SPECIAL REPRESENTATIONS OF SOME SIMPLE GROUPS WITH MINIMAL DEGREES

MARYAM GHORBANY

Abstract

If F is a subfield of C, then a square matrix over F with nonnegative integral trace is called a quasi-permutation matrix over F. For a finite group G, let $q(G)$ and $c(G)$ denote the minimal degree of a faithful representation of G by quasi-permutation matrices over the rational and the complex numbers, respectively. Finally $r(G)$ denotes the minimal degree of a faithful rational valued complex character of G. In this paper $q(G), c(G)$ and $r(G)$ are calculated for Suzuki group and untwisted group of type B_{2} with parameter $2^{2 n+1}$.

1. Introduction

In [12] Wong defined a quasi-permutation group of degree n, to be a finite group G of automorphisms of an n-dimensional complex vector space such that every element of G has non-negative integral trace. The terminology drives from the fact that if G is a finite group of permutations of a set Ω of size n, and we think of G as acting on the complex vector space with basis Ω, then the trace of an element $g \in G$ is equal to the number of points of Ω fixed by g. Wong studied the extent to which some facts about permutation groups generalize to the quasipermutation group situation. In [2] Hartley with their colleague investigated further the analogy between permutation groups and quasi-permutation groups by studying the relation between the minimal degree of a faithful permutation representation of a given finite group G and the minimal degree of a faithful quasi-permutation representation. They also worked over the rational field and found some interesting results. We shall often prefer to work over the rational field rather than the complex field.

[^0]By a quasi-permutation matrix we mean a square matrix over the complex field C with non-negative integral trace. Thus every permutation matrix over C is a quasi-permutation matrix. For a given finite group G, let $q(G)$ denote the minimal degree of a faithful representation of G by quasi-permutation matrices over the rational field Q, and let $c(G)$ be the minimal degree of a faithful representation of G by complex quasi-permutation matrices.

By a rational valued character we mean a character χ corresponding to a complex representation of G such that $\chi(g) \in Q$ for all $g \in G$. As the values of the character of a complex representation are algebraic numbers, a rational valued character is in fact integer valued. A quasi-permutation representation of G is then simply a complex representation of G whose character values are rational and non-negative. The module of such a representation will be called a quasi-permutation module. We will call a homomorphism from G to $G L(n, Q)$ a rational representation of G and its corresponding character will be called a rational character of G. Let $r(G)$ denote the minimal degree of a faithful rational valued character of G. It is easy to see that for a finite group G the following inequalities hold

$$
r(G)<c(G) \leq q(G)
$$

It is easy to see that if G is a symmetric group of degree 6 , then $r(G)=5$ and $c(G)=q(G)=6$. If G is the quaternion group of order 8 , then $r(G)=$ $2, c(G)=4$ and $q(G)=8$. Our principal aim in this paper is to investigate these quantities and inequalities further.

Finding the above quantities have been carried out in some papers, for example in $[6,5,4]$ we found these for the groups $G L(2, q), S U\left(3, q^{2}\right), \operatorname{PSU}\left(3, q^{2}\right)$, $S L(3, q)$ and $\operatorname{PSl}(3, q)$.

In this paper we will apply the algorithms in [1] for the Suzuki group and untwisted group of type B_{2} with parameter $2^{2 n+1}$.

2. Background

Let G be a finite group and χ be an irreducible complex character of G. Let $m_{Q}(\chi)$ denote the Schur index of χ over Q. Let $\Gamma(\chi)$ be the Galois group of $Q(\chi)$ over Q. It is known that

$$
\begin{equation*}
\sum_{\alpha \in \Gamma(\chi)} m_{Q}(\chi) \chi^{\alpha} \tag{1}
\end{equation*}
$$

is a character of an irreducible $Q \mathrm{G}$-module ([9, Corollary 10.2 (b)]. So by knowing the character table of a group and the Schur indices of each of the irreducible characters of G, we can find the irreducible rational characters of G.

