CERTAIN CLASS OF HARMONIC STARLIKE FUNCTIONS WITH SOME MISSING COEFFICIENTS

S. M. KHARINAR AND MEENA MORE

Abstract

In this paper we have introduced a new class $J_{H}(\alpha, \beta, \gamma)$ of Harmonic Univalent functions in the unit disk $E=\{z ;|z|<1\}$ on the lines of [3] and [4], but with some missing coefficient. We have studied various properties such as coefficient estimates, extreme points, convolution and their related results.

1. Introduction

The class of functions of the form,

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}
$$

that are analytic univalent and normalized in the unit disc E, is denoted by S. The class K of convex functions and class S^{*} of starlike functions are two widely investigated subclasses of S.

A continuous function $f=u+i v$ defined in a domain $D \subseteq C$ is harmonic in D if u and v are real Harmonic in D. In any simply connected sub domain of D we can write,

$$
\begin{equation*}
f=h+\bar{g} \tag{1.1}
\end{equation*}
$$

where h and g are analytic, h is called the analytic and g the coanalytic part of f. In this paper we have introduced a new class $J_{H}(\alpha, \beta, \gamma)$ of functions of the form (1.1) namely $f=h+\bar{g}$ that are Harmonic Univalent and sense preserving

[^0]in the unit disk E with $f(0)=f^{\prime}(0)-1=0$, where h and g are of the form
\[

$$
\begin{equation*}
h(z)=z-\sum_{n=2}^{\infty} a_{n+1} z^{n+1} \text { and } g(z)=\sum_{n=1}^{\infty} b_{n+1} z^{n+1} \tag{1.2}
\end{equation*}
$$

\]

\bar{J}_{H} is the subclass of J.
For $0 \leq \alpha<1, \bar{J}_{H}$ denotes the subclass of J consisting of harmonic starlike functions of order α satisfying,

$$
\frac{\partial}{\partial \theta}\left(\arg f\left(r e^{i \theta}\right)\right) \geq \alpha ; \quad|z|=r<1
$$

Clunie and Sheil - Small [3] and Jahangiri [4] studied Harmonic starlike functions of order α and Rosey et. al. [6] considered the Goodman-Ronning-Type harmonic univalent functions which satisfies the condition

$$
\operatorname{Re}\left\{\left(1+e^{i \alpha}\right) \frac{z f^{\prime}}{f}-e^{i \alpha}\right\} \geq 0
$$

Definition. A function $f \in J_{H}(\alpha, \beta, \gamma)$ if it satisfies the condition

$$
\begin{equation*}
\operatorname{Re}\left\{\left(1+e^{i \alpha}\right) \frac{z f^{\prime}}{f}-\gamma e^{i \alpha}\right\} \geq \beta \tag{1.3}
\end{equation*}
$$

$0 \leq \alpha<1,0 \leq \beta<1, \frac{1}{2}<\gamma \leq 1$ where

$$
z^{\prime}=\frac{\partial}{\partial \theta}\left(z=r e^{i \theta}\right) ; \quad f^{\prime}(z)=\frac{\partial}{\partial \theta} f\left(r e^{i \theta}\right)
$$

α, β, γ and θ are real.
Let \bar{J}_{H} denote a subclass of $J(\alpha, \beta, \gamma)$ consisting of functions $f=h+\bar{g}$ such that h and g are of the form

$$
\begin{equation*}
h(z)=z-\sum_{n=2}^{\infty} a_{n+1} z^{n+1} \text { and } g(z)=\sum_{n=1}^{\infty} b_{n+1} z^{n+1}, \quad a_{n+1} \geq 0, b_{n+1} \geq 0 \tag{1.4}
\end{equation*}
$$

2. Coefficient Estimates

Theorem 1. Let $f=h+\bar{g}$, where h and g are given by (1.4). Furthermore let

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left\{\frac{(2 n-\beta-\gamma+2)}{(2-\beta-\gamma)}\left|a_{n+1}\right|+\frac{(2 n+\beta+\gamma+2)}{(2-\beta-\gamma)}\left|b_{n+1}\right|\right\} \leq 2 \tag{2.1}
\end{equation*}
$$

where $a_{1}=1,0 \leq \beta<1$ and $\frac{1}{2}<\gamma \leq 1$. Then f is harmonic univalent in unit disc E and $f \in \bar{J}_{H}(\alpha, \beta, \gamma)$.

