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CERTAIN FAMILY OF ANALYTIC AND UNIVALENT
FUNCTIONS WITH NORMALIZED CONDITIONS

S. M. KHAIRNAR AND MEENA MORE

Abstract. There are many subclasses of analytic and univalent func-
tions. The object of this paper is to introduce new classes and we have
attempted to obtain coefficient estimate, distortion theorem, radius of star-
likeness, convexity and closure theorem for the classes S∗(α, β, ξ, γ) and
K∗(α, β, ξ, γ) on the lines of [1] and [2]. Results obtained by [1] and [2]
which are particular cases of the parameters involved here, are also pointed
out.

1. Introduction

Let A denote the class of functions given by,

(1.1) f(z) = z +
∞∑

n=2

anzn

which are analytic in the unit disc E = {z : |z| < 1} and normalized by f(0) = 0;
f ′(0) = 1, and let S be the subclass of A consisting of analytic and univalent
functions of the form (1.1). We denote by S∗(α) and K(α) the subclasses of S
consisting of all functions which are, respectively starlike and convex of order α
in E with (0 ≤ α < 1). Thus,

S∗(α) =
{

f ∈ S : Re
(

z
f ′(z)
f(z)

)
> α; 0 ≤ α < 1, z ∈ E

}

and

K(α) =
{

f ∈ S : Re
(

1 + z
f ′′(z)
f ′(z)

)
> α; 0 ≤ α < 1, z ∈ E

}
.
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We say that a function f(z) is in the class S(α, β, ξ, γ) if and only if,
∣∣∣∣∣∣

z f ′(z)
f(z) − 1

2ξ
(
z f ′(z)

f(z) − α
)
− γ

(
z f ′(z)

f(z) − 1
)

∣∣∣∣∣∣
< β for |z| < 1

where 0 < β ≤ 1, 1
2 ≤ ξ ≤ 1, 0 ≤ α ≤ 1

2ξ, 1
2 < γ ≤ 1.

If we replace γ by 1 in the above inequality; we obtain the result of Aghalary
and Kulkarni [1] and Silverman and Silvia [2]. If we replace ξ by 1 we obtain
the result of [3].

Furthermore a function f(z) is said to belong to the class K(α, β, ξ, γ) if
and only if zf ′(z) ∈ S(α, β, ξ, γ). Let T denote the subclass of S consisting of
functions of the form,

f(z) = z −
∞∑

n=2

anzn (an ≥ 0).

We denote by S∗(α, β, ξ, γ) and K∗(α, β, ξ, γ) the classes obtained by taking
intersection, respectively of the classes S(α, β, ξ, γ) and K(α, β, ξ, γ) with T .

In this paper we obtain sharp result for coefficient estimates, distortion theo-
rem, radius of starlikeness and convexity, and other related results for the classes
S∗(α, β, ξ, γ) and K∗(α, β, ξ, γ).

2. Coefficient Estimates

Theorem 1. A function

f(z) = z −
∞∑

n=2

anzn (an ≥ 0)

is in S∗(α, β, ξ, γ) if and only if;
∞∑

n=2

[(n− 1)− β(γn− γ + 2ξα− 2ξn]an ≤ 2βξ(1− α).

Proof. Suppose,
∞∑

n=2

[(n− 1)− β(γn− γ + 2ξα− 2ξn)]an ≤ 2βξ(1− α).

We have
|zf ′ − f | − β|2ξ(zf ′ − αf)− γ(zf ′ − f)| < 0

with the provision:

(2.1)

∣∣∣∣∣
∞∑

n=2

(n− 1)anzn

∣∣∣∣∣− β

∣∣∣∣∣2ξ(1− α) +
∞∑

n=2

(2ξα− 2ξn + γn− γ)anzn

∣∣∣∣∣ < 0
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for |z| = r < 1; then the condition (2.1) is bounded above by
∞∑

n=2

(n− 1)anrn − 2βξ(1− α)− β

∞∑
n=2

(2ξα− 2ξn + γn− γ)anrn

=
∞∑

n=2

{(n− 1)− β(2ξα− 2ξn + γn− γ)}anrn − 2βξ(1− α)

≤
∞∑

n=2

{(n− 1)− β(2ξα− 2ξn + γn− γ)}an − 2βξ(1− α) ≤ 0.

Therefore f(z) ∈ S∗(α, β, ξ, γ).
Now, we prove the converse result. Let
∣∣∣∣∣∣

z f ′(z)
f(z) − 1

2ξ
(
z f ′(z)

f(z) − α
)
− γ

(
z f ′(z)

f(z) − 1
)

∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣

∞∑
n=2

(n− 1)anzn

2ξ(1− α) +
∞∑

n=2
(2ξα− 2ξn + γn− γ)anzn

∣∣∣∣∣∣∣∣
< β.

