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CERTAIN CLASS OF HARMONIC STARLIKE FUNCTIONS
WITH SOME MISSING COEFFICIENTS

S. M. KHARINAR AND MEENA MORE

Abstract. In this paper we have introduced a new class JH(α, β, γ) of
Harmonic Univalent functions in the unit disk E = {z; |z| < 1} on the lines
of [3] and [4], but with some missing coefficient. We have studied various
properties such as coefficient estimates, extreme points, convolution and
their related results.

1. Introduction

The class of functions of the form,

f(z) = z +
∞∑

n=2

anzn

that are analytic univalent and normalized in the unit disc E, is denoted by S.
The class K of convex functions and class S∗ of starlike functions are two widely
investigated subclasses of S.

A continuous function f = u + iv defined in a domain D ⊆ C is harmonic in
D if u and v are real Harmonic in D. In any simply connected sub domain of
D we can write,

(1.1) f = h + g

where h and g are analytic, h is called the analytic and g the coanalytic part of
f . In this paper we have introduced a new class JH(α, β, γ) of functions of the
form (1.1) namely f = h + g that are Harmonic Univalent and sense preserving
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in the unit disk E with f(0) = f ′(0)− 1 = 0, where h and g are of the form

(1.2) h(z) = z −
∞∑

n=2

an+1z
n+1 and g(z) =

∞∑
n=1

bn+1z
n+1

JH is the subclass of J .
For 0 ≤ α < 1, JH denotes the subclass of J consisting of harmonic starlike

functions of order α satisfying,

∂

∂θ
(arg f(reiθ)) ≥ α; |z| = r < 1.

Clunie and Sheil - Small [3] and Jahangiri [4] studied Harmonic starlike functions
of order α and Rosey et. al. [6] considered the Goodman-Ronning-Type harmonic
univalent functions which satisfies the condition

Re
{

(1 + eiα)
zf ′

f
− eiα

}
≥ 0.

Definition. A function f ∈ JH(α, β, γ) if it satisfies the condition

(1.3) Re
{

(1 + eiα)
zf ′

f
− γeiα

}
≥ β

0 ≤ α < 1, 0 ≤ β < 1, 1
2 < γ ≤ 1 where

z′ =
∂

∂θ
(z = reiθ); f ′(z) =

∂

∂θ
f(reiθ)

α, β, γ and θ are real.

Let JH denote a subclass of J(α, β, γ) consisting of functions f = h + g such
that h and g are of the form

(1.4) h(z) = z −
∞∑

n=2

an+1z
n+1 and g(z) =

∞∑
n=1

bn+1z
n+1, an+1 ≥ 0, bn+1 ≥ 0

2. Coefficient Estimates

Theorem 1. Let f = h + g, where h and g are given by (1.4). Furthermore let

(2.1)
∞∑

n=2

{
(2n− β − γ + 2)

(2− β − γ)
|an+1|+ (2n + β + γ + 2)

(2− β − γ)
|bn+1|

}
≤ 2

where a1 = 1, 0 ≤ β < 1 and 1
2 < γ ≤ 1. Then f is harmonic univalent in unit

disc E and f ∈ JH(α, β, γ).
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Proof. We first observe that f is locally univalent and orientation preserving in
unit disc E. This is because

|h′(z)| ≥ 1−
∞∑

n=2

(n + 1)|an+1|rn > 1−
∞∑

n=2

(n + 1)|an+1|

≥ 1−
∞∑

n=2

(2n− β − γ + 2)
(2− β − γ)

|an+1| ≥
∞∑

n=2

(2n + β + γ + 2)
(2− β − γ)

|bn+1|

≥
∞∑

n=1

(n + 1)|bn+1| ≥
∞∑

n=1

(n + 1)|bn+1|rn ≥ g′(z).

In order to show that f is univalent in E we show that f(z1) 6= f(z2) whenever
z1 6= z2. Since E is simply connected and convex we have z(λ) = (1−λ)z1+λz2 ∈
E if 0 ≤ λ ≤ 1 and if z1, z2 ∈ E so that z1 6= z2. Then we write,

f(z2)− f(z1) =
∫ 1

0

[(z2 − z1)h′(z(t)) + (z2 − z1)g′(z(t))]dt.