Proof. We first observe that f is locally univalent and orientation preserving in unit disc E. This is because

$$
\begin{aligned}
\left|h^{\prime}(z)\right| & \geq 1-\sum_{n=2}^{\infty}(n+1)\left|a_{n+1}\right| r^{n}>1-\sum_{n=2}^{\infty}(n+1)\left|a_{n+1}\right| \\
& \geq 1-\sum_{n=2}^{\infty} \frac{(2 n-\beta-\gamma+2)}{(2-\beta-\gamma)}\left|a_{n+1}\right| \geq \sum_{n=2}^{\infty} \frac{(2 n+\beta+\gamma+2)}{(2-\beta-\gamma)}\left|b_{n+1}\right| \\
& \geq \sum_{n=1}^{\infty}(n+1)\left|b_{n+1}\right| \geq \sum_{n=1}^{\infty}(n+1)\left|b_{n+1}\right| r^{n} \geq g^{\prime}(z) .
\end{aligned}
$$

In order to show that f is univalent in E we show that $f\left(z_{1}\right) \neq f\left(z_{2}\right)$ whenever $z_{1} \neq z_{2}$. Since E is simply connected and convex we have $z(\lambda)=(1-\lambda) z_{1}+\lambda z_{2} \in$ E if $0 \leq \lambda \leq 1$ and if $z_{1}, z_{2} \in E$ so that $z_{1} \neq z_{2}$. Then we write,

$$
f\left(z_{2}\right)-f\left(z_{1}\right)=\int_{0}^{1}\left[\left(z_{2}-z_{1}\right) h^{\prime}(z(t))+\overline{\left(z_{2}-z_{1}\right) g^{\prime}(z(t))}\right] d t
$$

Dividing by $z_{2}-z_{1} \neq 0$ and taking the real part we have,

$$
\begin{align*}
\operatorname{Re}\left\{\frac{f\left(z_{2}\right)-f\left(z_{1}\right)}{z_{2}-z_{1}}\right\} & =\int_{0}^{1} \operatorname{Re}\left[h^{\prime}(z(t))+\frac{\overline{\left(z_{2}-z_{1}\right)}}{\left(z_{2}-z_{1}\right)} \overline{g^{\prime}(z(t))}\right] d t \tag{2.2}\\
& >\int_{0}^{1} \operatorname{Re}\left[h^{\prime}(z(t))-\left|g^{\prime}(z(t))\right|\right] d t
\end{align*}
$$

on the other hand,

$$
\begin{aligned}
& \operatorname{Re}\left(h^{\prime}(z)-\left|g^{\prime}(z)\right|\right) \geq \operatorname{Re} h^{\prime}(z)-\sum_{n=1}^{\infty}(n+1)\left|b_{n+1}\right| \\
& \geq 1-\sum_{n=2}^{\infty}(n+1)\left|a_{n+1}\right|-\sum_{n=1}^{\infty}(n+1)\left|b_{n+1}\right| \\
& \geq 1-\sum_{n=2}^{\infty} \frac{(2 n-\beta-\gamma+2)}{(2-\beta-\gamma)}\left|a_{n+1}\right| \\
& \quad-\sum_{n=1}^{\infty} \frac{(2 n+\beta+\gamma+2)}{(2-\beta-\gamma)}\left|b_{n+1}\right| \\
& \geq 0
\end{aligned}
$$

using (2.1). This along with inequality (2.2) leads to the univalence of f. According to the condition (1.2), it suffices to show that (2.1) holds if

$$
\operatorname{Re}\left\{\frac{\left(1+e^{i \alpha}\right)\left(z h^{\prime}(z)-z \overline{g^{\prime}(z)}\right)-\gamma e^{i \alpha}(h(z)+\overline{g(z)})}{h(z)+\overline{g(z)}}\right\}=\operatorname{Re} \frac{A(z)}{B(z)} \geq \beta
$$

where $z=r e^{i \theta}, 0 \leq \theta \leq 2 \pi, 0 \leq r<1, \frac{1}{2}<\gamma \leq 1$.

