Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 24 (2008), 355-365 www.emis.de/journals ISSN 1786-0091

ON CLASSES OF UNIFORMLY STARLIKE AND CONVEX FUNCTIONS WITH NEGATIVE COEFFICIENTS

K. AL SHAQSI AND M. DARUS

ABSTRACT. Let \mathcal{A} be the class of all analytic functions of the form

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k$$

defined on the open unit disk $\mathbb{U} = \{z : |z| < 1\}$. In this paper we define a subclass of α -uniform starlike and convex functions by using the generalized Ruscheweyh derivatives operator introduced by authors in [9]. Several properties to this class are obtained.

1. INTRODUCTION

Let \mathcal{A} be the class of all analytic functions of the form $f(z) = z + \sum_{k=2}^{\infty} a_k z^k$, defined on the open unit disk $\mathbb{U} = \{z : |z| < 1\}$. Let \mathcal{S} denote the subclass of \mathcal{A} consisting of functions that are univalent in \mathbb{U} . Let $S^*(\beta)$ and $C(\beta)$ be the classes of functions respectively starlike of order β and convex of order β , $(0 \le \beta < 1)$. Finally, let \mathcal{T} be the subclass of \mathcal{S} , consisting of functions of the form

(1)
$$f(z) = z - \sum_{k=2}^{\infty} |a_k| z^k.$$

A function $f \in \mathcal{T}$ is called a function with negative coefficients. In this present paper, we study the following class of function:

²⁰⁰⁰ Mathematics Subject Classification. 30C45.

Key words and phrases. Analytic functions; Derivatives operator; α -uniformly starlike functions; α -uniformly convex functions; Hadamard product.

The work presented here was supported by SAGA GRANT: STGL-012-2006, Academy of Sciences Malaysia, Malaysia.

Definition 1.1. For $0 \leq \beta < 1$, $\alpha \geq 0$, $n \in \mathbb{N}_0$ and $\lambda \geq 0$, we let $M_{\lambda}^n(\alpha, \beta)$, consist of functions $f \in \mathcal{T}$ satisfying the condition

(2)
$$\Re\left\{\frac{z(D_{\lambda}^{n}f(z))'}{D_{\lambda}^{n}f(z)}\right\} > \alpha\left|\frac{z(D_{\lambda}^{n}f(z))'}{D_{\lambda}^{n}f(z)} - 1\right| + \beta$$

where D_{λ}^{n} denote the operator introduced by authors [9] and given by

$$D_{\lambda}^{n} f(z) = \frac{z(z^{n-1} D_{\lambda} f(z))^{(n)}}{n!}, \quad (n \in \mathbb{N}_{0} = \mathbb{N} \cup \{0\})$$

Note that if f is given by (1), then we see that

$$D_{\lambda}^{n}f(z) = z - \sum_{k=2}^{\infty} \left[1 + \lambda(k-1)\right]C(n,k)|a_{k}|z^{k},$$

where $\lambda \ge 0$, $n \in \mathbb{N}_0$ and $C(n,k) = \binom{k+n-1}{n}$.

The family $M_{\lambda}^{n}(\alpha,\beta)$ is of special interest for it contains many well known, as well as new, classes of analytic univalent functions. In particular $M_{\lambda}^{1}(\alpha,\beta) \equiv \mathcal{U}(k,\lambda,\beta)$ is the class of α -uniformly convex function introduced and studied by Shanmugam et al. [8]. The classes $M_{1}^{0}(\alpha,0) \equiv \alpha$ -ST $M_{1}^{1}(\alpha,0) \equiv \alpha$ -UCV is respectively, the classes of α -uniformly starlike function and α -uniformly convex function introduced and studied by Kanas and Wisniowska [5, 4]. The classes $M_{0}^{0}(0,\beta) \equiv \mathcal{T}^{*}(\beta)$ and $M_{0}^{1}(0,\beta) \equiv \mathcal{T}C(\beta)$ is respectively the classes of starlike functions of order β and classes of convex functions of order β studied by Silverman [10]. Also, we note that the class $M_{1}^{0}(1,1) \equiv UCV$ was studied by Rønning [6]. Finally, we remark that Goodman introduced the concept of uniformly starlike function and of uniformly convex function in [3] and proved some properties for such functions in [3] and [2].

