Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 24 (2008), 287-296 www.emis.de/journals ISSN 1786-0091

SPECIAL REPRESENTATIONS OF SOME SIMPLE GROUPS WITH MINIMAL DEGREES

MARYAM GHORBANY

ABSTRACT. If F is a subfield of C, then a square matrix over F with nonnegative integral trace is called a quasi-permutation matrix over F. For a finite group G, let q(G) and c(G) denote the minimal degree of a faithful representation of G by quasi-permutation matrices over the rational and the complex numbers, respectively. Finally r(G) denotes the minimal degree of a faithful rational valued complex character of G. In this paper q(G), c(G)and r(G) are calculated for Suzuki group and untwisted group of type B_2 with parameter 2^{2n+1} .

1. INTRODUCTION

In [12] Wong defined a quasi-permutation group of degree n, to be a finite group G of automorphisms of an n-dimensional complex vector space such that every element of G has non-negative integral trace. The terminology drives from the fact that if G is a finite group of permutations of a set Ω of size n, and we think of G as acting on the complex vector space with basis Ω , then the trace of an element $g \in G$ is equal to the number of points of Ω fixed by g. Wong studied the extent to which some facts about permutation groups generalize to the quasipermutation group situation. In [2] Hartley with their colleague investigated further the analogy between permutation groups and quasi-permutation groups by studying the relation between the minimal degree of a faithful permutation representation of a given finite group G and the minimal degree of a faithful quasi-permutation representation. They also worked over the rational field and found some interesting results. We shall often prefer to work over the rational field rather than the complex field.

²⁰⁰⁰ Mathematics Subject Classification. 20C15.

Key words and phrases. Character table, Lie groups, Quasi-permutation representation ,Rational valued character, Suzuki group.

MARYAM GHORBANY

By a quasi-permutation matrix we mean a square matrix over the complex field C with non-negative integral trace. Thus every permutation matrix over C is a quasi-permutation matrix. For a given finite group G, let q(G) denote the minimal degree of a faithful representation of G by quasi-permutation matrices over the rational field Q, and let c(G) be the minimal degree of a faithful representation matrices.

By a rational valued character we mean a character χ corresponding to a complex representation of G such that $\chi(g) \in Q$ for all $g \in G$. As the values of the character of a complex representation are algebraic numbers, a rational valued character is in fact integer valued. A quasi-permutation representation of G is then simply a complex representation of G whose character values are rational and non-negative. The module of such a representation will be called a quasi-permutation module. We will call a homomorphism from G to GL(n,Q)a rational representation of G and its corresponding character will be called a rational character of G. Let r(G) denote the minimal degree of a faithful rational valued character of G. It is easy to see that for a finite group G the following inequalities hold

$$r(G) < c(G) \le q(G).$$

It is easy to see that if G is a symmetric group of degree 6, then r(G) = 5and c(G) = q(G) = 6. If G is the quaternion group of order 8, then r(G) = 2, c(G) = 4 and q(G) = 8. Our principal aim in this paper is to investigate these quantities and inequalities further.

Finding the above quantities have been carried out in some papers, for example in [6, 5, 4] we found these for the groups GL(2,q), $SU(3,q^2)$, $PSU(3,q^2)$, SL(3,q) and PSl(3,q).

In this paper we will apply the algorithms in [1] for the Suzuki group and untwisted group of type B_2 with parameter 2^{2n+1} .

2. Background

Let G be a finite group and χ be an irreducible complex character of G. Let $m_Q(\chi)$ denote the Schur index of χ over Q. Let $\Gamma(\chi)$ be the Galois group of $Q(\chi)$ over Q. It is known that

(1)
$$\sum_{\alpha \in \Gamma(\chi)} m_Q(\chi) \chi^{\alpha}$$

is a character of an irreducible QG-module ([9, Corollary 10.2 (b)]. So by knowing the character table of a group and the Schur indices of each of the irreducible characters of G, we can find the irreducible rational characters of G.

We can see all the following statements in [1].

