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ON S-QUASINORMAL SUBGROUPS OF FINITE GROUP

JEHAD J. JARADEN

Abstract. A subgroup H of a group G is called S-quasinormal in G if
it permutes with every Sylow subgroup of G. In this paper, we extend the
study on the structure of a finite group under the assumption that some
subgroups of F ∗(G) are S-quasinormal in G.

1. Introduction

Throughout this paper, all groups are finite. Recall that two subgroups A
and B of a group G are said to permute if AB = BA. It is easily seen that A
and B permute iff the set AB is a subgroup of G. A subgroup A of the group
G is called quasinormal [19] or permutable [26, 8] in G if it permutes with all
subgroups of G. The permutable subgroups have many interesting properties
especially in the case when G is a finite group. It was observed by Ore [19] that
every permutable subgroup H of a finite group G is subnormal. By extending
this result, Ito and Szép have proved in [11] that for every permutable subgroup
A of a finite group G, A/AG is nilpotent. Here AG is the kernel of A, that is the
largest normal subgroup of G contained in A. Another important result related
to Ore’s result was obtained by Stonehewer in [26] in which he has proved that
every permutable subgroup of every finitely generated group G is subnormal in
G.

Some later, Maier and Schmid proved in [18] that for every permutable sub-
group A of G it is true that AG/AG ⊆ Z∞(G/AG). Here AG is the normal closure
of A in G that is the intersection of all such normal subgroups of G which contain
A. This result shows that ”difference” between normality and permutability in
general is small and several authors have investigated subgroups of finite groups
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which are permutable with all subgroups of some given system of subgroups.
In this connection we first of all have to remind here about the following paper
by Kegel [15] A subgroup A of a group G is called s-quasinormal if it permutes
with all Sylow subgroups of G. It was discovered by Kegel [15] and Deskins
[7] that subgroups of this kind have the properties similar to the properties of
permutable subgroups and, in particular, they are subnormal. After these two
papers several authors were studying and applying s-quasinormal subgroups.
My main goal here is to discuss some new applications of such subgroups.

Several authors have investigated the structure of a group G under the as-
sumption that the maximal or the minimal subgroups of the Sylow subgroups of
some subgroups of G are well situated in G. Buckly in [6] proved that a group
of odd order is supersoluble if all its minimal subgroups are normal. Later on,
Srinivasan in [14] showed that a group G is supersoluble if it has a normal sub-
group N with supersoluble quotient G/N such that all maximal subgroups of the
Sylow subgroups of N are normal in G. Ramadan proved in [20]: If G is a solu-
ble group and all maximal subgroups of any Sylow subgroup of F (G) are normal
in G, then G is supersoluble. Some later several authors were studying groups
G in which the maximal or the minimal subgroups of the Sylow subgroups of
some subgroups of G are s-quasinormal in G (see for example [24, 5]). The most
general results in this trend were obtained in [16, 17] where the following two
nice theorems were proved:

Theorem A. Let F be a saturated formation containing all supersoluble groups
and G be a group with a normal subgroup E such that G/N ∈ F . If all minimal
subgroups and all cyclic subgroups with order 4 of F ∗(N) are s-quasinormal G,
then G ∈ F (see [17, Theorem 3.1].)

Theorem B. Let F be a saturated formation containing all supersoluble groups
and G be a group with a normal subgroup E such that G/N ∈ F . If all maximal
subgroups of the Sylow subgroups of F ∗(E) are s-quasinormal in G, then G ∈ F
(see [16, Theorem 3.1]).

In the connection with Theorems A, B the following natural question arises:
Let F be a saturated formation containing all supersoluble groups and G be a
group with a normal soluble subgroup E such that G/E ∈ F . Is the group G in
F if for every Sylow subgroup P of F (G) at least one of the following conditions
holds:

(1) The maximal subgroups of P are s-quasinormal in G;
(2) The minimal subgroups of P and all its cyclic subgroups with order 4

are s-quasinormal in G?
We prove the following theorem which gives the positive answer to this ques-

tion.