Let $A(z)=\left(1+e^{i \alpha}\right)\left(z h^{\prime}(z)-z \overline{g^{\prime}(z)}\right)-\gamma e^{i \alpha}(h(z)+\overline{g(z)})$ and $B(z)=h(z)+\overline{g(z)}$. Since $\operatorname{Re}(w) \geq \beta$ if and only if $|\gamma-\beta+w| \geq|\gamma+\beta-w|$. It is enough to show that

$$
\begin{equation*}
|A(z)+(1-\beta) B(z)|-|A(z)-(1+\beta) B(z)| \geq 0 \tag{2.3}
\end{equation*}
$$

Substitute for $A(z)$ and $B(z)$ in (2.3) to yield

$$
\begin{aligned}
& \mid(1-\beta) h(z)+\left(1+e^{i \alpha}\right) z h^{\prime}(z)-\gamma e^{i \alpha} h(z) \\
& +\overline{(1-\beta) g(z)-\left(1+e^{i \alpha}\right) z g^{\prime}(z)-\gamma e^{i \alpha} g(z)} \\
& -\mid(1+\beta) h(z)-\left(1+e^{i \alpha}\right) z h^{\prime}(z)+\gamma e^{i \alpha} h(z) \\
& +\overline{(1+\beta) g(z)+\left(1+e^{i \alpha}\right) z g^{\prime}(z)+\gamma e^{i \alpha} g(z)} \\
& =\mid(2-\beta) z+z e^{i \alpha}(1-\gamma)-\sum_{n=2}^{\infty}\left[(2+n-\beta)+e^{i \alpha}(n+1-\gamma)\right] a_{n+1} z^{n+1} \\
& -\sum_{n=1}^{\infty} \overline{\left[(n+\beta)+e^{i \alpha}(1+n+\gamma)\right] b_{n+1} z^{n+1}} \\
& -\mid \beta z+z e^{i \alpha}(1-\gamma)+\sum_{n=2}^{\infty}\left[(n-\beta)+e^{i \alpha}(1+n-\gamma)\right] a_{n+1} z^{n+1} \\
& +\sum_{n=1}^{\infty} \overline{\left[(2+\beta+n)+e^{i \alpha}(1+n+\gamma)\right] b_{n+1} z^{n+1}} \\
& \geq(3-\beta-\gamma)|z|-\sum_{n=2}^{\infty}(3+2 n-\beta-\gamma)\left|a_{n+1}\right||z|^{n+1} \\
& -\sum_{n=1}^{\infty}(2 n+\beta+\gamma+1)\left|b_{n+1}\right||z|^{n+1} \\
& -(\beta+\gamma-1)|z|-\sum_{n=2}^{\infty}(2 n-\beta-\gamma+1)\left|a_{n+1}\right||z|^{n+1} \\
& -\sum_{n=1}^{\infty}(3+2 n+\beta+\gamma)\left|b_{n+1}\right||z|^{n+1} \\
& \geq 2(2-\beta-\gamma)|z|\left\{1-\sum_{n=2}^{\infty} \frac{(2 n-\beta-\gamma+2)}{(2-\beta-\gamma)}\left|a_{n+1}\right||z|^{n}\right. \\
& \left.-\sum_{n=1}^{\infty} \frac{(2 n+\beta+\gamma+2)}{(2-\beta-\gamma)}\left|b_{n+1}\right||z|^{n}\right\} \\
& \geq 2(2-\beta-\gamma)|z|\left\{1-\left[\sum_{n=2}^{\infty} \frac{(2 n-\beta-\gamma+2)}{(2-\beta-\gamma)}\left|a_{n+1}\right|\right.\right.
\end{aligned}
$$

$$
\left.\left.+\sum_{n=1}^{\infty} \frac{(2 n+\beta+\gamma+2)}{(2-\beta-\gamma)}\left|b_{n+1}\right|\right]\right\} \geq 0
$$