Definition 1. Let χ be a character of G such that, for all $g \in G$, $\chi(g) \in Q$ and $\chi(g) \ge 0$. Then we say that χ is a non-negative rational valued character.

Definition 2. Let G be a finite group. Let χ be an irreducible complex character of G. Then we define

(1)
$$d(\chi) = |\Gamma(\chi)|\chi(1)$$

(2)
$$m(\chi) = \begin{cases} 0 & \text{if } \chi = 1_G \\ |\min\{\sum_{\alpha \in \Gamma(\chi)} \chi^{\alpha}(g) : g \in G\}| & \text{otherwise} \\ (3) & c(\chi) = \sum_{\alpha \in \Gamma(\chi)} \chi^{\alpha} + m(\chi) 1_G. \end{cases}$$

Lemma 1. Let χ be a character of G. Then $\operatorname{Ker} \chi = \operatorname{Ker} \sum_{\alpha \in \Gamma(\chi)} \chi^{\alpha}$. Moreover χ is faithful if and only if $\sum_{\alpha \in \Gamma(\chi)} \chi^{\alpha}$ is faithful.

Lemma 2. Let $\chi \in Irr(G)$, then $\sum_{\alpha \in \Gamma(\chi)} \chi^{\alpha}$ is a rational valued character of G. Moreover $c(\chi)$ is a non-negative rational valued character of G and $c(\chi)(1) = d(\chi) + m(\chi)$.

Now according to [1, Corollary 3.11] and above statements the following Corollary is useful for calculation of r(G), c(G) and q(G).

Corollary 1. Let G be a finite group with a unique minimal normal subgroup. Then

- (1) $r(G) = \min\{d(\chi) : \chi \text{ is a faithful irreducible complex character of } G\}$
- (2) $c(G) = \min\{c(\chi)(1) : \chi \text{ is a faithful irreducible complex character of } G\}$
- (3) $q(G) = \min\{m_Q(\chi)c(\chi)(1) : \chi \text{ is a faithful irreducible complex character} of G\}.$

Lemma 3. Let $\chi \in Irr(G)$ $\chi \neq 1_G$. Then $c(\chi)(1) \ge d(\chi) + 1 \ge \chi(1) + 1$.

Lemma 4. Let $\chi \in Irr(G)$. Then

- (1) $c(\chi)(1) \ge d(\chi) \ge \chi(1)$;
- (2) $c(\chi)(1) \leq 2d(\chi)$. Equality occurs if and only if $Z(\chi)/\ker \chi$ is of even order.

Lemma 5. Let G be a finite group. If the Schur index of each non-principal irreducible character is equal to m, then q(G) = mc(G).

3. Calculation of q(G), c(G) and r(G) for the group $G = B_2(q)$

The group $G = B_2(q)$ is of order $\frac{q^4(q^4-1)(q^2-1)}{(2,q-1)}$ and if the characteristic of K is two, the Lie algebras of type B_n and of type C_n are isomorphic. The complex character table of $B_2(q)$ is given in [7] as in Table 1.

MARYAM GHORBANY

TABLE 1. Character table of $B_2(q)$

		r	r	r		
$B_3(i,j)$	0	-1	0	0	0	0
$B_2(i)$	0	-	0	0	0	0
$B_1(i,j)$	2		0	$\alpha_{ik}\alpha_{jl} + \alpha_{il}\alpha_{jk}$	0	0
A_{42}	-q/2	0	-q/2	1	1	1
A_{41}	q/2	0	q/2		1	1
A_{32}	q/2	0	q/2	2q + 1	-(2q - 1)	1
A_{31}	q(q + 1)/2	0	-q(q-1)/2	$(q + 1)^2$	$(q - 1)^2$	$-(q^2 - 1)$
A_2	q(q+1)/2	0	-q(q-1)/2	$(q+1)^2$	$(q - 1)^2$	$-(q^2 - 1)$
A_1	$q(q+1)^2/2$	q^4	$q(q-1)^2/2$	$(q+1)^2(q^2+1)$	$(q-1)^2(q^2+1)$	$(q^2 - 1)^2$
	θ_1	$ heta_4$	θ_5	$\chi_1(k,l)$	$\chi_4(k,l)$	χ_k