Dividing by z2 − z1 6= 0 and taking the real part we have,

Re
{

f(z2)− f(z1)
z2 − z1

}
=

∫ 1

0

Re

[
h′(z(t)) +

(z2 − z1)
(z2 − z1)

g′(z(t))

]
dt

>

∫ 1

0

Re[h′(z(t))− |g′(z(t))|]dt

(2.2)

on the other hand,

Re(h′(z)− |g′(z)|) ≥ Re h′(z)−
∞∑

n=1

(n + 1)|bn+1|

≥ 1−
∞∑

n=2

(n + 1)|an+1| −
∞∑

n=1

(n + 1)|bn+1|

≥ 1−
∞∑

n=2

(2n− β − γ + 2)
(2− β − γ)

|an+1|

−
∞∑

n=1

(2n + β + γ + 2)
(2− β − γ)

|bn+1|

≥ 0

using (2.1). This along with inequality (2.2) leads to the univalence of f . Ac-
cording to the condition (1.2), it suffices to show that (2.1) holds if

Re

{
(1 + eiα)(zh′(z)− zg′(z))− γeiα(h(z) + g(z))

h(z) + g(z)

}
= Re

A(z)
B(z)

≥ β

where z = reiθ, 0 ≤ θ ≤ 2π, 0 ≤ r < 1, 1
2 < γ ≤ 1.
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Let A(z) = (1+eiα)(zh′(z)−zg′(z))−γeiα(h(z)+g(z)) and B(z) = h(z)+g(z).
Since Re(w) ≥ β if and only if |γ − β + w| ≥ |γ + β − w|. It is enough to show
that

(2.3) |A(z) + (1− β)B(z)| − |A(z)− (1 + β)B(z)| ≥ 0.

Substitute for A(z) and B(z) in (2.3) to yield

|(1− β)h(z) + (1 + eiα)zh′(z)− γeiαh(z)

+(1− β)g(z)− (1 + eiα)zg′(z)− γeiαg(z)|
−|(1 + β)h(z)− (1 + eiα)zh′(z) + γeiαh(z)

+(1 + β)g(z) + (1 + eiα)zg′(z) + γeiαg(z)|

= |(2− β)z + zeiα(1− γ)−
∞∑

n=2

[(2 + n− β) + eiα(n + 1− γ)]an+1z
n+1

−
∞∑

n=1

[(n + β) + eiα(1 + n + γ)]bn+1zn+1|

−|βz + zeiα(1− γ) +
∞∑

n=2

[(n− β) + eiα(1 + n− γ)]an+1z
n+1

+
∞∑

n=1

[(2 + β + n) + eiα(1 + n + γ)]bn+1zn+1|

≥ (3− β − γ)|z| −
∞∑

n=2

(3 + 2n− β − γ)|an+1||z|n+1

−
∞∑

n=1

(2n + β + γ + 1)|bn+1||z|n+1

−(β + γ − 1)|z| −
∞∑

n=2

(2n− β − γ + 1)|an+1||z|n+1

−
∞∑

n=1

(3 + 2n + β + γ)|bn+1||z|n+1

≥ 2(2− β − γ)|z|
{

1−
∞∑

n=2

(2n− β − γ + 2)
(2− β − γ)

|an+1||z|n

−
∞∑

n=1

(2n + β + γ + 2)
(2− β − γ)

|bn+1||z|n
}

≥ 2(2− β − γ)|z|
{

1−
[ ∞∑

n=2

(2n− β − γ + 2)
(2− β − γ)

|an+1|
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+
∞∑

n=1

(2n + β + γ + 2)
(2− β − γ)

|bn+1|
]}

≥ 0.

By (2.1), the functions

(2.4) f(z) = z +
∞∑

n=2

2− β − γ

2n− β − γ + 2
xn+1z

n+1 +
∞∑

n=1

2− β − γ

2n + β + γ + 2
yn+1z

n+1

where
∞∑

n=2

|xn+1|+
∞∑

n=1

|yn+1| = 1

shows that the coefficient bound given by (2.1) is sharp. ¤

The function of the form (2.4) are in JH(α, β, γ) because

∞∑
n=2

{
(2n− β − γ + 2)

(2− β − γ)
|an+1|+ (2n + β + γ + 2)

(2− β − γ)
|bn+1|

}

= 1 +
∞∑

n=2

|xn+1|+
∞∑

n=1

|yn+1| = 2

where a1 = 1 and some coefficients are missing. The restriction placed in Theo-
rem (1) on the module of the coefficients of f , enables us to conclude for arbitrary
rotation of the coefficients of f that the resulting function would still be har-
monic and univalent in JH(α, β, γ). The following theorem establishes that such
coefficient bounds cannot be improved.