Theorem C. Let F be a saturated formation containing all supersoluble groups
and G be a group with a normal subgroup E such that G/E ∈ F . Suppose
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that every non-cyclic Sylow subgroup P of F ∗(N) has a subgroup D such that
1 < |D| < |P | and all subgroups H of P with order |H| = |D| and with order
2|D| (if P is a non-abelian 2-group) are s-quasinormal in G. Then G ∈ F .

Finally, note that some results of the papers [6, 7, 8, 11, 15, 18, 19, 26, 24]
and, in particular, the mentioned above main results in [16, 17] may be obtained
as special cases of this theorem (see Section 4).

2. Preliminaries

Recall that a formation is a hypomorph F of groups such that each group
G has a smallest normal subgroup (denoted by GF ) whose quotient is still in
F . A formation F is said to be saturated if it contains each group G with
G/Φ(G) ∈ F . In this paper we use U to denote the class of the supersoluble
groups; ZU∞(G) denotes the U -hypercenter of a group G that is the product of
all such normal subgroups H of G whose G-chief factors have prime order.

Lemma 2.1 ([22, Theorem 9.15]). G/CG(ZU∞(G)) ∈ U .

Lemma 2.2 ([13, Lemma 2.2]). Let G be a group and P = P1 × · · · × Pt be a
p-subgroup of G where t > 1 and P1, . . . , Pt are minimal normal subgroups of G.
Assume that P has a subgroup D such that 1 < |D| < |P | and every subgroup
H of P with |H| = |D| is normal in G. Then the order of every subgroup Pi is
prime.

Lemma 2.3 ([13, Lemma 2.4]). Let p be odd prime and P be a normal p-
subgroup of a group G. Assume that every minimal subgroup of P is normal
in G. Then every minimal subgroup of G/Ωi(G) is normal in G/Ωi(G) for all
i = 1, 2, . . . In particular, P ≤ ZU∞(G).

We shall need in our proofs the following facts about s-quasinormal subgroups.

Lemma 2.4 ([15]). [Let G be a group and H ≤ K ≤ G,T ≤ G. Then
(1) If H is s-quasinormal in G, then H is s-quasinormal in K.
(2) Suppose that H is normal in G. Then K/H is s-quasinormalin G if and

only if K is s-quasinormal in G.
(3) If H s-quasinormal is in G, then H is subnormal in G.
(4) If H and T are s-quasinormal in G, then < H,T > does.

The following observation is well known (see, for example, [21, Lemma A]).

Lemma 2.5. If H is a s-quasinormal subgroup of the group G and H is a
p-group for some prime p, then Op(G) ≤ NG(H).

Lemma 2.6. Let N be an elementary abelian normal p-subgroup of a group G.
Assume that N has a subgroup D such that 1 < |D| < |N | and every subgroup H
of N satisfying H| = |D| is s-quasinormal in G. Then some maximal subgroup
of N is normal in G.
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Proof. Assume that this lemma is false and G is a counterexample of minimal
order. Let M be a maximal subgroup of N . Then N = NG(M) 6= G and by
Lemma 2.5, M is s-quasinormal in G, as M is the product of some s-quasinormal
in G subgroups. By Lemma 2.5, Op(G) ≤ NG(M) and so |G : NG(M)| = pn for
some natural n > 0. Thus for the set Σ of all maximal subgroups of N we have
p||Σ|, which contradicts [9, Lemma 8.5(d)]. ¤

Lemma 2.7. Let F be a saturated formation containing all nilpotent groups
and let G be a group with the soluble F-residual P = GF . Suppose that every
maximal subgroup of G not containing P belongs to F . Then P = GF is a p-
group for some prime p and if every cyclic subgroup of P with prime order and
order 4 (in the case when p = 2 and P is non-abelian) is s-quasinormal in G,
then |P/Φ(P )| = p.

Proof. By [22, Theorem 24.2], P = GF is a p-group for some prime p and the
following hold:

(1) P/Φ(P ) is a G-chief factor of P ;
(2) P is a group of exponent p or exponent 4 (if p = 2 and P is non-abelian).