$C_4(i)$	0	b-d	q-1	0	$-(q-1)eta_{ik}eta_{il}$	0
$C_3(i)$	0	<i>b</i> -	q-1	0	$-(q-1)(eta_{ik}+eta_{il})$.	0
$C_2(i)$	q + 1	q	0	$(q+1)lpha_{ik}lpha_{il}$	0	0
$C_1(i)$	q + 1	q	0	$(q+1)(\alpha_{ik} + \alpha_{il})$	0	0
$B_5(i)$	-1	1	7	0	0	$\tau^{ik} + \tau^{-ik} + \tau^{ikq} + \tau^{-ikq}$
	θ_1	$ heta_4$	θ_5	$\chi_1(k,l)$	$\chi_4(k,l)$	χ_k

$D_4(i)$	0	-1	-1	0	$\beta_{ik}\beta_{il}$	0
$D_3(i)$	0		-1	0	$\beta_{ik} + \beta_{il}$	0
$D_2(i)$	1	0	0	$\alpha_{ik}\alpha_{il}$	0	0
$D_1(i)$	1	0	0	$\alpha_{ik} + \alpha_{il}$	0	0
$B_4(i,j)$	0	1	-2	0	$\beta_{ik}\beta_{jl} + \beta_{il}\beta_{jk}$	0
	$ heta_1$	$ heta_4$	$ heta_5$	$\chi_1(k,l)$	$\chi_4(k,l)$	χ_k

χ	$d(\chi)$	$c(\chi)(1)$
$ heta_1$	$\frac{q(q+1)^2}{2}$	$rac{q(q^2+2q+2)}{2}$
$ heta_4$	q^4	$q(q^3 + 1)$
θ_5	$\frac{q(q-1)^2}{2}$	$\frac{q^2(q-1)}{2}$
$\chi_1(k,l)$	$\geq (q+1)^2(q^2+1)$	$\geq (q+1)^2 (q^2+1) + 1$
$\chi_4(k,l)$	$\geq (q-1)^2(q^2+1)$	$\geq q^2(q^2 - 2q + 2)$
$\chi_5(k)$	$\geq (q^2 - 1)^2$	$\geq q^2(q^2 - 1)$

TABLE 2

Theorem 1. Let $G = B_2(2)$, then

$$r(B_2(2)) = 5, \ c(B_2(2)) = 6.$$

Proof. We know that $B_2(q) \cong S_6$, and by the Atlas of finite groups [6], it is easy to see that

$$r(B_2(2)) = 5, c(B_2(2)) = q(B_2(2)) = 6.$$

Theorem 2. Let $G = B_2(q), q \neq 2$, then

(1) $r(G) = \frac{q(q-1)^2}{2}$ (2) $c(G) = \frac{q^2(q-1)}{2}$

Proof. The group $B_2(q)$, $q \neq 2$ is simple so their non-trivial irreducible characters are faithful and therefore we need to look at each faithful irreducible character χ say and calculate $d(\chi), c(\chi)(1)$.

By the Table 1, we know that $\theta_1, \theta_4, \theta_5$ are rational valued characters, so by Definition 2.2 and Lemma 2.4 we have $d(\theta_1) = |\Gamma(\theta_1)|\theta_1(1) = \frac{q(q+1)^2}{2}$ and $m(\theta_1) = -\frac{q}{2}$ and so $c(\theta_1(1)) = \frac{q(q^2+2q+2)}{2}$. $d(\theta_4) = |\Gamma(\theta_4)|\theta_4(1) = q^4$ and $m(\theta_4) = -q$ and then $c(\theta_4)(1) = q(q^3 + 1)$. $d(\theta_5) = |\Gamma(\theta_5)|\theta_5(1) = \frac{q(q-1)^2}{2}$ and $m(\theta_5) = -\frac{q(q-1)}{2}$ and therefore $c(\theta_5)(1) = \frac{q^2(q-1)}{2}$.