We can see all the following statements in [1].
Definition 1. Let χ be a character of G such that, for all $g \in G, \chi(g) \in Q$ and $\chi(g) \geq 0$. Then we say that χ is a non-negative rational valued character.

Definition 2. Let G be a finite group. Let χ be an irreducible complex character of G. Then we define
(1) $d(\chi)=|\Gamma(\chi)| \chi(1)$
(2) $m(\chi)= \begin{cases}0 & \text { if } \chi=1_{G} \\ \left|\min \left\{\sum_{\alpha \in \Gamma(\chi)} \chi^{\alpha}(g): g \in G\right\}\right| & \text { otherwise }\end{cases}$
(3) $c(\chi)=\sum_{\alpha \in \Gamma(\chi)} \chi^{\alpha}+m(\chi) 1_{G}$.

Lemma 1. Let χ be a character of G. Then $\operatorname{Ker} \chi=\operatorname{Ker} \sum_{\alpha \in \Gamma(\chi)} \chi^{\alpha}$. Moreover χ is faithful if and only if $\sum_{\alpha \in \Gamma(\chi)} \chi^{\alpha}$ is faithful.
Lemma 2. Let $\chi \in \operatorname{Irr}(G)$, then $\sum_{\alpha \in \Gamma(\chi)} \chi^{\alpha}$ is a rational valued character of G. Moreover $c(\chi)$ is a non-negative rational valued character of G and $c(\chi)(1)=$ $d(\chi)+m(\chi)$.

Now according to [1, Corollary 3.11] and above statements the following Corollary is useful for calculation of $r(G), c(G)$ and $q(G)$.
Corollary 1. Let G be a finite group with a unique minimal normal subgroup. Then
(1) $r(G)=\min \{d(\chi): \chi$ is a faithful irreducible complex character of $G\}$
(2) $c(G)=\min \{c(\chi)(1): \chi$ is a faithful irreducible complex character of $G\}$
(3) $q(G)=\min \left\{m_{Q}(\chi) c(\chi)(1): \chi\right.$ is a faithful irreducible complex character of $G\}$.
Lemma 3. Let $\chi \in \operatorname{Irr}(G) \chi \neq 1_{G}$. Then $c(\chi)(1) \geq d(\chi)+1 \geq \chi(1)+1$.
Lemma 4. Let $\chi \in \operatorname{Irr}(G)$. Then
(1) $c(\chi)(1) \geq d(\chi) \geq \chi(1)$;
(2) $c(\chi)(1) \leq 2 d(\chi)$. Equality occurs if and only if $Z(\chi) /$ ker χ is of even order.

Lemma 5. Let G be a finite group. If the Schur index of each non-principal irreducible character is equal to m, then $q(G)=m c(G)$.
3. Calculation of $q(G), c(G)$ and $r(G)$ For the group $G=B_{2}(q)$

The group $G=B_{2}(q)$ is of order $\frac{q^{4}\left(q^{4}-1\right)\left(q^{2}-1\right)}{(2, q-1)}$ and if the characteristic of K is two, the Lie algebras of type B_{n} and of type C_{n} are isomorphic. The complex character table of $B_{2}(q)$ is given in [7] as in Table 1.
Table 1. Character table of $B_{2}(q)$