By (2.1), the functions

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} \frac{2-\beta-\gamma}{2 n-\beta-\gamma+2} x_{n+1} z^{n+1}+\sum_{n=1}^{\infty} \frac{2-\beta-\gamma}{2 n+\beta+\gamma+2} \bar{y}_{n+1} \bar{z}^{n+1} \tag{2.4}
\end{equation*}
$$

where

$$
\sum_{n=2}^{\infty}\left|x_{n+1}\right|+\sum_{n=1}^{\infty}\left|y_{n+1}\right|=1
$$

shows that the coefficient bound given by (2.1) is sharp.
The function of the form (2.4) are in $\bar{J}_{H}(\alpha, \beta, \gamma)$ because

$$
\begin{aligned}
& \sum_{n=2}^{\infty}\left\{\frac{(2 n-\beta-\gamma+2)}{(2-\beta-\gamma)}\left|a_{n+1}\right|+\frac{(2 n+\beta+\gamma+2)}{(2-\beta-\gamma)}\left|b_{n+1}\right|\right\} \\
&=1+\sum_{n=2}^{\infty}\left|x_{n+1}\right|+\sum_{n=1}^{\infty}\left|y_{n+1}\right|=2
\end{aligned}
$$

where $a_{1}=1$ and some coefficients are missing. The restriction placed in Theorem (1) on the module of the coefficients of f, enables us to conclude for arbitrary rotation of the coefficients of f that the resulting function would still be harmonic and univalent in $\bar{J}_{H}(\alpha, \beta, \gamma)$. The following theorem establishes that such coefficient bounds cannot be improved.

Theorem 2. Let $f=h+\bar{g}$, be so that h and g are

$$
\begin{equation*}
h(z)=z-\sum_{n=2}^{\infty} a_{n+1} z^{n+1} ; \quad g(z)=\sum_{n=1}^{\infty} b_{n+1} z^{n+1} \tag{2.5}
\end{equation*}
$$

Then $f(z) \in \bar{J}_{H}(\alpha, \beta, \gamma)$ if and only if

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left\{\frac{(2 n-\beta-\gamma+2)}{(2-\beta-\gamma)}\left|a_{n+1}\right|+\frac{(2 n+\beta+\gamma+2)}{(2-\beta-\gamma)}\left|b_{n+1}\right|\right\} \leq 2 \tag{2.6}
\end{equation*}
$$

where $a_{1}=1,0 \leq \beta<1, \frac{1}{2}<\gamma \leq 1$ and some coefficients are missing.
Proof. The "if" part follows from theorem [1] upon noting that if the analytic part h and co-analytic part g of $f \in \bar{J}_{H}$ are of the form (2.5) then $f \in \bar{J}_{H}$.

For the "only if" part, we show that $f(z) \notin \bar{J}_{H}$ if the condition (2.6) does not hold. Note that a necessary and sufficient condition for $f=h+\bar{g}$ given by (2.5) to be in \bar{J}_{H} is that

$$
\operatorname{Re}\left\{\left(1+e^{i \alpha}\right) z \frac{f^{\prime}(z)}{f(z)}-\gamma e^{i \alpha}\right\} \geq \beta
$$

This is equivalent to

$$
\begin{aligned}
& \operatorname{Re}\left\{\frac{\left(1+e^{i \alpha}\right)\left(z h^{\prime}(z)-z \overline{g^{\prime}(z)}\right)-\gamma e^{i \alpha}(h(z)-\overline{g(z)})}{h(z)+\overline{g(z)}}-\beta\right\} \\
& =\operatorname{Re}\left\{\frac{(2-\beta-\gamma) z-\sum_{n=2}^{\infty}(2 n-\beta-\gamma+2)\left|a_{n+1}\right| z^{n+1}}{z-\sum_{n=2}^{\infty}\left|a_{n+1}\right| z^{n+1}+\sum_{n=1}^{\infty}\left|b_{n+1}\right| \bar{z}^{n+1}}\right. \\
& \left.\quad-\frac{\sum_{n=1}^{\infty}(2 n+\beta+\gamma+2)\left|b_{n+1}\right| \bar{z}^{n+1}}{z-\sum_{n=2}^{\infty}\left|a_{n+1}\right| z^{n+1}+\sum_{n=1}^{\infty}\left|b_{n+1}\right| \bar{z}^{n+1}}\right\}
\end{aligned}
$$