As |Re(z)| ≤ |z| for all z, we have

Re

∣∣∣∣∣∣∣∣

∞∑
n=2

(n− 1)anzn

2ξ(1− α) +
∞∑

n=2
(2ξα− 2ξn + γn− γ)anzn

∣∣∣∣∣∣∣∣
< β.

We choose values of z on real axis such that zf ′(z)/f(z) is real and upon clearing
the denominator of above expression and allowing z → 1 through real values,
we obtain

∞∑
n=2

{(n− 1)− β(2ξα− 2ξn + γn− γ)}an − 2βξ(1− α) ≤ 0.

¤

Remark. If f(z) ∈ S∗(α, β, ξ, γ), then

an ≤ 2βξ(1− α)
{(n− 1)− β(2ξα− 2ξn + γn− γ)} for n = 2, 3, 4, . . .

and equality holds for

f(z) = z − 2βξ(1− α)
{(n− 1)− β(2ξα− 2ξn + γn− γ)}zn.
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Corollary 1. If f(z) ∈ S∗(α, β, ξ, 1) i.e. replacing γ = 1, we get

an ≤ 2βξ(1− α)
{(n− 1)− β(2ξα− 2ξn + n− 1)} , n = 2, 3, 4, . . .

and equality holds for

f(z) = z − 2βξ(1− α)
{(n− 1)− β(2ξα− 2ξn + n− 1)}zn

which is a known result of [1] and [2].

Corollary 2. If f(z) ∈ S∗(α, β, 1, 1) we get

an ≤ 2β(1− α)
{(n− 1)− β(2α + 3n− 1)}

and equality holds for

f(z) = z − 2β(1− α)
{(n− 1)− β(2α + 3n− 1)}zn

which is a known result of [3].

Corollary 3. f(z) ∈ S∗(α) if and only if
∞∑

n=2

(n + α)an ≤ (1− α).

Theorem 2. A function

f(z) = z −
∞∑

n=2

anzn (an ≥ 0)

is in K∗(α, β, ξ, γ) if and only if,
∞∑

n=2

n[(n− 1)− β(2ξα− 2ξn + γn− γ)]an ≤ 2βξ(1− α).

Proof. The proof of this theorem is analogous to that of theorem [1], because
a function f(z) ∈ K∗(α, β, ξ, γ), if and only if zf ′(z) ∈ S∗(α, β, ξ, γ) so it is
enough that an in Theorem 1 is replaced with nan. ¤

Remark. If f ∈ K∗(α, β, ξ, γ), then

an ≤ 2βξ(1− α)
n{(n− 1)− β(2ξα− 2nξ + γn− γ)} for n = 2, 3, 4, . . .

and equality holds for

f(z) = z − 2βξ(1− α)
n{(n− 1)− β(2ξα− 2ξn + γn− γ)}zn.
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Corollary 4. If f(z) ∈ K∗(α, β, ξ, 1) i.e. replacing γ = 1, we get

an ≤ 2βξ(1− α)
n{(n− 1)− β(2ξα− 2ξn + n− 1)} n = 2, 3, 4, . . .

and equality holds for

f(z) = z − 2βξ(1− α)
{(n− 1)− β(2ξα− 2ξn + n− 1)}zn.

This result is due to [1] and [2].

Corollary 5. If f(z) ∈ K∗(α, β, 1, 1), then

an ≤ 2β(1− α)
n{(n− 1)− β(2α + 3n− 1)} , n = 2, 3, 4, . . .

with equality for

f(z) = z − 2β(1− α)
n{(n− 1)− β(2α + 3n− 1)}zn.

Corollary 6. f(z) ∈ K∗(α) if and only if,
∞∑

n=2

n(n + α)an ≤ (1− α).

3. Growth and Distortion Theorem

Theorem 3. If f(z) ∈ S∗(α, β, ξ, γ) then

(3.1) r − 2βξ(1− α)
(1 + 4βξ)− β(γ + 2ξα)

r2 ≤ |f(z)| ≤ r +
2βξ(1− α)

(1 + 4βξ)− β(γ + 2ξα)
r2.

Equality holds for

f(z) = z − 2βξ(1− α)
(1 + 4βξ)− β(γ + 2ξα)

z2 at z = ±r.