Theorem 2. Let f = h + g, be so that h and g are

(2.5) h(z) = z −
∞∑

n=2

an+1z
n+1; g(z) =

∞∑
n=1

bn+1z
n+1

Then f(z) ∈ JH(α, β, γ) if and only if

(2.6)
∞∑

n=2

{
(2n− β − γ + 2)

(2− β − γ)
|an+1|+ (2n + β + γ + 2)

(2− β − γ)
|bn+1|

}
≤ 2

where a1 = 1, 0 ≤ β < 1, 1
2 < γ ≤ 1 and some coefficients are missing.

Proof. The “if” part follows from theorem [1] upon noting that if the analytic
part h and co-analytic part g of f ∈ JH are of the form (2.5) then f ∈ JH .

For the “only if” part, we show that f(z) 6∈ JH if the condition (2.6) does
not hold. Note that a necessary and sufficient condition for f = h + g given by
(2.5) to be in JH is that

Re
{

(1 + eiα)z
f ′(z)
f(z)

− γeiα

}
≥ β.
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This is equivalent to

Re

{
(1 + eiα)(zh′(z)− zg′(z))− γeiα(h(z)− g(z))

h(z) + g(z)
− β

}

= Re





(2− β − γ)z −
∞∑

n=2
(2n− β − γ + 2)|an+1|zn+1

z −
∞∑

n=2
|an+1|zn+1 +

∞∑
n=1

|bn+1|z n+1

−

∞∑
n=1

(2n + β + γ + 2)|bn+1|zn+1

z −
∞∑

n=2
|an+1|zn+1 +

∞∑
n=1

|bn+1|z n+1





.

The above condition must hold for all values of z, |z| = r < 1 ≥ 0. Choosing
the values of z along +ve real axis where 0 ≤ z = r < 1, we must have
(2.7)

(2− β − γ)−
∞∑

n=2
(2n− β − γ + 2)|an+1|rn −

∞∑
n=1

(2n + β + γ + 2)|bn+1|rn

1−
∞∑

n=2
|an+1|rn +

∞∑
n=1

|bn+1|rn

If the condition (2.6) does not hold then the numerator in (2.7) is negative for r
sufficiently close to 1. Thus, there exists z0 = r0 in (0, 1) for which the quotient
in (2.7) is negative. This contradicts the required condition for f ∈ JH and
hence the required result. ¤

3. Extreme Points

We obtain the extreme points of the closed convex hulls of JH , denoted by
CLCHJH .

Theorem 3. f(z) ∈ CLCHJH if and only if,

(3.1) f(z) =
∞∑

n=2

(xn+1hn+1 + yn+1gn+1)

where h1(z) = z;

hn+1(z) = z − (2− β − γ)
(2n− β − γ + 2)

zn+1; n = 2, 3, 4, · · ·

gn+1(z) = z +
(2− β − γ)

(2n + β + γ + 2)
zn+1; n = 1, 2, 3, · · ·

∞∑
n=2

(xn+1 + yn+1) = 1; xn+1 ≥ 0 and yn+1 ≥ 0.
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In particular, the extreme points of JH , are {hn+1} and {gn+1}.
Proof. For function f of the form (3.1) we have,

f(z) =
∞∑

n=2

(xn+1hn+1 + yn+1gn+1)

f(z) =
∞∑

n=2

(xn+1 + yn+1)z −
∞∑

n=2

(2− β − γ)
(2n− β − γ + 2)

xn+1z
n+1+

∞∑
n=1

(2− β − γ)
(2n + β + γ + 2)

yn+1z
n+1

Then

∞∑
n=2

(2n− γ − β + 2)
(2− β − γ)

(
(2− β − γ)

2n− γ − β + 2)
xn+1

)
+

∞∑
n=1

(2n + β + γ + 2)
(2− β − γ)

(
(2− β − γ)

2n + β + γ + 2
yn+1

)

∞∑
n=2

xn+1 +
∞∑

n=1

yn+1 = 1− x1 ≤ 1

and so f(z) ∈ CLCHJH .
Conversely, suppose that f(z) ∈ CLCHJH . Set

xn+1 =
(2n− γ − β + 2)

(2− β − γ)
|an+1|; n = 2, 3, 4, . . .

and

yn+1 =
(2n + γ + β + 2)

(2− β − γ)
|bn+1|; n = 1, 2, 3, 4, . . .