The above condition must hold for all values of $z,|z|=r<1 \geq 0$. Choosing the values of z along + ve real axis where $0 \leq z=r<1$, we must have

$$
\begin{equation*}
\frac{(2-\beta-\gamma)-\sum_{n=2}^{\infty}(2 n-\beta-\gamma+2)\left|a_{n+1}\right| r^{n}-\sum_{n=1}^{\infty}(2 n+\beta+\gamma+2)\left|b_{n+1}\right| r^{n}}{1-\sum_{n=2}^{\infty}\left|a_{n+1}\right| r^{n}+\sum_{n=1}^{\infty}\left|b_{n+1}\right| r^{n}} \tag{2.7}
\end{equation*}
$$

If the condition (2.6) does not hold then the numerator in (2.7) is negative for r sufficiently close to 1 . Thus, there exists $z_{0}=r_{0}$ in $(0,1)$ for which the quotient in (2.7) is negative. This contradicts the required condition for $f \in \bar{J}_{H}$ and hence the required result.

3. Extreme Points

We obtain the extreme points of the closed convex hulls of \bar{J}_{H}, denoted by $C L C H \bar{J}_{H}$.

Theorem 3. $f(z) \in C L C H \bar{J}_{H}$ if and only if,

$$
\begin{equation*}
f(z)=\sum_{n=2}^{\infty}\left(x_{n+1} h_{n+1}+y_{n+1} g_{n+1}\right) \tag{3.1}
\end{equation*}
$$

where $h_{1}(z)=z$;

$$
\begin{aligned}
& h_{n+1}(z)=z-\frac{(2-\beta-\gamma)}{(2 n-\beta-\gamma+2)} z^{n+1} ; \quad n=2,3,4, \cdots \\
& g_{n+1}(z)=z+\frac{(2-\beta-\gamma)}{(2 n+\beta+\gamma+2)} z^{n+1} ; \quad n=1,2,3, \cdots \\
& \quad \sum_{n=2}^{\infty}\left(x_{n+1}+y_{n+1}\right)=1 ; \quad x_{n+1} \geq 0 \text { and } y_{n+1} \geq 0
\end{aligned}
$$

In particular, the extreme points of \bar{J}_{H}, are $\left\{h_{n+1}\right\}$ and $\left\{g_{n+1}\right\}$.
Proof. For function f of the form (3.1) we have,

$$
\begin{gathered}
f(z)=\sum_{n=2}^{\infty}\left(x_{n+1} h_{n+1}+y_{n+1} g_{n+1}\right) \\
f(z)=\sum_{n=2}^{\infty}\left(x_{n+1}+y_{n+1}\right) z-\sum_{n=2}^{\infty} \frac{(2-\beta-\gamma)}{(2 n-\beta-\gamma+2)} x_{n+1} z^{n+1}+ \\
\sum_{n=1}^{\infty} \frac{(2-\beta-\gamma)}{(2 n+\beta+\gamma+2)} y_{n+1} \bar{z}^{n+1}
\end{gathered}
$$

Then

$$
\begin{aligned}
& \sum_{n=2}^{\infty} \frac{(2 n-\gamma-\beta+2)}{(2-\beta-\gamma)}\left(\frac{(2-\beta-\gamma)}{2 n-\gamma-\beta+2)} x_{n+1}\right)+ \\
& \sum_{n=1}^{\infty} \frac{(2 n+\beta+\gamma+2)}{(2-\beta-\gamma)}\left(\frac{(2-\beta-\gamma)}{2 n+\beta+\gamma+2} y_{n+1}\right) \\
& \quad \sum_{n=2}^{\infty} x_{n+1}+\sum_{n=1}^{\infty} y_{n+1}=1-x_{1} \leq 1
\end{aligned}
$$

and so $f(z) \in C L C H \bar{J}_{H}$.
Conversely, suppose that $f(z) \in C L C H \bar{J}_{H}$. Set

$$
x_{n+1}=\frac{(2 n-\gamma-\beta+2)}{(2-\beta-\gamma)}\left|a_{n+1}\right| ; \quad n=2,3,4, \ldots
$$

and

$$
y_{n+1}=\frac{(2 n+\gamma+\beta+2)}{(2-\beta-\gamma)}\left|b_{n+1}\right| ; \quad n=1,2,3,4, \ldots
$$