In this paper we provide necessary and sufficient conditions, coefficient bounds, extreme points, radius of close-to-convexity, starlikeness and convexity for functions in $M_{\lambda}^{n}(\alpha,\beta)$. Inclusion theorem involving Hadamard products, convolution and integral operator are also obtained.

2. CHARACTERIZATION

We employ the technique adopted by Aqlan et al. [1] to find the coefficient estimates for our class.

Theorem 2.1. let f given by (1) then, $f \in M^n_{\lambda}(\alpha, \beta)$ if and only if

(3)
$$\sum_{k=2}^{\infty} \left[k - \beta + \alpha(k-1) \right] [1 + \lambda(k-1)] C(n,k) |a_k| \le (1-\beta),$$

where $\alpha, \lambda \geq 0, 0 \leq \beta < 1$ and $n \in \mathbb{N}_0$. The result is sharp.

Proof. We have $f \in M^n_\lambda(\alpha, \beta)$ if and only if the condition (2) is satisfied. Upon the fact that

$$\Re(w) > \alpha |w-1| + \beta \Leftrightarrow \Re \Big\{ w \big(1 + \alpha e^{i\theta} \big) - \alpha e^{i\theta} \big) \Big\} > \beta, \quad -\pi \le \theta < \pi.$$

Equation (2) may be written as

$$(4) \quad \Re\left\{\frac{z(D_{\lambda}^{n}f(z))'}{D_{\lambda}^{n}f(z)}\left(1+\alpha e^{i\theta}\right)-\alpha e^{i\theta}\right\}$$
$$= \Re\left\{\frac{z(D_{\lambda}^{n}f(z))'\left(1+\alpha e^{i\theta}\right)-\alpha e^{i\theta}D_{\lambda}^{n}f(z)}{D_{\lambda}^{n}f(z)}\right\} > \beta.$$

Now, we let

$$A(z) = z(D_{\lambda}^{n}f(z))'(1 + \alpha e^{i\theta}) - \alpha e^{i\theta}D_{\lambda}^{n}f(z), \quad B(z) = D_{\lambda}^{n}f(z).$$

Then (4) is equivalent to $|A(z)+(1-\beta)B(z)| > |A(z)-(1+\beta)B(z)|$ for $0 \le \beta < 1$. For A(z) and B(z) as above, we have

$$|A(z) + (1 - \beta)B(z)| \\ \ge (2 - \beta)|z| - \sum_{k=2}^{\infty} \left[k + 1 - \beta + \alpha(k - 1)\right] [1 + \lambda(k - 1)]C(n, k)|a_k||z|^k,$$

and similarly

$$|A(z) - (1+\beta)B(z)| \le \beta |z| - \sum_{k=2}^{\infty} \left[k - 1 - \beta + \alpha(k-1)\right] [1 + \lambda(k-1)]C(n,k)|a_k||z|^k.$$

Therefore,

$$|A(z) + (1 - \beta)B(z)| - |A(z) - (1 + \beta)B(z)|$$

$$\geq 2(1 - \beta) - 2\sum_{k=2}^{\infty} \left[k - \beta + \alpha(k - 1)\right] [1 + \lambda(k - 1)]C(n, k)|a_k|,$$

or
$$\sum_{k=2}^{\infty} \left[k - \beta + \alpha(k-1)\right] [1 + \lambda(k-1)] C(n,k) |a_k| \le (1 - \beta), \text{ which yields (3).}$$

On the other hand, we must have
$$\Re \left\{ \frac{z(D_{\lambda}^n f(z))'}{D_{\lambda}^n f(z)} (1 + \alpha e^{i\theta}) - \alpha e^{i\theta} \right\} > \beta.$$

Upon choosing the values of z on the positive real axis where $0 \le |z| = r < 1$, the above inequality reduces to

$$\Re\left\{\frac{(1-\beta)r - \sum_{k=2}^{\infty} \left[k - \beta + \alpha e^{i\theta}(k-1)\right] [1 + \lambda(k-1)]C(n,k)|a_k|r^k}{z - \sum_{k=2}^{\infty} [1 + \lambda(k-1)]C(n,k)|a_k|r^k}\right\} \ge 0.$$