For other characters by Lemmas 2.6, 2.7 we have

$$d(\chi_1(k,l)) = |\Gamma(\chi_1(k,l))|\chi_1(k,l)(1) \ge (q+1)^2(q^2+1)$$

and $m(\chi_1(k,l)) \ge 1$ and so $c(\chi_1(k,l))(1) \ge (q+1)^2(q^2+1)+1$. $d(\chi_4(k,l)) \ge (q-1)^2(q^2+1)$ and $m(\chi_4(k,l)) \ge 2q-1$ and so

$$c(\chi_4(k,l))(1) \ge q^2(q^2 - 2q + 2).$$

 $d(\chi_5(k)) \ge (q^2 - 1)^2$ and $m(\chi_5(k)) \ge q^2 - 1$ and so $c(\chi_5(k))(1) \ge q^2(q^2 - 1)$. An overall picture is provided by the Table 2

Now by Corollary 2.5 and above table we obtain

 $\min\{d(\chi): \chi \text{ is a faithful irreducible complex character of } G\} = \frac{q(q-1)^2}{2}$

and

 $\min\{c(\chi)(1): \chi \text{ is a faithful irreducible complex character of G}\} = \frac{q^2(q-1)}{2}.$

4. Quasi-permutation representations of the group Sz(q)

A group G is called a (ZT)-group if :

- (1) G is a doubly transitive group on 1 + N symbols,
- (2) the identity is the only element which leaves three distinct symbols invariant,
- (3) G contains no normal subgroup of order 1 + N, and
- (4) N is even.

There is a unique (ZT)-group of order $q^2(q-1)(q^2+1)$ for any odd power q of 2 (see [11, Theorem 8]). This group will be denoted here as Sz(q) and called a Suzuki group. The Suzuki groups are simple for all q > 2.

By [10] the Suzuki group G(q) is isomorphic to a subgroup of $SP_4(F_q)$ consisting of points left fixed by an involutive mapping of $SP_4(F_q)$ onto itself.

Now we shall identify $SP_4(K)^{\sigma}$ with the Suzuki group G(q), where $SP_4(K)^{\sigma}$ is the set composed of all $x \in SP_4(K)$ such that $x^{\sigma} = x$.

Let $K = F_q$, $q = 2^{2n+1}$ $(n \ge 1)$ and let θ be an automorphism of K defined by $\alpha \to \alpha^{2^n}, \alpha \in K$. It is easy to see that θ generates the Galois group of K over the prime field. Our purpose is to define an involutive mapping σ (which will not be an automorphism) of $SP_4(K)$ onto itself by making use of φ and θ so that the Suzuki group G(q) is isomorphic to the subgroup $SP_4(K)^{\sigma}$ of $SP_4(K)$ consisting of matrices left fixed by σ .

Using Suzuki's notation, G(q) is generated by $S(\alpha, \beta), M(\xi)$ and T:

$$S(\alpha,\beta) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ \alpha^{\theta} & 1 & 0 & 0 \\ \beta & \alpha & 1 & 0 \\ q(\alpha,\beta) & p(\alpha,\beta) & \alpha^{\theta} & 1 \end{pmatrix},$$

 $M(\xi) = \operatorname{diag}(\xi^{\theta}, \xi^{1-\theta}, \xi^{\theta-1}, \xi^{-\theta}),$

$$T = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

Define a matrix P by setting:

$$P = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

Then, one can easily verify that

$$PS(\alpha,\beta)P^{-1} = R(\alpha,\beta)^{-1}, \ PM(\xi)P^{-1} = h(\xi^{\theta}), \ PTP^{-1} = J.$$

Thus $x \to PxP^{-1}$ gives an isomorphism $G(q) \cong SP_4(K)^{\sigma}$. So Suzuki group is a simple group of order $q^2(q-1)(q^2+1)$.