Then note that by theorem (2), $0 \leq x_{n+1} \leq 1, n=2,3,4, \ldots$ and $0 \leq y_{n+1} \leq$ $1, n=1,2,3, \ldots$.

Consequently, we obtain

$$
f(z)=\sum_{n=2}^{\infty}\left(x_{n+1} h_{n+1}+y_{n+1} g_{n+1}\right) .
$$

Using Theorem 2 it is easily seen that \bar{J}_{H} is convex and closed and so

$$
C L C H \bar{J}_{H}=\bar{J}_{H}
$$

4. Covolution Result

For harmonic functions,

$$
\begin{array}{r}
f(z)=z-\sum_{n=2}^{\infty} a_{n+1} z^{n+1}+\sum_{n=1}^{\infty} b_{n+1} \bar{z}^{n+1} \\
G(z)=z-\sum_{n=2}^{\infty} A_{n+1} z^{n+1}+\sum_{n=1}^{\infty} B_{n+1} \bar{z}^{n+1}
\end{array}
$$

we define the convolution of f and G as,

$$
\begin{aligned}
(f * G)(z) & =f(z) * G(z) \\
& =z-\sum_{n=2}^{\infty} a_{n+1} A_{n+1} z^{n+1}+\sum_{n=1}^{\infty} b_{n+1} B_{n+1} \bar{z}^{n+1}
\end{aligned}
$$

Theorem 4. For $0 \leq \beta<1$ let $f(z) \in \bar{J}_{H}(\alpha, \beta, \gamma)$ and $G(z) \in \bar{J}_{H}(\alpha, \beta, \gamma)$. Then

$$
f(z) * G(z) \in \bar{J}_{H}(\alpha, \beta, \gamma)
$$

Proof. Let

$$
f(z)=z-\sum_{n=2}^{\infty}\left|a_{n+1}\right| z^{n+1}+\sum_{n=1}^{\infty}\left|b_{n+1}\right| \bar{z}^{n+1} \text { be in } \bar{J}_{H}(\alpha, \beta, \gamma)
$$

and

$$
G(z)=z-\sum_{n=2}^{\infty}\left|A_{n+1}\right| z^{n+1}+\sum_{n=1}^{\infty}\left|B_{n+1}\right| \bar{z}^{n+1} \text { be in } \bar{J}_{H}(\alpha, \beta, \gamma)
$$

Obviously, the coefficients of f and G must satisfy condition similar to the inequality (2.6). So for the coefficients of $f * G$ we can write

$$
\begin{aligned}
& \sum_{n=2}^{\infty}\left[\frac{(2 n-\beta-\gamma+2)}{(2-\beta-\gamma)}\left|a_{n+1} A_{n+1}\right|+\frac{(2 n+\beta+\gamma+2)}{(2-\beta-\gamma)}\left|b_{n+1} B_{n+1}\right|\right] \\
& \quad \leq \sum_{n=2}^{\infty}\left[\frac{(2 n-\beta-\gamma+2)}{(2-\beta-\gamma)}\left|a_{n+1}\right|+\frac{(2 n+\beta+\gamma+2)}{(2-\beta-\gamma)}\left|b_{n+1}\right|\right]
\end{aligned}
$$

The right side of this inequality is bounded by 2 because $f \in \bar{J}_{H}(\alpha, \beta, \gamma)$. By the same token, we then conclude that

$$
f(z) * G(z) \in \bar{J}_{H}(\alpha, \beta, \gamma)
$$

Finally, we show that $f \in \bar{J}_{H}(\alpha, \beta, \gamma)$, is closed under convex combination of its members.