Proof. By Theorem 1, we have f(z) ∈ S∗(α, β, ξ, γ) if and only if,
∞∑

n=2

[(n− 1)− β(2ξα− 2ξn + γn− γ)]an ≤ 2βξ(1− α)

or equivalently,

(3.2)
∞∑

n=2

an

{
n−

(
1− 2βξ(1− α)

1 + 2βξ − γβ

)}
≤ 2βξ(1− α)

1 + 2βξ − γβ
.

So f ∈ S∗(α, β, ξ, γ) if and only if, by (3.2)

(3.3)
∞∑

n=2

an(n− t) ≤ (1− t) where t = 1− 2βξ(1− α)
1 + 2βξ − γβ

.
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But

(2− t)
∞∑

n=2

an ≤
∞∑

n=2

an(n− t) ≤ (1− t).

This last inequality follows from (3.3). We obtain;

|f(z)| ≤ r +
∞∑

n=2

anrn ≤ r + r2
∞∑

n=2

an ≤ r + r2

(
1− t

2− t

)
.

Similarly,

|f(z)| ≥ r −
∞∑

n=2

anrn ≥ r − r2
∞∑

n=2

an ≥ r − r2

(
1− t

2− t

)
.

So

r −
(

1− t

2− t

)
r2 ≤ |f(z)| ≤ r +

(
1− t

2− t

)
r2

that is

r − 2βξ(1− α)
(1 + 4βξ)− β(γ + 2ξα)

r2 ≤ |f(z)| ≤ r +
2βξ(1− α)

(1 + 4βξ)− β(γ + 2ξα)
r2.

Hence the result (3.1). ¤
Corollary 7. If f ∈ S∗(α, β, ξ, 1) i.e. replacing γ = 1, then

r − 2βξ(1− α)
(1 + 4βξ)− β(1 + 2ξα)

r2 ≤ |f(z)| ≤ r +
2βξ(1− α)

(1 + 4βξ)− β(1 + 2ξα)
r2.

With equality for,

f(z) = z − 2βξ(1− α)
(1 + 4βξ)− β(1 + 2ξα)

zn at z = ±r.

This result is due to [1] and [2].

Corollary 8. If f ∈ S∗(α, β, 1, 1) i.e. replacing ξ by 1 and γ by 1, then

r − 2β(1− α)
(1 + 4β)− β(1 + 2α)

r2 ≤ |f(z)| ≤ r +
2β(1− α)

(1 + 4β)− β(1 + 2α)
r2.

With equality for

f(z) = z − 2β(1− α)
(1 + 4β)− β(1 + 2α)

zn at z = ±r.

Theorem 4. If f(z) ∈ K∗(α, β, ξ, γ), then

r − βξ(1− α)
(1 + 4βξ)− β(γ + 2ξα)

≤ |f(z)| ≤ r +
βξ(1− α)

(1 + 4βξ)− β(γ + 2ξα)
.

Proof. The proof of this theorem is analogous to that of theorem (3), because a
function f(z) ∈ K∗(α, β, ξ, γ) if and only if zf ′(z) ∈ S∗(α, β, ξ, γ). So it will be
enough that an in Theorem 3 is replace with nan. ¤
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Corollary 9. If f ∈ K∗(α, β, ξ, 1) i.e. replacing γ by 1, then

r − βξ(1− α)
(1 + 4βξ)− β(1 + 2ξα)

≤ |f(z)| ≤ r +
βξ(1− α)

(1 + 4βξ)− β(1 + 2ξα)
with equality for

f(z) = z − βξ(1− α)
(1 + 4βξ)− β(1 + 2ξα)

z2 at z = ±r.

This is due to [1] and [2].

Corollary 10. If f ∈ K∗(α, β, 1, 1) i.e.; replacing ξ = 1 and γ = 1, then

r − β(1− α)
(1 + 3β − 2α)

≤ |f(z)| ≤ r +
β(1− α)

(1 + 3β − 2α)
with equality for

f(z) = z − β(1− α)
(1 + 3β − 2α)

z2 at z = ±r.

This corollary is due to [3].

Theorem 5. If f ∈ S∗(α, β, ξ, γ), then

(3.4) 1− 4βξ(1− α)
(1− γβ) + 2βξ(2− α)

r ≤ |f ′(z)| ≤ 1 +
4βξ(1− α)

(1− γβ) + 2βξ(2− α)
r.

Proof. Since f ∈ S∗(α, β, ξ, γ), we have

(3.5)
∞∑

n=2

an(n− t) ≤ (1− t) where t = 1− 2βξ(1− α)
1 + 2βξ − γβ

.

Now in view of Theorem 3, we have
∞∑

n=2

nan =
∞∑

n=2

(n− t)an + t

∞∑
n=2

an ≤ (1− t) + t

(
1− t

2− t

)
=

2(1− t)
(2− t)

.

