 2.2. Let D ∈ N be square free, then h(D) <
√

D.

In order to prove this we need the following Lemma [4].
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Lemma 2.3. Let γ be Euler’s constant, then

|L(1, χD)| ≤
{

1
4 (log ∆ + 2 + γ − log π), 2 | ∆,
1
2 (log ∆ + 2 + γ − log 4π), otherwise.

Proof of Lemma 2.2. By Dirichlet’s class number formula, we have

h(D) =
√

∆
2 log εD

|L(1, χD)|

where ∆ is a fundamental discriminant of a quadratic field define by

∆ =

{
4D, D ≡ 2, 3 (mod 4)
D, D ≡ 1 (mod 4).

First, we consider the case D ≡ 1 (mod 4) and D = n2 ∓ 4. Thus, by the
upper bound for L(1, χD) in Lemma 2.3, we have that

h(D) <

√
D(log D + 1, 478)
4 log

√
D ∓ 1

=

√
D(log D + 1, 478)

2 log(D ∓ 1)
<
√

D, (D > 5).

Moreover, we can write

h(D) ≤
t√

D(log D + 1, 478)
2 log(D ∓ 1)

|

where JxK is the greatest integer less than or equal to x. It is also h(D) <
√

D
for D 6= n2 ∓ 4.

Now, we consider the case D ≡ 3 (mod 4) and D = n2 ∓ 2 (n ∈ Z is odd ).
Similarly, by applying Lemmas 2.1, 2.3 and using class number formula, we get

h(D) <

√
D(log 4D + 1, 478)

2 log(2D ∓ 1)
<
√

D and h(D) ≤
t√

D(log 4D + 1, 478)
2 log(2D ∓ 1)

|

It is also true for D 6= n2 ∓ 2. ¤

3. Proof of Theorem

Specially, if we write Ds depend on prime p in the forms of D = p2 − 4 ,
D = p2 − 2 we can immediately see that h(D) < p for the class numbers
of real quadratic fields K = Q(

√
p2 − 4), K = Q(

√
p2 − 2) from Lemma 2.2.

Therefore we have h(D) 6≡ 0 (mod p). This prove that h(D) is indivisible by
prime p with p ≡ 1 (mod 4) for above mentioned real quadratic fields.

Corollary 3.1. Let D ≡ 1, 3 (mod 4) be a prime satisfying D = p2 − r (r |
4p, r ∈ (−p, p]) then the class numbers of K = Q(

√
p2 − r) are indivisible by

prime p with p ≡ 1 (mod 4).
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