	A_{1}	A_{2}	A_{31}	A_{32}	A_{41}	A_{42}	$B_{1}(i, j)$	$B_{2}(i)$	$B_{3}(i, j)$
θ_{1}	$q(q+1)^{2} / 2$	$q(q+1) / 2$	$q(q+1) / 2$	$q / 2$	$q / 2$	$-q / 2$	2	0	0
θ_{4}	q^{4}	0	0	0	0	0	1	-1	-1
θ_{5}	$q(q-1)^{2} / 2$	$-q(q-1) / 2$	$-q(q-1) / 2$	$q / 2$	$q / 2$	$-q / 2$	0	0	0
$\chi_{1}(k, l)$	$(q+1)^{2}\left(q^{2}+1\right)$	$(q+1)^{2}$	$(q+1)^{2}$	$2 q+1$	1	1	$\alpha_{i k} \alpha_{j l}+\alpha_{i l} \alpha_{j k}$	0	0
$\chi_{4}(k, l)$	$(q-1)^{2}\left(q^{2}+1\right)$	$(q-1)^{2}$	$(q-1)^{2}$	$-(2 q-1)$	1	1	0	0	0
χ_{k}	$\left(q^{2}-1\right)^{2}$	$-\left(q^{2}-1\right)$	$-\left(q^{2}-1\right)$	1	1	1	0	0	0

	$B_{5}(i)$	$C_{1}(i)$	$C_{2}(i)$	$C_{3}(i)$	$C_{4}(i)$
θ_{1}	-1	$q+1$	$q+1$	0	0
θ_{4}	1	q	q	$-q$	$-q$
θ_{5}	1	0	0	$q-1$	$q-1$
$\chi_{1}(k, l)$	0	$(q+1)\left(\alpha_{i k}+\alpha_{i l}\right)$	$(q+1) \alpha_{i k} \alpha_{i l}$	0	0
$\chi_{4}(k, l)$	0	0	$-(q-1)\left(\beta_{i k}+\beta_{i l}\right)$	$-(q-1) \beta_{i k} \beta_{i l}$	
χ_{k}	$\tau^{i k}+\tau^{-i k}+\tau^{i k q}+\tau^{-i k q}$	0	0	0	0

| $\begin{aligned} & \stackrel{\rightharpoonup}{\sigma} \\ & a^{+} \end{aligned}$ | \bigcirc | \checkmark | \uparrow | | c\|c|c|c|c|c | \bigcirc |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{\stackrel{\rightharpoonup}{\circ}}{\stackrel{\infty}{\circ}}$ | \bigcirc | $\stackrel{\rightharpoonup}{1}$ | \uparrow | \bigcirc | $\left\|\begin{array}{c} c^{2} \\ + \\ +n^{2} \\ c^{2} \end{array}\right\|$ | \bigcirc |
| $\begin{gathered} \stackrel{\rightharpoonup}{2} \\ \overbrace{}^{2} \end{gathered}$ | $-$ | \bigcirc | \bigcirc | $\begin{aligned} & \pi \\ & \stackrel{8}{8} \\ & \substack{8 \\ 8 \\ \hline} \end{aligned}$ | 0 | \bigcirc |
| $\begin{aligned} & \stackrel{\sigma}{2} \\ & \stackrel{1}{2} \end{aligned}$ | \rightarrow | \bigcirc | 0 | $\begin{gathered} \tilde{8} \\ + \\ + \\ \dot{8} \end{gathered}$ | | \bigcirc |
| $\begin{gathered} \underset{\sim}{\approx} \\ \underset{\sim}{c} \\ \end{gathered}$ | - | $-$ | $\stackrel{\sim}{1}$ | 0 | | \bigcirc |
| | 5 | 0^{4} | 0 | $\begin{aligned} & 2 \\ & 3 \\ & 3 \\ & x \end{aligned}$ | $\underset{\sim}{\underset{x}{8}}$ | x^{2} |

Table 2

χ	$d(\chi)$	$c(\chi)(1)$
θ_{1}	$\frac{q(q+1)^{2}}{2}$	$\frac{q\left(q^{2}+2 q+2\right)}{2}$
θ_{4}	q^{4}	$q\left(q^{3}+1\right)$
θ_{5}	$\frac{q(q-1)^{2}}{2}$	$\frac{q^{2}(q-1)}{2}$
$\chi_{1}(k, l)$	$\geq(q+1)^{2}\left(q^{2}+1\right)$	$\geq(q+1)^{2}\left(q^{2}+1\right)+1$
$\chi_{4}(k, l)$	$\geq(q-1)^{2}\left(q^{2}+1\right)$	$\geq q^{2}\left(q^{2}-2 q+2\right)$
$\chi_{5}(k)$	$\geq\left(q^{2}-1\right)^{2}$	$\geq q^{2}\left(q^{2}-1\right)$