Since $\Re(-e^{i\theta}) \ge -|e^{i\theta}| = -1$, the above inequality reduces to

$$\Re\left\{\frac{(1-\beta)r - \sum_{k=2}^{\infty} \left[k - \beta + \alpha(k-1)\right] [1 + \lambda(k-1)] C(n,k) |a_k| r^k}{z - \sum_{k=2}^{\infty} [1 + \lambda(k-1)] C(n,k) |a_k| r^k}\right\} \ge 0.$$

Letting $r \to 1^-,$ we get the desired result. Finally the result is sharp with the extremal function f given by

(5)
$$f(z) = z - \frac{1 - \beta}{[k - \beta + \alpha(k - 1)][1 + \lambda(k - 1)]C(n, k)} z^{n}.$$

3. Growth and Distortion Theorems

Theorem 3.1. Let the function f defined by (1) be in the class $M_{\lambda}^{n}(\alpha, \beta)$. Then for |z| = r we have

(6)
$$r - \frac{1-\beta}{(n+1)(2-\beta+\alpha)(1+\lambda)}r^2 \le |f(z)| \le r + \frac{1-\beta}{(n+1)(2-\beta+\alpha)(1+\lambda)}r^2.$$

Equality holds for the function

(7)
$$f(z) = z - \frac{1 - \beta}{(n+1)(2 - \beta + \alpha)(1 + \lambda)} z^2.$$

Proof. We only prove the right hand side inequality in (6), since the other inequality can be justified using similar arguments. In view of Theorem 2.1, we have

$$\sum_{k=2}^{\infty} |a_k| \le \frac{1-\beta}{(n+1)(2-\beta+\alpha)(1+\lambda)}.$$

Since, $f(z) = z - \sum_{k=2}^{\infty} |a_k| z^k$
$$|f(z)| = |z| - \sum_{k=2}^{\infty} |a_k| |z|^k \le r + \sum_{k=2}^{\infty} |a_k| r^k$$

$$\leq r + r^2 \sum_{k=2}^{\infty} |a_k| \leq r + \frac{1 - \beta}{(n+1)(2 - \beta + \alpha)(1 + \lambda)} r^2,$$

which yields the right hand side inequality of (6).

 ∞

Next, by using the same technique as in proof of Theorem 3.1, we give the distortion result.

Theorem 3.2. Let the function f defined by (1) be in the class $M_{\lambda}^{n}(\alpha, \beta)$. Then for |z| = r we have

$$1 - \frac{2(1-\beta)}{(n+1)(2-\beta+\alpha)(1+\lambda)}r \le |f'(z)| \le 1 + \frac{2(1-\beta)}{(n+1)(2-\beta+\alpha)(1+\lambda)}r.$$

Equality holds for the function given by (7).

Theorem 3.3. $f \in M^n_{\lambda}(\alpha, \beta)$, then $f \in T^*(\gamma)$, where

$$\gamma = 1 - \frac{(k-1)(1-\beta)}{[k-\beta+\alpha(k-1)][1+\lambda(k-1)]C(n,k) - (1-\beta)}$$

The result is sharp, with function given by (7).

Proof. It is sufficient to show that (3) implies $\sum_{k=2}^{\infty} (k-\gamma)|a_k| \le 1-\gamma$, that is, $\frac{k-\gamma}{1-\gamma} \le \frac{[k-\beta+\alpha(k-1)][1+\lambda(k-1)]C(n,k)}{1-\beta}, \text{ then}$ $(k-1)(1-\beta)$

$$\gamma \le 1 - \frac{(k-1)(1-\beta)}{[k-\beta+\alpha(k-1)][1+\lambda(k-1)]C(n,k) - (1-\beta)}.$$

The above inequality holds true for $n \in \mathbb{N}_0$, $k \ge 2, \alpha, \lambda \ge 0$ and $0 \le \beta < 1$. \Box

4. Extreme points

Theorem 4.1. Let $f_1(z) = z$ and

$$f_k(z) = z - \frac{1 - \beta}{[k - \beta + \alpha(k - 1)][1 + \lambda(k - 1)]C(n, k)} z^k, \quad (k \ge 2).$$

Then $f \in M^n_{\lambda}(\alpha, \beta)$, if and only if it can be represented in the form

(8)
$$f(z) = \sum_{k=1}^{\infty} \mu_k f_k(z), \quad (\mu_k \ge 0, \quad \sum_{k=1}^{\infty} \mu_k = 1).$$