Remark 1. The involution $\sigma: SP_4(K) \to SP_4(K)$ can not be an automorphism. For, if σ is so, then σ can be expressed as

$$x^{\sigma} = Ax^{\omega}A^{-1},$$

with $A \in GL_4(K)$ and an automorphism ω of K. Put $x = x_a(t) = I + tX_a$. Then $x^{\sigma} = x_b(t^{2\theta}) = I + t^{2\theta}X_b = I + t^{\omega}AX_aA^{-1}$. If we take t = 1, then $X_b = AX_aA^{-1}$. But this is absurd since $X_a = E_{12} - E_{43}$ is of rank 2 and $X_b = E_{24}$ is of rank 1.

The character table of Sz(q) is computed in [11], is as follows:

π_2°	1	-	-1	-1	0	0	$-\varepsilon_2^k(\pi_2^l)$
π_1^{\prime}	1		1	1	0	$-\varepsilon_1^j(\pi_1^l)$	0
π_0^{\prime}	1	1	0	0	$\varepsilon_0^i(\pi_0^l)$	0	0
ρ_0^{-1}	1	0	$-\theta\sqrt{-1}$	$\theta \sqrt{-1}$	1	-1	-1
ρ_0	1	0	$\theta \sqrt{-1}$	$-\theta\sqrt{-1}$	1	-1	-1
σ_0	1	0	θ^{-}	θ^{-}	1	$2\theta - 1$	$-2\theta - 1$
	1	q^2	heta(q-1)	heta(q-1)	$q^{2} + 1$	$(q-2\theta+1)(q-1)$	$(q+2\theta+1)(q-1)$
	1	${}^{\chi}$	ζ	Ś	ψ_i	μ_{j}	φ_k

Where ε_0 , varepsilon₁, ε_2 are primitive q - 1, $q + 2\theta + 1$, $q - 2\theta + 1$ -th root of 1, respectively.

In this table $q = 2\theta^2$ and the ε_i^i are defined as follows:

$$\varepsilon_0^i(\xi_0^j) = \varepsilon_0^{ij} + \varepsilon_0^{-ij} \text{ for } i = 1, 2, \dots, \frac{q}{2} - 1$$

where ξ_0 is a generator of cyclic group of order q-1.

$$\varepsilon_1^i(\xi_1^k) = \varepsilon_1^{ik} + \varepsilon_1^{ikq} + \varepsilon_1^{-ik} + \varepsilon_1^{-ikq} \text{ for } i = 1, 2, \dots, q + 2\theta$$

where ξ_1 is a generator of cyclic group of order $q + 2\theta + 1$.

$$\varepsilon_2^i(\xi_2^k) = \varepsilon_2^{ik} + \varepsilon_2^{ikq} + \varepsilon_2^{-ik} + \varepsilon_2^{-ikq} \text{ for } i = 1, 2, \dots, q + 2\theta$$

where ξ_2 is a generator of cyclic group of order $q - 2\theta + 1$.

Lemma 6. Let G = Sz(q), $q = 2^{2n+1}$, then all characters of G have Schur index 1.

Proof. See [8, Theorem 9].

Theorem 3. Let G = Sz(q), $q = 2^{2n+1}$, then $r(G) = 2\theta(q-1)$, c(G) = q(G) = q(G) $2\theta q$, where $\theta = 2^n$ and $q = 2\theta^2$.

Proof. Let G = Sz(q), $q = 2^{2n+1}$, by Lemma 4.1 the Schur index of every irreducible character is 1, therefor c(G) = q(G). The groups G = Sz(q) is simple, so their non-trivial irreducible characters are faithful and therefor we need to look at each faithful irreducible character ϑ say and calculate $d(\vartheta), c(\vartheta)(1)$.

By Table 3 we know χ is a rational valued character, so by Definition 2.2 and Lemma 2.4 we have:

$$d(\chi) = |\Gamma(\chi)|\chi(1) = q^2,$$

and $m(\chi) = 1$, and so $c(\chi)(1) = q^2 + 1$.