Assume that every cyclic subgroup of P with prime order and order 4 (if p = 2
and P is non-abelian) is s-quasinormal in G. Let Φ = Φ(P ), X/Φ is a subgroup
of P/Φ with prime order, x ∈ X�Φ and L = 〈x〉. Then |L| = p or |L| = 4 and
so it is s-quasinormal in G.

Then by Lemma 2.4, LΦ(P )/Φ(P ) = X/Φ(P ) is s-quasinormalin G/Φ(P ).
Now by Lemma 2.6 we have to conclude that |P/Φ(P )| = p. ¤

Lemma 2.8 ([22, Lemma 7.9]). Let P be a nilpotent normal subgroup of a group
G. If P ∩ Φ(G) = 1, then P is the direct product of some minimal normal
subgroup of G.

Lemma 2.9 ([9, Theorem 3.5]). Let A, B be normal subgroups of a group G and
A ≤ Φ(G). Suppose that A ≤ B and B/A is nilpotent. Then B is nilpotent.

Let p be a prime. A group G is said to be p-closed if a Sylow p-subgroup of
G is normal.

Lemma 2.10 ([22, p. 34]). Let p be a prime. Then the class of all p-closed
groups is a saturated formation.

Lemma 2.11 ([13, Lemma 2.10]). Let F be a saturated formation containing U
and G be a group with a normal subgroup E such that G/E ∈ F . If E is cyclic,
then G ∈ F .

Lemma 2.12 ([23, Theorem 1], [10, Theorem 1]). Let A be a p′-group of auto-
morphisms of the p-group P of odd order. Assume that every subgroup of P with
prime order is A-invariant. Then A is cyclic.
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Lemma 2.13 ([13, 21, Lemma 2.12]). Let G = AB where A, B are normal
subgroups of G. Suppose that A is a p-group for some prime p and Op′(G) = 1.
Let F be a saturated formation and B ∈ F . Then G ∈ F .

The generalized Fitting subgroup F ∗(G) of a group G is the product of all
normal quasinilpotent subgroups of G. We shall need in our proofs the following
well known facts about this subgroup (see Chapter X in [16]).

Lemma 2.14. Let G be a group. Then

(1) If N is a normal subgroup of G, then F ∗(N) ≤ F ∗(G).
(2) If N is a normal subgroup of G and N ≤ F ∗(G), then F ∗(G)/N ≤

F ∗(G/N).
(3) F (G) ≤ F ∗(G) = F ∗(F ∗(G)). If F ∗(G) is soluble, then F ∗(G) = F (G).
(4) F ∗(G) = F (G)E(G) and F (G) ∩ E(G) = Z(E(G)) where E(G) is the

layer G (see p. 128 in [13]).
(5) CG(F ∗(G)) ≤ F (G).

Lemma 2.15 ([14, Lemma 2.3(6)]). . Let P be a normal subgroup of a group
G. Then

F ∗(G/Φ(P )) = F ∗(G)/Φ(P ).

Lemma 2.16 ([14, Lemma 2.3(7)]). Let P be a normal p-subgroup of a group
G contained in Z(G). Then F ∗(G/P ) = F ∗(G)/P .

Lemma 2.17 ([15, Theorem 1], [10, Theorem 1]). Let A be a p′-group of auto-
morphisms of the p-group P of odd order. Assume that every subgroup of P with
prime order is Alemma-invariant. Then A is cyclic.

Lemma 2.18 ([10, Lemma 2.11]). Let G = AB where A, B are normal sub-
groups of G. Suppose that A is a p-group for some prime p and Op′(G) = 1. Let
F be a saturated formation and B ∈ F . Then G ∈ F .

Finally, we shall need the following results which are proved in [12].

Lemma 2.19. Let F be a saturated formation containing all supersoluble groups
and G be a group with a normal subgroup E such that G/E ∈ F . Suppose that
every non-cyclic Sylow subgroup P of E has a subgroup D such that 1 < |D| <
|P | and all subgroups H of P with order |H| = |D| and with order 2|D| (if P is
a non-abelian 2-group) are s-quasinormal in G. Then G ∈ F .