Proof. Suppose f(z) can be expressed as in (8). Then

$$f(z) = \sum_{k=1}^{\infty} \mu_k f_k(z) = \mu_1 f_1(z) + \sum_{k=2}^{\infty} \mu_k f_k(z)$$

$$= \mu_1 f_1(z) + \sum_{k=2}^{\infty} \mu_k \left\{ z - \frac{1-\beta}{[k-\beta+\alpha(k-1)][1+\lambda(k-1)]C(n,k)} z^k \right\}$$

= $\mu_1 z + \sum_{k=2}^{\infty} \mu_k z - \sum_{k=2}^{\infty} \mu_k \left\{ \frac{1-\beta}{[k-\beta+\alpha(k-1)][1+\lambda(k-1)]C(n,k)} z^k \right\}$
= $z - \sum_{k=2}^{\infty} \mu_k \frac{1-\beta}{[k-\beta+\alpha(k-1)][1+\lambda(k-1)]C(n,k)} z^k.$

Thus

$$=\sum_{k=2}^{\infty}\mu_k\left(\frac{1-\beta}{[k-\beta+\alpha(k-1)][1+\lambda(k-1)]C(n,k)}\right)$$
$$\times\left(\frac{[k-\beta+\alpha(k-1)][1+\lambda(k-1)]C(n,k)}{1-\beta}\right)$$
$$=\sum_{k=2}^{\infty}\mu_k=\sum_{k=1}^{\infty}\mu_k-\mu_1=1-\mu_1\leq 1$$

So by Theorem 2.1, $f \in M^n_{\lambda}(\alpha, \beta)$. Conversely, we suppose $f \in M^n_{\lambda}(\alpha, \beta)$. Since

$$|a_k| \le \frac{1-\beta}{\left[k-\beta+\alpha(k-1)\right]\left[1+\lambda(k-1)\right]C(n,k)} \quad k \ge 2.$$

We may set

1

$$u_{k} = \frac{[k - \beta + \alpha(k - 1)][1 + \lambda(k - 1)]C(n, k)}{1 - \beta} |a_{k}| \quad k \ge 2.$$

and $\mu_1 = 1 - \sum_{k=2}^{\infty} \mu_k$. Then $f(z) = z - \sum_{k=2}^{\infty} a_k z^k = z - \sum_{k=2}^{\infty} \mu_k \frac{1 - \beta}{[k - \beta + \alpha(k-1)][1 + \lambda(k-1)]C(n,k)} z^k$ $= z - \sum_{k=0}^{\infty} \mu_k [z - f_k(z)] = z - \sum_{k=0}^{\infty} \mu_k z + \sum_{k=0}^{\infty} \mu_k f_k(z)$ $= \mu_1 f_1(z) + \sum_{k=1}^{\infty} \mu_k f_k(z) = \sum_{k=1}^{\infty} \mu_k f_k(z).$

Corollary 4.2. The extreme points of $M^n_{\lambda}(\alpha, \beta)$ are the functions $f_1(z) = z \text{ and } f_k(z) = z - \frac{1 - \beta}{[k - \beta + \alpha(k - 1)][1 + \lambda(k - 1)]C(n, k)} z^k, \quad k \ge 2.$

5. RADII OF CLOSE-TO-CONVEXITY, STARLIKENESS AND CONVEXITY

A function $f \in M^n_{\lambda}(\alpha, \beta)$ is said to be close-to-convex of order δ if it satisfies

$$\Re\{f'(z)\} > \delta, \quad (0 \le \delta < 1; z \in \mathbb{U}).$$

Also a function $f \in M^n_{\lambda}(\alpha, \beta)$ is said to be starlike of order δ if it satisfies

$$\Re \frac{zf'(z)}{f(z)} > \delta, \quad (0 \le \delta < 1; z \in \mathbb{U}).$$

Further a function $f \in M^n_\lambda(\alpha, \beta)$ is said to be convex of order δ if and only if zf'(z) is starlike of order δ , that is if

$$\Re\left\{1+\frac{zf'(z)}{f(z)}\right\} > \delta, \quad (0 \le \delta < 1; z \in \mathbb{U}).$$

Theorem 5.1. Let $f \in M^n_{\lambda}(\alpha, \beta)$. Then f is close-to-convex of order δ in $|z| < R_1$, where

$$R_1 = \inf_{k \ge 2} \left[\frac{(1-\delta) [k-\beta + \alpha(k-1)] [1+\lambda(k-1)] C(n,k)}{k(1-\beta)} \right]^{\frac{1}{k-1}}$$

The result is sharp with the extremal function f given by (5).