Then note that by theorem (2), 0 ≤ xn+1 ≤ 1, n = 2, 3, 4, . . . and 0 ≤ yn+1 ≤
1, n = 1, 2, 3, . . ..

Consequently, we obtain

f(z) =
∞∑

n=2

(xn+1hn+1 + yn+1gn+1).

Using Theorem 2 it is easily seen that JH is convex and closed and so

CLCHJH = JH .

¤



330 S. M. KHARINAR AND MEENA MORE

4. Covolution Result

For harmonic functions,

f(z) = z −
∞∑

n=2

an+1z
n+1 +

∞∑
n=1

bn+1z
n+1

G(z) = z −
∞∑

n=2

An+1z
n+1 +

∞∑
n=1

Bn+1z
n+1

we define the convolution of f and G as,

(f ∗G)(z) = f(z) ∗G(z)

= z −
∞∑

n=2

an+1An+1z
n+1 +

∞∑
n=1

bn+1Bn+1z
n+1(4.1)

Theorem 4. For 0 ≤ β < 1 let f(z) ∈ JH(α, β, γ) and G(z) ∈ JH(α, β, γ).
Then

f(z) ∗G(z) ∈ JH(α, β, γ).

Proof. Let

f(z) = z −
∞∑

n=2

|an+1|zn+1 +
∞∑

n=1

|bn+1|zn+1 be in JH(α, β, γ)

and

G(z) = z −
∞∑

n=2

|An+1|zn+1 +
∞∑

n=1

|Bn+1|zn+1 be in JH(α, β, γ)

Obviously, the coefficients of f and G must satisfy condition similar to the
inequality (2.6). So for the coefficients of f ∗G we can write

∞∑
n=2

[
(2n− β − γ + 2)

(2− β − γ)
|an+1An+1|+ (2n + β + γ + 2)

(2− β − γ)
|bn+1Bn+1|

]

≤
∞∑

n=2

[
(2n− β − γ + 2)

(2− β − γ)
|an+1|+ (2n + β + γ + 2)

(2− β − γ)
|bn+1|

]

The right side of this inequality is bounded by 2 because f ∈ JH(α, β, γ). By
the same token, we then conclude that

f(z) ∗G(z) ∈ JH(α, β, γ).

¤

Finally, we show that f ∈ JH(α, β, γ), is closed under convex combination of
its members.

Theorem 5. The family JH(α, β, γ) is closed under convex combination.
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Proof. For i = 1, 2, 3 . . . let fi ∈ JH(α, β, γ) where fi is given by,

fi(z) = z −
∞∑

n=2

|ai(n+1)|zn+1 +
∞∑

n=1

|bi(n+1)|zn+1

Then by (2.6),

(4.2)
∞∑

n=2

[
(2n− β − γ + 2)

(2− β − γ)
|ai(n+1)|+

(2n + β + γ + 2)
(2− β − γ)

|bi(n+1)| ≤ 2
]

.

For
∞∑

i=1

ti = 1; 0 ≤ ti ≤ 1, the convex combination of fi may be written as,

∞∑

i=1

tifi(z) = z −
∞∑

n=2

[ ∞∑

i=1

ti|ai(n+1)|
]

zn+1 +
∞∑

n=1

[ ∞∑

i=1

ti|bi(n+1)|
]

zn+1.

Then by (4.2)
∞∑

n=2

[
(2n− β − γ + 2)

(2− β − γ)

∞∑

i=1

ti|ai(n+1)|+
(2n + β + γ + 2)

(2− β − γ)

∞∑

i=1

ti|bi(n+1)|
]

∞∑

i=1

ti

[ ∞∑
n=2

(2n− β − γ + 2)
(2− β − γ)

|ai(n+1)|+
(2n + β + γ + 2)

(2− β − γ)
|bi(n+1)|

]

≤ 2
∞∑

i=1

ti = 2.

This is the condition required by (2.6) and so,
∞∑

i=1

tifi(z) ∈ JH(α, β, γ).

¤
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