Lemma 2.20. Let F be a saturated formation containing all supersoluble groups
and G be a group with a soluble normal subgroup E such that G/E ∈ F . Suppose
that every non-cyclic Sylow subgroup P of F (E) has a subgroup D such that
1 < |D| < |P | and all subgroups H of P with order |H| = |D| and with order
2|D| (if P is a non-abelian 2-group) are s-quasinormal in G. Then G ∈ F .
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3. The proof of Theorem C.

Proof of Theorem C. Assume that this theorem is false and let G be a counterex-
ample with minimal |G||E|. Let F=F(E) and let p be the largest prime divisor
of |F |. Let P be the Sylow p-subgroup of F , P0 = Ω1(P ) and C = CG(P0). It
is clear that C is normal in G. We divide the proof into the following steps:

(1) F ∗ = F 6= E and CG(F ) = CG(F ∗) ≤ F .
By Lemma 2.6(1) the hypothesis is still true for F ∗ (respectively F ∗), and so

F ∗ is supersoluble by Theorem 1.2. Hence F ∗ = F , by Lemma 2.14(3). Thus if
F = E, then G ∈ F , by Lemma 2-20, which contradicts the choice of G. Hence
F ∗ = F 6= E. Finally, by Lemma 2.14(5), CG(F ) = CG(F ∗) ≤ F .

(2) Every proper normal subgroup X of G containing F is supersoluble.
By Lemma 2.14(1), F ∗(X) ≤ F ∗ = F ≤ X and so F ∗(X) = F ∗. Thus the

hypothesis is still true for X (respectively X) and so X is supersoluble, by the
choice of G.

(3) If E 6= G, E is supersoluble (this directly follows from (2).
(4) Assume that E is soluble and let V/P = F (E/P ) and Q be a Sylow

q-subgroup of V where q divides |V/P |. Then q 6= p and either Q ≤ F or p > q
and CQ(P ) = 1.

Since V/P is nilpotent and QP/P is a Sylow q-subgroup of V/P , QP/P is
characteristic in V/P and so QP is normal in E. Thus q 6= p. By Theorem
1.2, QP is supersoluble. Assume q > p. Then Q is normal in QP and so
Q ≤ F = F (E). Next let p > q. Then p > 2 and since p is the minimal
prime divisor of |F |, F is a q′-subgroup. Now let U be a Sylow r-subgroup of
F where r 6= p. Then r 6= q and so [U,Q] ≤ P . Assume that for some x ∈ Q
we have x ∈ CE(P ). Then by [18, Theorem 3.6] and since V/P is nilpotent,
[U, 〈x〉] = [U, 〈x〉, 〈x〉] = 1 and so x ∈ CG(F ) ≤ F , by (1). Hence CQ(P ) = 1.

(5) p > 2.
Assume that p = 2. First suppose that E is soluble. In this case by (4)

we have F/P = F (E/P ). Besides, by (1) and Lemma 2.14(3), F ∗(E/P ) =
F (E/P ) = F ∗/P . Thus by Lemma 2.6 the hypothesis is still true for G/P
respectively E/P , since G/E ' (G/P )/(E/P ) ∈ F . Therefore G/P ∈ F and
so G ∈ F , by Theorem 1.2. This contradiction shows that E is non-soluble. In
this case p is the largest prime divisor of |F | and so by (1), F ∗ = F is a 2-group.
Let Q be a subgroup of E with prime order q where q 6= 2 and let X = FQ. By
Theorem 1.2, X is supersoluble and so Q is normal in X. Thus Q ≤ CE(F ).
But by (1), CE(F ) = CE(F ∗) ≤ F , a contradiction. Hence we have (5).

(6) Every subgroup of P has no a supersoluble supplement in G.
Assume that for some subgroup H of P we have G = HT where T is super-

soluble. Then G/P ' T/T ∩ P is supersoluble and so G ∈ F , by Theorem 1.2,
a contradiction.