Theorem 1. Let $G=B_{2}(2)$, then

$$
r\left(B_{2}(2)\right)=5, c\left(B_{2}(2)\right)=6
$$

Proof. We know that $B_{2}(q) \cong S_{6}$, and by the Atlas of finite groups [6], it is easy to see that

$$
r\left(B_{2}(2)\right)=5, c\left(B_{2}(2)\right)=q\left(B_{2}(2)\right)=6 .
$$

Theorem 2. Let $G=B_{2}(q), q \neq 2$, then
(1) $r(G)=\frac{q(q-1)^{2}}{2}$
(2) $c(G)=\frac{q^{2}(q-1)}{2}$

Proof. The group $B_{2}(q), q \neq 2$ is simple so their non-trivial irreducible characters are faithful and therefore we need to look at each faithful irreducible character χ say and calculate $d(\chi), c(\chi)(1)$.

By the Table 1, we know that $\theta_{1}, \theta_{4}, \theta_{5}$ are rational valued characters, so by Definition 2.2 and Lemma 2.4 we have $d\left(\theta_{1}\right)=\left|\Gamma\left(\theta_{1}\right)\right| \theta_{1}(1)=\frac{q(q+1)^{2}}{2}$ and $m\left(\theta_{1}\right)=-\frac{q}{2}$ and so $c\left(\theta_{1}(1)\right)=\frac{q\left(q^{2}+2 q+2\right)}{2}$.
$d\left(\theta_{4}\right)=\left|\Gamma\left(\theta_{4}\right)\right| \theta_{4}(1)=q^{4}$ and $m\left(\theta_{4}\right)=-q$ and then $c\left(\theta_{4}\right)(1)=q\left(q^{3}+1\right)$.
$d\left(\theta_{5}\right)=\left|\Gamma\left(\theta_{5}\right)\right| \theta_{5}(1)=\frac{q(q-1)^{2}}{2}$ and $m\left(\theta_{5}\right)=-\frac{q(q-1)}{2}$ and therefore

$$
c\left(\theta_{5}\right)(1)=\frac{q^{2}(q-1)}{2}
$$

For other characters by Lemmas 2.6, 2.7 we have

$$
d\left(\chi_{1}(k, l)\right)=\left|\Gamma\left(\chi_{1}(k, l)\right)\right| \chi_{1}(k, l)(1) \geq(q+1)^{2}\left(q^{2}+1\right)
$$

and $m\left(\chi_{1}(k, l)\right) \geq 1$ and so $c\left(\chi_{1}(k, l)\right)(1) \geq(q+1)^{2}\left(q^{2}+1\right)+1$.
$d\left(\chi_{4}(k, l)\right) \geq(q-1)^{2}\left(q^{2}+1\right)$ and $m\left(\chi_{4}(k, l)\right) \geq 2 q-1$ and so

$$
c\left(\chi_{4}(k, l)\right)(1) \geq q^{2}\left(q^{2}-2 q+2\right)
$$

$d\left(\chi_{5}(k)\right) \geq\left(q^{2}-1\right)^{2}$ and $m\left(\chi_{5}(k)\right) \geq q^{2}-1$ and so $c\left(\chi_{5}(k)\right)(1) \geq q^{2}\left(q^{2}-1\right)$. An overall picture is provided by the Table 2

Now by Corollary 2.5 and above table we obtain
$\min \{d(\chi): \chi$ is a faithful irreducible complex character of $G\}=\frac{q(q-1)^{2}}{2}$
and
$\min \{c(\chi)(1): \chi$ is a faithful irreducible complex character of G$\}=\frac{q^{2}(q-1)}{2}$.