Proof. It is sufficient to show that $|f'(z) - 1| \le 1 - \delta$ for $|z| < R_1$. We have

$$|f'(z) - 1| = \left| -\sum_{k=2}^{\infty} ka_k z^{k-1} \right| \le \sum_{k=1}^{\infty} ka_k |z|^{k-1}.$$

Thus $|f'(z) - 1| \le 1 - \delta$ if

(9)
$$\sum_{k=2}^{\infty} \left(\frac{k}{1-\delta}\right) |a_k| |z|^{k-1} \le 1.$$

But Theorem 2.1 confirms that

(10)
$$\sum_{k=2}^{\infty} \frac{\left[k - \beta + \alpha(k-1)\right] \left[1 + \lambda(k-1)\right] C(n,k)}{1 - \beta} |a_k| \le 1.$$

Hence (9) will be true if $\frac{k|z|^{k-1}}{1-\delta} \leq \frac{\left[k-\beta+\alpha(k-1)\right]\left[1+\lambda(k-1)\right]C(n,k)}{1-\beta}$. We obtain

$$|z| \le \left\{ \frac{(1-\delta) \left[k - \beta + \alpha(k-1)\right] [1 + \lambda(k-1)] C(n,k)}{k(1-\beta)} \right\}^{\frac{1}{k-1}}, \quad (k \ge 2)$$

as required.

Theorem 5.2. Let $f \in M^n_{\lambda}(\alpha, \beta)$. Then f is starlike of order δ in $|z| < R_2$, where

$$R_2 = \inf_{k \ge 2} \left[\frac{(1-\delta) [k-\beta + \alpha(k-1)] [1+\lambda(k-1)] C(n,k)}{(k-\delta)(1-\beta)} \right]^{\frac{1}{k-1}}$$

The result is sharp with the extremal function f given by (5).

Proof. We must show that $\left|\frac{zf'(z)}{f(z)} - 1\right| \le 1 - \delta$ for $|z| < R_2$. We have

(11)
$$\left|\frac{zf'(z)}{f(z)} - 1\right| = \left|\frac{-\sum_{k=2}^{\infty} (k-1)a_k z^{k-1}}{1 - \sum_{k=2}^{\infty} a_k z^{k-1}}\right| \le \frac{\sum_{k=2}^{\infty} (k-1)|a_k||z|^{k-1}}{1 - \sum_{k=2}^{\infty} |a_k||z|^{k-1}} \le 1 - \delta.$$

Hence (11) holds true if $\sum_{k=2}^{\infty} (k-1)|a_k||z|^{k-1} \le (1-\delta) \left\{ 1 - \sum_{k=2}^{\infty} |a_k||z|^{k-1} \right\}$ or, equivalently,

(12)
$$\sum_{k=2}^{\infty} \frac{(k-\delta)}{(1-\delta)} |a_k| |z|^{k-1} \le 1.$$

Hence, by using (10) and (12) will be true if

$$\frac{(k-\delta)}{(1-\delta)}|z|^{k-1} \le \frac{\left[k-\beta+\alpha(k-1)\right]\left[1+\lambda(k-1)\right]C(n,k)}{1-\beta}$$

or if

$$|z| \le \left\{ \frac{(1-\delta)[k-\beta+\alpha(k-1)][1+\lambda(k-1)]C(n,k)}{(k-\delta)(1-\beta)} \right\}^{\frac{1}{k-1}}, \quad (k\ge 2)$$

which completes the proof.

Theorem 5.3. Let $f \in M^n_\lambda(\alpha, \beta)$. Then f is convex of order δ in $|z| < R_3$, where

$$R_3 = \inf_{k \ge 2} \left[\frac{(1-\delta) [k-\beta + \alpha(k-1)] [1+\lambda(k-1)] C(n,k)}{k(k-\delta)(1-\beta)} \right]^{\frac{1}{k-1}}$$

The result is sharp with the extremal function f given by (5).