(7) Some minimal subgroup of P is not quasinormal in G.
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Suppose that every minimal subgroup of P is quasinormal in G. First suppose
that E is soluble. Let V/P = F (E/P ) and Q be a Sylow q-subgroup of V where
q divides |V/P |. Then by (4) either Q ≤ F or CQ(P ) = 1. In the second case,
Q is cyclic, by (5) and Lemma 2.17. Thus by Lemma 2.6(4) the hypothesis is
still true for G/P (respectively E/P ) and so G/P ∈ F , by the choice of G. But
then G ∈ F , by Theorem 1.2. This contradiction shows that E is not soluble.
Note that in this case E = G, by (3). We show that every minimal subgroup
L of P is normal in G. But first we prove that Op(G) = G. Indeed, assume
that Op(G) 6= G. By Lemma 2.14(1), F ∗(Op(G)) ≤ F ∗. Hence F ∗(Op(G)) =
F ∗ ∩ Op(G) = F ∩ Op(G) and so by (5) and Lemma 2.6 the hypothesis is still
true for Op(G) (respectively Op(G)). Thus Op(G) is supersoluble, by the choice
of G. But then G is soluble and so E is soluble, a contradiction. Therefore we
have to conclude that Op(G) = G and so by Lemma 2.7, G = Op(G) ≤ NG(L),
since L is quasinormal in G. Therefore every minimal subgroup of P is normal
in G and hence P0 ≤ Z(F ). Next we show that the hypothesis is still true
for G/P0 (respectively C/P0). Indeed, by Lemma 2.1, G/C is supersoluble
and hence (G/P0)/(C/P0) ' G/C ∈ F . Clearly F ∗ = F ≤ F ∗(C) and by
Lemma 2.14(1), F ∗(C) ≤ F ∗. Hence F ∗(C) = F ∗ and so by Lemma 2.16,
F ∗(C/P0) = F ∗(C)/P0 = F ∗/P0 = F/P0, since P0 ≤ Z(C). Now by (5)
and Lemmas 2.2, 2.6 we see that the hypothesis is still true for G/P0 and so
G/P0 ∈ F , by the choice of G. But P0 ≤ ZU∞(G) and so G ∈ F , by Lemma 2.13.
This contradiction completes the proof of (7).

(8) P is not cyclic (this directly follows from (6) and (7)).
By (8), P is not cyclic and so by hypothesis and by (6), P has a subgroup

D such that 1 < |D| < |P | and every subgroup H of P with |H| = |D| is
s-quasinormal in G.

(9) |D| > p.
Suppose that |D| = p. By (7), P has a subgroup H such that |H| = p and H

is not quasinormal in G. By (6) and Lemma 2.6(5) the subgroup H has a normal
complement T in G. Then the hypothesis is true for G (respectively V = T ∩E).
Indeed, evidently G/V ∈ F and F ∗(V ) ≤ F ∗(E). On the other hand, since
|G : T | = p, every Sylow q-subgroup of F = F ∗ where q 6= p is contained in
T . Thus the hypothesis is still true for G (respectively V ), by Lemma 2.6. But
since T is a proper subgroup of G and ET = G, |V | < |E|, which contradicts
the choice of G and the subgroup E. This contradiction completes the proof of
(9).

(10) If L is a minimal normal subgroup of G and L ≤ P , then |L| > p.
Assume that |L| = p. Let C0 = CE(L). Then the hypothesis is true for G/L

(respectively C0/L). Indeed, clearly, G/C0 = G/E ∩CG(L) ∈ F . Besides, since
L ≤ Z(C0) and evidently F = F ∗ ≤ C0 and L ≤ Z(F ), we have F ∗(C0/L) =
F ∗/L. On the other hand, if H/L is a subgroup of G/L such that |H| = |D|,
we have 1 < |H/L| < |P/L|, by (9). Besides, H/L is s-quasinormal in G/L, by
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Lemma 2.6(2). Now, by Lemma 2.6(4) and by (5) we see that the hypothesis
is still true for G/L. Hence G/L ∈ F and so G ∈ F , by Lemma 2.13, a
contradiction.