4. Quasi-permutation representations of the group $S z(q)$

A group G is called a $(Z T)$-group if :
(1) G is a doubly transitive group on $1+N$ symbols,
(2) the identity is the only element which leaves three distinct symbols invariant,
(3) G contains no normal subgroup of order $1+N$, and
(4) N is even.

There is a unique $(Z T)$-group of order $q^{2}(q-1)\left(q^{2}+1\right)$ for any odd power q of 2 (see [11, Theorem 8]). This group will be denoted here as $S z(q)$ and called a Suzuki group. The Suzuki groups are simple for all $q>2$.

By [10] the Suzuki group $G(q)$ is isomorphic to a subgroup of $S P_{4}\left(F_{q}\right)$ consisting of points left fixed by an involutive mapping of $S P_{4}\left(F_{q}\right)$ onto itself.

Now we shall identify $S P_{4}(K)^{\sigma}$ with the Suzuki group $G(q)$, where $S P_{4}(K)^{\sigma}$ is the set composed of all $x \in S P_{4}(K)$ such that $x^{\sigma}=x$.

Let $K=F_{q}, q=2^{2 n+1}(n \geq 1)$ and let θ be an automorphism of K defined by $\alpha \rightarrow \alpha^{2^{n}}, \alpha \in K$. It is easy to see that θ generates the Galois group of K over the prime field. Our purpose is to define an involutive mapping σ (which will not be an automorphism) of $S P_{4}(K)$ onto itself by making use of φ and θ so that the Suzuki group $G(q)$ is isomorphic to the subgroup $S P_{4}(K)^{\sigma}$ of $S P_{4}(K)$ consisting of matrices left fixed by σ.

Using Suzuki's notation, $G(q)$ is generated by $S(\alpha, \beta), M(\xi)$ and T :

$$
S(\alpha, \beta)=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
\alpha^{\theta} & 1 & 0 & 0 \\
\beta & \alpha & 1 & 0 \\
q(\alpha, \beta) & p(\alpha, \beta) & \alpha^{\theta} & 1
\end{array}\right)
$$

$M(\xi)=\operatorname{diag}\left(\xi^{\theta}, \xi^{1-\theta}, \xi^{\theta-1}, \xi^{-\theta}\right)$,

$$
T=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

Define a matrix P by setting:

$$
P=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

Then, one can easily verify that

$$
P S(\alpha, \beta) P^{-1}=R(\alpha, \beta)^{-1}, P M(\xi) P^{-1}=h\left(\xi^{\theta}\right), P T P^{-1}=J
$$

Thus $x \rightarrow P x P^{-1}$ gives an isomorphism $G(q) \cong S P_{4}(K)^{\sigma}$. So Suzuki group is a simple group of order $q^{2}(q-1)\left(q^{2}+1\right)$.
Remark 1. The involution $\sigma: S P_{4}(K) \rightarrow S P_{4}(K)$ can not be an automorphism. For, if σ is so, then σ can be expressed as

$$
x^{\sigma}=A x^{\omega} A^{-1},
$$

with $A \in G L_{4}(K)$ and an automorphism ω of K. Put $x=x_{a}(t)=I+t X_{a}$. Then $x^{\sigma}=x_{b}\left(t^{2 \theta}\right)=I+t^{2 \theta} X_{b}=I+t^{\omega} A X_{a} A^{-1}$. If we take $t=1$, then $X_{b}=A X_{a} A^{-1}$. But this is absurd since $X_{a}=E_{12}-E_{43}$ is of rank 2 and $X_{b}=E_{24}$ is of rank 1 .

