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ON CLASSES OF UNIFORMLY STARLIKE AND CONVEX
FUNCTIONS WITH NEGATIVE COEFFICIENTS

K. AL SHAQSI AND M. DARUS

Abstract. Let A be the class of all analytic functions of the form

f(z) = z +
∞X

k=2

akzk

defined on the open unit disk U = {z : |z| < 1}. In this paper we define a
subclass of α-uniform starlike and convex functions by using the generalized
Ruscheweyh derivatives operator introduced by authors in [9]. Several
properties to this class are obtained.

1. Introduction

Let A be the class of all analytic functions of the form f(z) = z +
∞∑

k=2

akzk,

defined on the open unit disk U = {z : |z| < 1}. Let S denote the subclass
of A consisting of functions that are univalent in U. Let S∗(β) and C(β) be
the classes of functions respectively starlike of order β and convex of order β,
(0 ≤ β < 1). Finally, let T be the subclass of S, consisting of functions of the
form

f(z) = z −
∞∑

k=2

|ak|zk.(1)

A function f ∈ T is called a function with negative coefficients. In this present
paper, we study the following class of function:
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Definition 1.1. For 0 ≤ β < 1, α ≥ 0, n ∈ N0 and λ ≥ 0, we let Mn
λ (α, β),

consist of functions f ∈ T satisfying the condition

<
{

z(Dn
λf(z))′

Dn
λf(z)

}
> α

∣∣∣∣∣
z(Dn

λf(z))′

Dn
λf(z)

− 1

∣∣∣∣∣ + β(2)

where Dn
λ denote the operator introduced by authors [9] and given by

Dn
λf(z) =

z(zn−1Dλf(z))(n)

n!
, (n ∈ N0 = N ∪ {0}).

Note that if f is given by (1), then we see that

Dn
λf(z) = z −

∞∑

k=2

[
1 + λ(k − 1)

]
C(n, k)|ak|zk,

where λ ≥ 0, n ∈ N0 and C(n, k) =
(
k+n−1

n

)
.

The family Mn
λ (α, β) is of special interest for it contains many well known,

as well as new, classes of analytic univalent functions. In particular M1
λ(α, β) ≡

U(k, λ, β) is the class of α-uniformly convex function introduced and studied by
Shanmugam et al. [8]. The classes M0

1 (α, 0) ≡ α-ST M1
1 (α, 0) ≡ α-UCV is

respectively, the classes of α-uniformly starlike function and α-uniformly convex
function introduced and studied by Kanas and Wisniowska [5, 4]. The classes
M0

0 (0, β) ≡ T ∗(β) and M1
0 (0, β) ≡ T C(β) is respectively the classes of starlike

functions of order β and classes of convex functions of order β studied by Silver-
man [10]. Also, we note that the class M0

1 (1, 1) ≡ UCV was studied by Rønning
[6]. Finally, we remark that Goodman introduced the concept of uniformly star-
like function and of uniformly convex function in [3] and proved some properties
for such functions in [3] and [2].

In this paper we provide necessary and sufficient conditions, coefficient bounds,
extreme points, radius of close-to-convexity, starlikeness and convexity for func-
tions in Mn

λ (α, β). Inclusion theorem involving Hadamard products, convolution
and integral operator are also obtained.

2. Characterization

We employ the technique adopted by Aqlan et al. [1] to find the coefficient
estimates for our class.

Theorem 2.1. let f given by (1) then, f ∈ Mn
λ (α, β) if and only if

∞∑

k=2

[
k − β + α(k − 1)

]
[1 + λ(k − 1)]C(n, k)|ak| ≤ (1− β),(3)

where α, λ ≥ 0, 0 ≤ β < 1 and n ∈ N0. The result is sharp.
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Proof. We have f ∈ Mn
λ (α, β) if and only if the condition (2) is satisfied. Upon

the fact that

<(w) > α|w − 1|+ β ⇔ <
{

w
(
1 + αeiθ

)− αeiθ)
}

> β, −π ≤ θ < π.

Equation (2) may be written as

(4) <
{

z(Dn
λf(z))′

Dn
λf(z)

(
1 + αeiθ

)− αeiθ

}

= <
{

z(Dn
λf(z))′

(
1 + αeiθ

)− αeiθDn
λf(z)

Dn
λf(z)

}
> β.

Now, we let

A(z) = z(Dn
λf(z))′

(
1 + αeiθ

)− αeiθDn
λf(z), B(z) = Dn

λf(z).