Therefore,

|f ′| ≤ 1 +
∞∑

n=2

nan|z|n−1 ≤ 1 + r

∞∑
n=2

nan ≤ 1 + r
2(1− t)
(2− t)

.

Similarly,

|f ′| ≥ 1−
∞∑

n=2

nan|z|n−1 ≥ 1− r

∞∑
n=2

nan ≥ 1− r
2(1− t)
(2− t)

.

So

(3.6) 1− r

(
2(1− t)
(2− t)

)
≤ |f ′(z)| ≤ 1 + r

(
2(1− t)
(2− t)

)

by substituting t from (3.5) in (3.6), the result (3.4) is obtained. ¤
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Corollary 11. If f ∈ S∗(α, β, ξ, 1), then

1− 4βξ(1− α)
(1− β) + 2βξ(2− α)

r ≤ |f ′(z)| ≤ 1 +
4βξ(1− α)

(1− β) + 2βξ(2− α)
r for |z| = r.

This result is due to [1] and [2].

Corollary 12. If f ∈ S∗(α, β, 1, 1), then

1− 4β(1− α)
1 + 3β − 2αβ

r ≤ |f ′(z)| ≤ 1 +
4β(1− α)

1 + 3β − 2αβ
r.

This inequality is due to Kulkarni [3].

Theorem 6. If f ∈ K∗(α, β, ξ, γ), then

1− 2βξ(1− α)
(1− γβ) + 2βξ(2− α)

r ≤ |f ′(z)| ≤ 1 +
2βξ(1− α)

(1− γβ) + 2βξ(2− α)
r for |z| = r.

Proof. The proof of this theorem is similar to that of Theorem 5 because a
function f ∈ K∗(α, β, ξ, γ) if and only if zf ′ ∈ S∗(α, β, ξ, γ). ¤
Corollary 13. If f ∈ K∗(α, β, ξ, 1), then

1− 2βξ(1− α)
(1− β) + 2βξ(2− α)

r ≤ |f ′(z)| ≤ 1 +
2βξ(1− α)

(1− β) + 2βξ(2− α)
r for |z| = r.

This result is due to [1] and [2].

Corollary 14. If f ∈ K∗(α, β, 1, 1) then

1− 2β(1− α)
1 + 3β − 2αβ

r ≤ |f ′(z)| ≤ 1 +
2β(1− α)

1 + 3β − 2αβ
r for |z| = r.

This inequality is due to Kulkarni [3].

4. Radius of Convexity

Theorem 7. If f(z) = z −
∞∑

n=2
anzn ∈ S∗(α, β, ξ, γ) then f is convex in the

disc,

0 < |z| < r = r(α, β, ξ, γ) = inf
n

[
(n− 1)− β(γn− γ + 2ξα− 2nξ)

(n2(1 + 2βξ − γβ) + n(γβ − 1)(1− α)

]1/n−1

.

This result is sharp, with the extremal function,

f(z) = z − 2βξ(1− α)
[(n− 1)− β(γn− γ + 2ξα− 2nξ)]

zn for some n.

Proof. We know that f(z) ∈ K(α, β, ξ, γ). So it is sufficient to show that,

(4.1)

∣∣∣∣∣∣

z(zf ′)′

zf ′ − 1

2ξ
(
z (zf ′)′

zf ′ − α
)
− γ

(
z (zf ′)′

zf ′ − 1
)

∣∣∣∣∣∣
< β for |z| ≤ r(α, β, ξ, γ)
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We have ∣∣∣∣∣∣
z (zf ′)′

zf ′ − 1

β
[
2ξ

(
z(zf ′)′

zf ′ − α
)
− γ

(
z (zf ′)′

zf ′ − 1
)]

∣∣∣∣∣∣

=
∣∣∣∣

zf ′′

β[(2ξ − γ)zf ′′ + 2ξ(1− α)f ′]

∣∣∣∣

=

∣∣∣∣∣∣∣∣

−
∞∑

n=2
n(n− 1)anzn−1

β

[
2βξ(1− α)−

∞∑
n=2

[(2ξ − γ)n(n− 1)− 2nξ(1− α)] anzn−1

]

∣∣∣∣∣∣∣∣

≤

∞∑
n=2

n(n− 1)an|z|n−1

2βξ(1− α)−
∞∑

n=2
[βn(n− 1)(2ξ − γ)− 2nξ(1− α)]an|z|n−1

.

Thus (4.1) holds if,
∞∑

n=2

[n(n− 1)[1 + β(2ξ − γ)] + 2βξn(1− α)] an|z|n−1 ≤ 2βξ(1− α).