The character table of $S z(q)$ is computed in [11], is as follows:
TABLE 3. Character table of $S z(q)$

	1	σ_{0}	ρ_{0}	ρ_{0}^{-1}	π_{0}^{l}	π_{1}^{l}	π_{2}^{l}
1	1	1	1	1	1	1	1
χ	q^{2}	0	0	0	1	-1	-1
ζ	$\theta(q-1)$	$-\theta$	$\theta \sqrt{-1}$	$-\theta \sqrt{-1}$	0	1	-1
$\bar{\zeta}$	$\theta(q-1)$	$-\theta$	$-\theta \sqrt{-1}$	$\theta \sqrt{-1}$	0	1	-1
ψ_{i}	$q^{2}+1$	1	1	1	$\varepsilon_{0}^{i}\left(\pi_{0}^{l}\right)$	0	0
μ_{j}	$(q-2 \theta+1)(q-1)$	$2 \theta-1$	-1	-1	0	$-\varepsilon_{1}^{j}\left(\pi_{1}^{l}\right)$	0
φ_{k}	$(q+2 \theta+1)(q-1)$	$-2 \theta-1$	-1	-1	0	0	$-\varepsilon_{2}^{k}\left(\pi_{2}^{l}\right)$

Where ε_{0}, varepsilon ${ }_{1}, \varepsilon_{2}$ are primitive $q-1, q+2 \theta+1, q-2 \theta+1$-th root of 1 , respectively.

In this table $q=2 \theta^{2}$ and the ε_{j}^{i} are defined as follows:

$$
\varepsilon_{0}^{i}\left(\xi_{0}^{j}\right)=\varepsilon_{0}^{i j}+\varepsilon_{0}^{-i j} \text { for } i=1,2, \ldots, \frac{q}{2}-1
$$

where ξ_{0} is a generator of cyclic group of order $q-1$.

$$
\varepsilon_{1}^{i}\left(\xi_{1}^{k}\right)=\varepsilon_{1}^{i k}+\varepsilon_{1}^{i k q}+\varepsilon_{1}^{-i k}+\varepsilon_{1}^{-i k q} \text { for } i=1,2, \ldots, q+2 \theta
$$

where ξ_{1} is a generator of cyclic group of order $q+2 \theta+1$.

$$
\varepsilon_{2}^{i}\left(\xi_{2}^{k}\right)=\varepsilon_{2}^{i k}+\varepsilon_{2}^{i k q}+\varepsilon_{2}^{-i k}+\varepsilon_{2}^{-i k q} \text { for } i=1,2, \ldots, q+2 \theta
$$

where ξ_{2} is a generator of cyclic group of order $q-2 \theta+1$.
Lemma 6. Let $G=S z(q), q=2^{2 n+1}$, then all characters of G have Schur index 1.

Proof. See [8, Theorem 9].
Theorem 3. Let $G=S z(q), q=2^{2 n+1}$, then $r(G)=2 \theta(q-1), c(G)=q(G)=$ $2 \theta q$, where $\theta=2^{n}$ and $q=2 \theta^{2}$.
Proof. Let $G=S z(q), q=2^{2 n+1}$, by Lemma 4.1 the Schur index of every irreducible character is 1 , therefor $c(G)=q(G)$. The groups $G=S z(q)$ is simple,so their non-trivial irreducible characters are faithful and therefor we need to look at each faithful irreducible character ϑ say and calculate $d(\vartheta), c(\vartheta)(1)$.

By Table 3 we know χ is a rational valued character, so by Definition 2.2 and Lemma 2.4 we have:

$$
d(\chi)=|\Gamma(\chi)| \chi(1)=q^{2},
$$

and $m(\chi)=1$, and so $c(\chi)(1)=q^{2}+1$.
For the character ζ we have $|\Gamma(\zeta)|=2$ and therefore:

$$
d(\zeta)=|\Gamma(\zeta)| \zeta(1)=2 \theta(q-1)
$$

and $m(\zeta)=2 \theta$, and so $c(\zeta)(1)=2 \theta q$.
In this way, by Lemmas 2.6, 2.7 we have