Theorem 5. The family $\bar{J}_{H}(\alpha, \beta, \gamma)$ is closed under convex combination.

Proof. For $i=1,2,3 \ldots$ let $f_{i} \in \bar{J}_{H}(\alpha, \beta, \gamma)$ where f_{i} is given by,

$$
f_{i}(z)=z-\sum_{n=2}^{\infty}\left|a_{i(n+1)}\right| z^{n+1}+\sum_{n=1}^{\infty}\left|b_{i(n+1)}\right| \bar{z}^{n+1}
$$

Then by (2.6),

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left[\frac{(2 n-\beta-\gamma+2)}{(2-\beta-\gamma)}\left|a_{i(n+1)}\right|+\frac{(2 n+\beta+\gamma+2)}{(2-\beta-\gamma)}\left|b_{i(n+1)}\right| \leq 2\right] . \tag{4.2}
\end{equation*}
$$

For $\sum_{i=1}^{\infty} t_{i}=1 ; 0 \leq t_{i} \leq 1$, the convex combination of f_{i} may be written as,

$$
\sum_{i=1}^{\infty} t_{i} f_{i}(z)=z-\sum_{n=2}^{\infty}\left[\sum_{i=1}^{\infty} t_{i}\left|a_{i(n+1)}\right|\right] z^{n+1}+\sum_{n=1}^{\infty}\left[\sum_{i=1}^{\infty} t_{i}\left|b_{i(n+1)}\right|\right] \bar{z}^{n+1}
$$

Then by (4.2)

$$
\begin{aligned}
& \sum_{n=2}^{\infty}\left[\frac{(2 n-\beta-\gamma+2)}{(2-\beta-\gamma)} \sum_{i=1}^{\infty} t_{i}\left|a_{i(n+1)}\right|+\frac{(2 n+\beta+\gamma+2)}{(2-\beta-\gamma)} \sum_{i=1}^{\infty} t_{i}\left|b_{i(n+1)}\right|\right] \\
& \sum_{i=1}^{\infty} t_{i}\left[\sum_{n=2}^{\infty} \frac{(2 n-\beta-\gamma+2)}{(2-\beta-\gamma)}\left|a_{i(n+1)}\right|+\frac{(2 n+\beta+\gamma+2)}{(2-\beta-\gamma)}\left|b_{i(n+1)}\right|\right] \\
& \quad \leq 2 \sum_{i=1}^{\infty} t_{i}=2
\end{aligned}
$$

This is the condition required by (2.6) and so,

$$
\sum_{i=1}^{\infty} t_{i} f_{i}(z) \in \bar{J}_{H}(\alpha, \beta, \gamma)
$$

References

[1] O. Altintcus. A subclass of analytic functions with negative coefficients. Hacettepe Bull. Natur Sci. Engrg., 19:15-24, 1990.
[2] Y. Avcı and E. Złotkiewicz. On harmonic univalent mappings. Ann. Univ. Mariae CurieSktodowska Sect. A, 44:1-7 (1991), 1990.
[3] J. Clunie and T. Sheil-Small. Harmonic univalent functions. Ann. Acad. Sci. Fenn. Ser. A I Math., 9:3-25, 1984.
[4] J. M. Jahangiri. Harmonic functions starlike in the unit disk. J. Math. Anal. Appl., 235(2):470-477, 1999.
[5] F. Rønning. On starlike functions associated with parabolic regions. Ann. Univ. Mariae Curie-Sktodowska Sect. A, 45:117-122 (1992), 1991.
[6] T. Rosy, B. A. Stephen, K. G. Subramanian, and J. M. Jahangiri. Goodman-Rønning-type harmonic univalent functions. Kyungpook Math. J., 41(1):45-54, 2001.

Department of Mathematics,
Maharashtra Academy of Engineering,
Alandi - 412 105, Pune (M. S.), India
E-mail address: smkhairnar2007@gmail.com
E-mail address: meenamore@maepune.com

[^0]: 2000 Mathematics Subject Classification. 30C45, 30C50.
 Key words and phrases. Univalent functions, Harmonic functions, Starlike functions, and convolution.