For the character ζ we have $|\Gamma(\zeta)| = 2$ and therefore:

$$d(\zeta) = |\Gamma(\zeta)|\zeta(1) = 2\theta(q-1),$$

and $m(\zeta) = 2\theta$, and so $c(\zeta)(1) = 2\theta q$.

In this way, by Lemmas 2.6, 2.7 we have

$$d(\psi_i) \ge q^2 + 1$$

and $c(\psi_i) > q^2 + 2$,

$$d(\mu_j) \ge (q - 2\theta + 1)(q - 1)$$

and $c(\mu_j) \ge q^2 - 2\theta q + 2\theta$, $d(\varphi_k) \ge (q + 2\theta + 1)(q - 1)$ and $c(\varphi_k) \ge q(q + 2\theta)$. The values are set out in the following table :

By observing the Corollary 2.5 and Table 4 we have:

 $\min\{d(\chi): \chi \text{ is a faithful irreducible complex character of } G\} = 2\theta(q-1)$

 $\min\{c(\chi)(1): \chi \text{ is a faithful irreducible complex character of } G\} = 2\theta q.$

	ABLE	4
_		_

θ	d(artheta)	c(artheta)(1)
χ	q^2	$q^2 + 1$
ζ	$2\theta(q-1)$	$2\theta q$
ψ_i	$\geq q^2 + 1$	$> q^2 + 1$
μ_j	$\geq (q - 2\theta + 1)(q - 1)$	$\geq q^2 - 2\theta q + 2\theta$
φ_k	$(q+2\theta+1)(q-1)$	$\geq q(q+2\theta)$

Hence $r(G) = 2\theta(q-1), c(G) = q(G) = 2\theta q.$

References

- H. Behravesh. Quasi-permutation representations of p-groups of class 2. J. London Math. Soc. (2), 55(2):251–260, 1997.
- [2] J. M. Burns, B. Goldsmith, B. Hartley, and R. Sandling. On quasi-permutation representations of finite groups. *Glasgow Math. J.*, 36(3):301–308, 1994.
- [3] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson. Atlas of finite groups. Oxford University Press, Eynsham, 1985. Maximal subgroups and ordinary characters for simple groups, With computational assistance from J. G. Thackray.
- [4] M. R. Darafsheh and M. Ghorbany. Quasi-permutation representations of the groups SU(3,q) and PSU(3,q). Iran. J. Sci. Technol. Trans. A Sci., 26:145–154, 2002.
- [5] M. R. Darafsheh and M. Ghorbany. Quasi-permutation representations of the groups SU(3,q²) and PSU(3,q²). Southeast Asian Bull. Math., 26(3):395–406, 2002.
- [6] M. R. Darafsheh, M. Ghorbany, A. Daneshkhah, and H. Behravesh. Quasi-permutation representations of the group GL₂(q). J. Algebra, 243(1):142–167, 2001.
- [7] H. Enomoto. The characters of the finite symplectic group Sp(4, q), $q = 2^{f}$. Osaka J. Math., 9:75–94, 1972.
- [8] R. Gow. On the Schur indices of characters of finite classical groups. J. London Math. Soc. (2), 24(1):135–147, 1981.
- [9] I. M. Isaacs. Character theory of finite groups. Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1976. Pure and Applied Mathematics, No. 69.
- [10] T. Ono. An identification of Suzuki groups with groups of generalized Lie type. Ann. of Math. (2), 75:251–259, 1962.
- [11] M. Suzuki. On a class of doubly transitive groups. Ann. of Math. (2), 75:105–145, 1962.
- [12] W. J. Wong. Linear groups analogous to permutation groups. J. Austral. Math. Soc., 3:180–184, 1963.

DEPARTMENT OF MATHEMATICS, IRAN UNIVERSITY OF SCIENCE AND TECHNOLOGY, EMAM, BEHSHAHR, MAZANDARAN, IRAN *E-mail address*: m-ghorbani@iust.ac.ir