$$
d\left(\psi_{i}\right) \geq q^{2}+1
$$

and $c\left(\psi_{i}\right) \geq q^{2}+2$,

$$
d\left(\mu_{j}\right) \geq(q-2 \theta+1)(q-1)
$$

and $c\left(\mu_{j}\right) \geq q^{2}-2 \theta q+2 \theta, d\left(\varphi_{k}\right) \geq(q+2 \theta+1)(q-1)$ and $c\left(\varphi_{k}\right) \geq q(q+2 \theta)$.
The values are set out in the following table:
By observing the Corollary 2.5 and Table 4 we have:
$\min \{d(\chi): \chi$ is a faithful irreducible complex character of $G\}=2 \theta(q-1)$ and
$\min \{c(\chi)(1): \chi$ is a faithful irreducible complex character of $G\}=2 \theta q$.

Table 4

ϑ	$d(\vartheta)$	$c(\vartheta)(1)$
χ	q^{2}	$q^{2}+1$
ζ	$2 \theta(q-1)$	$2 \theta q$
ψ_{i}	$\geq q^{2}+1$	$>q^{2}+1$
μ_{j}	$\geq(q-2 \theta+1)(q-1)$	$\geq q^{2}-2 \theta q+2 \theta$
φ_{k}	$(q+2 \theta+1)(q-1)$	$\geq q(q+2 \theta)$

Hence $r(G)=2 \theta(q-1), c(G)=q(G)=2 \theta q$.

References

[1] H. Behravesh. Quasi-permutation representations of p-groups of class 2. J. London Math. Soc. (2), 55(2):251-260, 1997.
[2] J. M. Burns, B. Goldsmith, B. Hartley, and R. Sandling. On quasi-permutation representations of finite groups. Glasgow Math. J., 36(3):301-308, 1994.
[3] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson. Atlas of finite groups. Oxford University Press, Eynsham, 1985. Maximal subgroups and ordinary characters for simple groups, With computational assistance from J. G. Thackray.
[4] M. R. Darafsheh and M. Ghorbany. Quasi-permutation representations of the groups $S U(3, q)$ and $P S U(3, q)$. Iran. J. Sci. Technol. Trans. A Sci., 26:145-154, 2002.
[5] M. R. Darafsheh and M. Ghorbany. Quasi-permutation representations of the groups $S U\left(3, q^{2}\right)$ and $P S U\left(3, q^{2}\right)$. Southeast Asian Bull. Math., 26(3):395-406, 2002.
[6] M. R. Darafsheh, M. Ghorbany, A. Daneshkhah, and H. Behravesh. Quasi-permutation representations of the group $\mathrm{GL}_{2}(q)$. J. Algebra, 243(1):142-167, 2001.
[7] H. Enomoto. The characters of the finite symplectic group $\operatorname{Sp}(4, q), q=2^{f}$. Osaka J. Math., 9:75-94, 1972.
[8] R. Gow. On the Schur indices of characters of finite classical groups. J. London Math. Soc. (2), 24(1):135-147, 1981.
[9] I. M. Isaacs. Character theory of finite groups. Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1976. Pure and Applied Mathematics, No. 69.
[10] T. Ono. An identification of Suzuki groups with groups of generalized Lie type. Ann. of Math. (2), 75:251-259, 1962.
[11] M. Suzuki. On a class of doubly transitive groups. Ann. of Math. (2), 75:105-145, 1962.
[12] W. J. Wong. Linear groups analogous to permutation groups. J. Austral. Math. Soc., 3:180-184, 1963.

Department of Mathematics,
Iran University of Science and Technology, Emam, Behshahr, Mazandaran,
Iran
E-mail address: m-ghorbani@iust.ac.ir

[^0]: 2000 Mathematics Subject Classification. 20C15.
 Key words and phrases. Character table, Lie groups, Quasi-permutation representation ,Rational valued character, Suzuki group.