Proof. By using the same technique in the proof of Theorem 5.2, we can show that $\left|\frac{zf''(z)}{f'(z)}\right| \leq 1 - \delta$ for $|z| \leq R_3$, with the aid of Theorem 2.1. Thus we have the assertion of Theorem 5.3.

6. Inclusion theorem involving modified Hadamard products

For functions

(13)
$$f_j(z) = z - \sum_{k=2}^{\infty} |a_{k,j}| z^k \quad (j = 1, 2)$$

in the class \mathcal{A} , we define the modified Hadamard product $f_1 * f_2(z)$ of $f_1(z)$ and $f_2(z)$ given by $f_1(z) * f_2(z) = z - \sum_{k=2}^{\infty} |a_{k,1}| |a_{k,2}| z^k$. We can prove the following.

Theorem 6.1. Let the functions $f_j(z)$ (j = 1, 2) given by (13) be on the class $M^n_{\lambda}(\alpha, \beta)$ respectively. Then $(f_1 * f_2)(z) \in M^n_{\lambda}(\alpha, \xi)$, where

$$\xi = 1 - \frac{(1-\beta)^2}{(n+1)(2-\beta)(2-\beta+\alpha)(1+\lambda) - (1-\beta)^2}.$$

Proof. Employing the technique used earlier by Schild and Silverman [7], we need to find the largest ξ such that

$$\sum_{k=2}^{\infty} \frac{\left[k - \xi + \alpha(k-1)\right] \left[1 + \lambda(k-1)\right] C(n,k)}{1 - \xi} |a_{k,1}| |a_{k,2}| \le 1.$$

Since $f_j(z) \in M^n_{\lambda}(\alpha, \beta)$ (j = 1, 2), then we have

$$\sum_{k=2}^{\infty} \frac{\left[k - \beta + \alpha(k-1)\right] \left[1 + \lambda(k-1)\right] C(n,k)}{1 - \beta} |a_{k,1}| \le 1,$$

and

$$\sum_{k=2}^{\infty} \frac{\left[k - \beta + \alpha(k-1)\right] [1 + \lambda(k-1)] C(n,k)}{1 - \beta} |a_{k,2}| \le 1,$$

by the Cauchy-Schwartz inequality, we have

$$\sum_{k=2}^{\infty} \frac{\left[k - \beta + \alpha(k-1)\right] [1 + \lambda(k-1)] C(n,k)}{1 - \beta} \sqrt{|a_{k,1}| |a_{k,2}|} \le 1.$$

Thus it is sufficient to show that

$$\frac{\left[k-\xi+\alpha(k-1)\right]\left[1+\lambda(k-1)\right]C(n,k)}{1-\xi}|a_{k,1}||a_{k,2}| \\
\leq \frac{\left[k-\beta+\alpha(k-1)\right]\left[1+\lambda(k-1)\right]C(n,k)}{1-\beta}\sqrt{|a_{k,1}||a_{k,2}|} \quad (k \ge 2),$$

that is,

$$\sqrt{|a_{k,1}||a_{k,2}|} \le \frac{(1-\xi)\left[k-\beta+\alpha(k-1)\right]}{(1-\beta)\left[k-\xi+\alpha(k-1)\right]}.$$

Note that

$$\sqrt{|a_{k,1}||a_{k,2}|} \le \frac{(1-\beta)}{[k-\beta+\alpha(k-1)][1+\lambda(k-1)]C(n,k)}$$

Consequently, we need only to prove that

$$\frac{(1-\beta)}{\left[k-\beta+\alpha(k-1)\right]\left[1+\lambda(k-1)\right]C(n,k)} \le \frac{(1-\xi)\left[k-\beta+\alpha(k-1)\right]}{(1-\beta)\left[k-\xi+\alpha(k-1)\right]} \quad (k \ge 2),$$

or, equivalently, that

$$\xi \le 1 - \frac{(k-1)(1+\alpha)(1-\beta)^2}{\left[k-\beta+\alpha(k-1)\right]^2 \left[1+\lambda(k-1)\right]C(n,k) - (1-\beta)^2} \quad (k\ge 2).$$