In view of coefficient inequality in Theorem 1, we have

(4.2) |z|n−1 ≤ (n− 1)− β(γn− γ + 2ξα− 2nξ)
n2(1 + 2βξ − βγ)− n(βγ + 2βξα− 1)

, n = 2, 3, . . .

The desired result follows by substituting |z| = r(α, β, ξ, γ) in the above expres-
sion. ¤

Corollary 15. If f(z) ∈ S∗(α, β, ξ, 1) then f is convex in the disc,

0 < |z| < r = r(α, β, ξ) = inf
n

{
(n− 1)− β(n− 1 + 2ξα− 2nξ)

[n2(1 + 2βξ − β) + n(β + 2βξα− 1)

} 1
n−1

.

The result is sharp with the extremal function,

f(z) = z − 2βξ(1− α)
[(n− 1)− β(n− 1 + 2ξα− 2nξ)]

zn

for some n.

This result is due to [1] and [2].

Corollary 16. If f(z) ∈ S∗(α, β, 1, 1) then f is convex in the disc,

0 < |z| < r = r(α, β) = inf
n

{
(n− 1)− β(2α− n− 1)

n2(1 + β)− n(β + 2βα− 1)

} 1
n−1

.
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The result is sharp with the extremal function,

f(z) = z − 2β(1− α)
[(n− 1)− β(2α− n− 1)]

zn

for some n.

This result is due to Kulkarni [3].

Corollary 17. If f(z) ∈ S∗(0, 1, 1, 1) then f is convex in the disc,

0 < |z| < r = r(0, 1, 1, 1) = inf
n

{
1
n

} 1
n−1

, n = 2, 3, 4, . . . .

5. Closure Theorem

Theorem 8. Let f1(z) = z and

fn(z) =
2βξ(1− α)

[(n− 1)− β(γn− γ + 2ξα− 2nξ)]
zn for n = 2, 3, 4, . . . .

Then f(z) ∈ K∗(α, β, ξ, γ) if and only if, f(z) can be expressed in the forms,

f(z) =
∞∑

n=1

λnfn(z) where λn ≥ 0 and
∞∑

n=1

λn = 1.

Proof. Suppose f(z) can be written in the form

f(z) =
∞∑

n=1

λnfn(z)

= z −
∞∑

n=2

2βξ(1− α)
(n− 1)− β(γn− γ + 2ξα− 2nξ)

zn.

Then
∞∑

n=2

λn2βξ(1− α)
[(n− 1)− β(γn− γ + 2ξα− 2nξ)]

× [(n− 1)− β(γn− γ + 2ξα− 2nξ)]
2βξ(1− α)

=
∞∑

n=2

λn = 1− λ1 ≤ 1.

Therefore f(z) ∈ K∗(α, β, ξ, γ).
Conversely, suppose f(z) ∈ K∗(α, β, ξ, γ) then remark of Theorem 1 gives us;

an ≤ 2βξ(1− α)
[(n− 1)− β(γn− γ + 2ξα− 2nξ)]

.

We take,

λn =
[(n− 1)− β(γn− γ + 2ξα− 2nξ)]

2βξ(1− α)
an, n = 2, 3, 4, . . .
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and λ1 = 1−
∞∑

n=2
λn. Then f(z) =

∞∑
n=1

λnfn(z). ¤

Corollary 18. If f1(z) = z and

fn(z) = z − 2βξ(1− α)
[(n− 1)− β(n− 1 + 2ξα− 2nξ)]

zn for n = 2, 3, . . . .

Then f(z) ∈ K∗(α, β, ξ, 1) if and only if, f(z) can be expressed in the form,

f(z) =
∞∑

n=1

λnfn(z) where λn ≥ 0, n = 1, 2, . . . ,

∞∑
n=1

λn = 1.

This result is due to [1] and [2].

Corollary 19. If f1(z) = z and

fn(z) = z − 2β(1− α)
[(n− 1)− β(2α− n− 1)]

zn for n = 2, 3, . . . .

Then f(z) ∈ K∗(α, β) if and only if, f(z) can be expressed in the form,

f(z) =
∞∑

n=1

λnfn(z) where λn ≥ 0, n = 1, 2, · · · ,

∞∑
n=1

λn = 1.

This result is due to Kulkarni [3].

Corollary 20. If f1(z) = z and

fn(z) = z − 1
n

zn.

Then f(z) ∈ K∗(0, 1, 1, 1) if and only if, f(z) can be expressed in the form

f(z) =
∞∑

n=1

λnfn(z) where λn ≥ 0,
∞∑

n=1

λn = 1.
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