(11) Φ(G) ∩ P 6= 1 and if L is a minimal normal subgroup of G contained in
Φ(G) ∩ P , then F ∗(E/L) 6= F ∗/L.

Suppose that Φ(G) ∩ P = 1. Then P is the direct product of some minimal
normal subgroups of G, by Lemma 2.10. Hence by Lemma 2.8, P has a maxi-
mal subgroup M such which is normal in G. Now by [11, Theorem (9.13)] for
some minimal normal subgroup L of G contained in P we have |L| = p, which
contradicts (10). Thus Φ(G)∩P 6= 1. Let L ≤ Φ(G)∩P where L is some mini-
mal normal subgroup of G. Assume that F ∗(E/L) = F ∗/L. We show that the
hypothesis is still true for G/L (respectively E/L). By Lemma 2.11, |L| ≤ |D|
and so the hypothesis is true for G/L in the case |P : D| = p. Besides, by (5)
the hypothesis is true for G/L in the case |L| < |D|. So let |P : D| > p and
|L| = |D|. By (10), L is non-cyclic and so every subgroup of G containing L is
non-cyclic. Let L ≤ K, M ≤ K where M 6= L and L,M are maximal subgroups
of K. We have only to show that K is s-quasinormal in G. It is evident if M is
quasinormal in G. Now let M is not quasinormal in G. Then by Lemma 2.6(5),
G has a normal subgroup S such that MS = G = KS and |G : S| = p. Since
L ≤ Φ(G), we have L ≤ S and so S ∩K = L. Therefore K is s-quasinormal in
G. Thus the hypothesis is true for G/L and G/L ∈ F , by the choice of G. But
then G ∈ F , since L ≤ Φ(G) and the formation F is saturated, by hypothesis.
This contradiction shows that F ∗(E/L) 6= F ∗/L.

(12) E = G is not soluble.
Assume that E is soluble. Let L be a minimal normal subgroup of G contained

in Φ(G)∩P . By Lemma 2.11, F/L = F (E/L). On the other hand, F ∗(E/L) =
F (E/L), by Lemma 2.14(3). Hence by (1), F ∗(E/L) = F (E/L) = F ∗/L, which
contradicts (11). Therefore E is not soluble and so E = G, by (3).

(13) G has a unique maximal normal subgroup containing F , M say, M is
supersoluble and G/M is non-abelian simple (this directly follows from (2) and
(12)).

(14) G/F is a simple non-abelian group and if L is a minimal normal subgroup
of G contained in Φ(G) ∩ P , then G/L is a quasinilpotent group.

Let L be a minimal normal subgroup of G contained in Φ(G) ∩ P . Then by
(11), F ∗(E/L) 6= F ∗/L. Thus F/L = F ∗/L is a proper subgroup of F ∗(G/L), by
Lemma 2.14(2). By Lemma 2.14(4), F ∗(G/L) = F (G/L)E(G/L) where E(G/L)
is the layer of G/L. By (13) every chief series of G has the only non-abelian
factor. But E(G/L)/Z(E(G/L)) is a direct product of simple non-abelian
groups and so F ∗(G/L) = G/L is quasinilpotent group, since by Lemma 2.11,
F (G/L) = F/L. Since by Lemma 2.14(4), Z(E(G/L)) = F (G/L) ∩ E(G/L),
then G/F ' (G/L)/(F/L) is a simple non-abelian group.

(15) F ∗ = P .
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Assume that P 6= F and let Q be a Sylow q-subgroup of F where q 6= p.
By (14), Q ≤ Z∞(G). Hence by Lemma 2.16, F ∗(G/Q) = F ∗/Q and so by
Lemma 2.6 the hypothesis is still true for G/Q (respectively G/Q) and so G/Q
is supersoluble, by the choice of G. Hence G is soluble, which contradicts (12).
Hence we have (15).