Since

$$A(k) = 1 - \frac{(k-1)(1+\alpha)(1-\beta)^2}{\left[k-\beta+\alpha(k-1)\right]^2 \left[1+\lambda(k-1)\right]C(n,k) - (1-\beta)^2} \quad (k \ge 2).$$

is an increasing function of $k(k \ge 2)$, letting k = 2 in last equation, we obtain

$$\xi \le A(2) = 1 - \frac{(1+\alpha)(1-\beta)^2}{\left[2-\beta+\alpha\right]^2(1+\lambda)(n+1) - (1-\beta)^2}$$

Finally, by taking the function given by (7). we can see that the result is sharp. $\hfill \Box$

7. Convolution and Integral Operators

Let f(z) be defined by (1), and suppose that $g(z) = z - \sum_{k=2}^{\infty} |b_k| z^k$. Then, the Hadamard product (or convolution) of f(z) and g(z) defined here by

$$f(z) * g(z) = (f * g)(z) = z - \sum_{k=2}^{\infty} |a_k| |b_k| z^k$$

Theorem 7.1. Let $f \in M_{\lambda}^{n}(\alpha, \beta)$, and $g(z) = z - \sum_{k=2}^{\infty} |b_{k}| z^{k}$ $(0 \le |b_{n}| \le 1)$. Then $f * g \in M_{\lambda}^{n}(\alpha, \beta)$

Proof. In view of Theorem 2.1, we have

$$\sum_{k=2}^{\infty} \left[k - \beta + \alpha(k-1) \right] \left[1 + \lambda(k-1) \right] C(n,k) |a_k| |b_k|$$

$$\leq \sum_{k=2}^{\infty} \left[k - \beta + \alpha(k-1) \right] \left[1 + \lambda(k-1) \right] C(n,k) |a_k| \leq (1-\beta).$$

Theorem 7.2. Let $f \in M^n_{\lambda}(\alpha,\beta)$ and let v be real number such that v > -1, then the function $F(z) = \frac{v+1}{z^v} \int_0^z t^{v-1} f(t) dt$ also belongs to the class $M^n_{\lambda}(\alpha,\beta)$.

Proof. From the representation of F(z), it follows that

$$F(z) = z - \sum_{k=2}^{\infty} |A_k| z^k, \text{ where } A_k = \left(\frac{v+1}{v+k}\right) |a_k|.$$

Since v > -1, than $0 \le A_k \le |a_k|$. Which in view of Theorem 2.1, $F \in M^n_\lambda(\alpha, \beta)$.

References

- E. Aqlan, J. M. Jahangiri, and S. R. Kulkarni. New classes of k-uniformly convex and starlike functions. *Tamkang J. Math.*, 35(3):261–266, 2004.
- [2] A. W. Goodman. On uniformly convex functions. Ann. Polon. Math., 56(1):87–92, 1991.
- [3] A. W. Goodman. On uniformly starlike functions. J. Math. Anal. Appl., 155(2):364–370, 1991.
- [4] S. Kanas and A. Wisniowska. Conic regions and k-uniform convexity. J. Comput. Appl. Math., 105(1-2):327–336, 1999. Continued fractions and geometric function theory (CON-FUN) (Trondheim, 1997).
- [5] S. Kanas and A. Wiśniowska. Conic domains and starlike functions. Rev. Roumaine Math. Pures Appl., 45(4):647–657 (2001), 2000.
- [6] F. Rønning. On starlike functions associated with parabolic regions. Ann. Univ. Mariae Curie-Skłodowska Sect. A, 45:117–122 (1992), 1991.
- [7] A. Schild and H. Silverman. Convolutions of univalent functions with negative coefficients. Ann. Univ. Mariae Curie-Skłodowska Sect. A, 29:99–107 (1977), 1975.
- [8] T. N. Shanmugam, S. Sivasubramanian, and M. Darus. On a subclass of k-uniformly convex functions with negative coefficients. *Int. Math. Forum*, 1(33-36):1677–1689, 2006.
- [9] K. A. Shaqsi and M. Darus. On univalent functions with respect to k-symmetric points defined by a generalized Ruscheweyh derivatives operator. Submitted.
- [10] H. Silverman. Univalent functions with negative coefficients. Proc. Amer. Math. Soc., 51:109–116, 1975.

School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600 Selangor D. Ehsan, Malaysia *E-mail address*: ommath@hotmail.com