(16) Φ(P ) = 1.
Assume that Φ(P ) 6= 1 and let L be a minimal normal subgroup of G con-

tained in Φ(P ). Then by (14), G/L is quasinilpotent and so G is quasinilpotent,
by Lemma 2.11. But then F = F ∗ = G, a contradiction. So we have (16).

(17) If H is a normal subgroup of P and H is s-quasinormal in G, then H is
normal in G.

Indeed, by (14) and (15), POp(G) = G and so by Lemma 2.7, H is normal
in G.

(18) |P : D| > p.
Assume that |P : D| = p. By (11), Φ(G) ∩ P 6= 1 and let N be a minimal

normal subgroup of G contained in Φ(G) ∩ P . By (16) for some maximal sub-
group V of P we have P = NV . By the hypothesis V is s-quasinormal in G.
By (17) we have V is normal in G, since V is a maximal subgroup of P . But,
by (10), |N | > p and so N 6= N ∩ V 6= 1, which contradicts minimality of N .
Thus we have (18).

(19) Op′(G) = 1.
Indeed, assume that Op′(G) 6= 1. Then by (13), G = Op′(G)P = Op′(G)×P =

F ∗ = F , a contradiction.
(20) Op(G) = G.
Assume Op(G) 6= G. Then G has a normal subgroup T such that |G : T | = p.

We show that T satisfies the hypothesis. First note that F ∩ T = F ∗(T ).
Indeed, clearly, F ∩ T ≤ F ∗(T ). By (14), T/F ∩ T is simple non-abelian. Thus
if F ∩ T 6= F ∗(T ), then F ∗(T ) = T and so G = TF = F ∗ = F is nilpotent,
a contradiction. Hence F ∩ T = F ∗(T ) and so the hypothesis is still true for
T , by (18). Therefore T ∈ F and so by Lemma 2.18 and by (19), G ∈ F , a
contradiction.

(21) Every subgroup H of P satisfying |H| = |D| is normal G (this directly
follows from (20) and Lemma 2.7).

Final contradiction.
Let N be a minimal normal subgroup of G contained in P . By (16) for some

maximal subgroup M of P we have P = NM . Let H be a subgroup of P such
that H ≤ M and |H| = |D|. Then by (21), H is normal in G and evidently
N 6⊆ H. Hence N ∩ H = 1 and so G has a minimal normal subgroup L 6= N
which contained in P . Then by (11) and (14) at least one of the subgroups N , L
has prime order, which contradicts (10). This contradiction completes the proof
of this theorem. ¤
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4. Some applications

Finally, consider some applications of Theorem C.

Corollary 4.1 ([7]). Let G be a group of odd order. If all subgroups of G of
prime order are normal in G, then G is supersoluble.

Corollary 4.2 ([24]). Let G be a group and E a normal subgroup of G with
supersoluble quotient. Suppose that all minimal subgroups of E and all its cyclic
subgroups with order 4 are s-quasinormal in G. Then G is supersoluble.

Corollary 4.3 ([5]). Let F be a saturated formation containing U and G a group
with normal subgroup E such that G/E ∈ F . Assume that a Sylow 2-subgroup
of G is abelian. If all minimal subgroups of E are permutable in G, then G ∈ F .

Corollary 4.4 ([5]). Let F be a saturated formation containing U and G a group
with a soluble normal subgroup E such that G/E ∈ F . If all minimal subgroups
and all cyclic subgroups with order 4 of E are in G, then G ∈ F .

Corollary 4.5 ([20]). Let G be a soluble group. If all maximal subgroups of the
Sylow subgroups of F (E) are normal in G, then G is supersoluble.

Corollary 4.6 ([4]). Let G be a group and E a soluble normal subgroup of
G with supersoluble quotient G/E. Suppose that all maximal subgroups of any
Sylow subgroup of F (E) are s-quasinormal in G. Then G is supersoluble.

Corollary 4.7 ([3]). Let F be a saturated formation containing U and G be
a group with a soluble normal subgroup E such that G/E ∈ F . If all minimal
subgroups and all cyclic subgroups with order 4 of F (E) are s-quasinormal in G,
then G ∈ F .
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