Then (4) is equivalent to |A(z)+(1−β)B(z)| > |A(z)−(1+β)B(z)| for 0 ≤ β < 1.
For A(z) and B(z) as above, we have

|A(z) + (1− β)B(z)|

≥ (2− β)|z| −
∞∑

k=2

[
k + 1− β + α(k − 1)

]
[1 + λ(k − 1)]C(n, k)|ak||z|k,

and similarly

|A(z)− (1 + β)B(z)|

≤ β|z| −
∞∑

k=2

[
k − 1− β + α(k − 1)

]
[1 + λ(k − 1)]C(n, k)|ak||z|k.

Therefore,

|A(z) + (1− β)B(z)| − |A(z)− (1 + β)B(z)|

≥ 2(1− β)− 2
∞∑

k=2

[
k − β + α(k − 1)

]
[1 + λ(k − 1)]C(n, k)|ak|,

or
∞∑

k=2

[
k − β + α(k − 1)

]
[1 + λ(k − 1)]C(n, k)|ak| ≤ (1− β), which yields (3).

On the other hand, we must have <
{

z(Dn
λf(z))′

Dn
λf(z)

(
1 + αeiθ

)− αeiθ

}
> β.
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Upon choosing the values of z on the positive real axis where 0 ≤ |z| = r < 1,
the above inequality reduces to

<





(1− β)r −
∞∑

k=2

[
k − β + αeiθ(k − 1)

]
[1 + λ(k − 1)]C(n, k)|ak|rk

z −
∞∑

k=2

[1 + λ(k − 1)]C(n, k)|ak|rk




≥ 0.

Since <(−eiθ) ≥ −|eiθ| = −1, the above inequality reduces to

<





(1− β)r −
∞∑

k=2

[
k − β + α(k − 1)

]
[1 + λ(k − 1)]C(n, k)|ak|rk

z −
∞∑

k=2

[1 + λ(k − 1)]C(n, k)|ak|rk




≥ 0.

Letting r → 1−, we get the desired result. Finally the result is sharp with the
extremal function f given by

f(z) = z − 1− β[
k − β + α(k − 1)

]
[1 + λ(k − 1)]C(n, k)

zn.(5)

¤

3. Growth and Distortion Theorems

Theorem 3.1. Let the function f defined by (1) be in the class Mn
λ (α, β). Then

for |z| = r we have

(6) r − 1− β

(n + 1)(2− β + α)(1 + λ)
r2 ≤ |f(z)|

≤ r +
1− β

(n + 1)(2− β + α)(1 + λ)
r2.

Equality holds for the function

f(z) = z − 1− β

(n + 1)(2− β + α)(1 + λ)
z2.(7)

Proof. We only prove the right hand side inequality in (6), since the other in-
equality can be justified using similar arguments. In view of Theorem 2.1, we
have

∞∑

k=2

|ak| ≤ 1− β

(n + 1)(2− β + α)(1 + λ)
.

Since, f(z) = z −
∞∑

k=2

|ak|zk

|f(z)| = |z| −
∞∑

k=2

|ak||z|k ≤ r +
∞∑

k=2

|ak|rk
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≤ r + r2
∞∑

k=2

|ak| ≤ r +
1− β

(n + 1)(2− β + α)(1 + λ)
r2,

which yields the right hand side inequality of (6). ¤

Next, by using the same technique as in proof of Theorem 3.1, we give the
distortion result.

Theorem 3.2. Let the function f defined by (1) be in the class Mn
λ (α, β). Then

for |z| = r we have

1− 2(1− β)
(n + 1)(2− β + α)(1 + λ)

r ≤ |f ′(z)| ≤ 1 +
2(1− β)

(n + 1)(2− β + α)(1 + λ)
r.

Equality holds for the function given by (7).

Theorem 3.3. f ∈ Mn
λ (α, β), then f ∈ T ∗(γ), where

γ = 1− (k − 1)(1− β)[
k − β + α(k − 1)

]
[1 + λ(k − 1)]C(n, k)− (1− β)

.

The result is sharp, with function given by (7).

Proof. It is sufficient to show that (3) implies
∞∑

k=2

(k − γ)|ak| ≤ 1− γ, that is,

k − γ

1− γ
≤

[
k − β + α(k − 1)

]
[1 + λ(k − 1)]C(n, k)

1− β
, then

γ ≤ 1− (k − 1)(1− β)[
k − β + α(k − 1)

]
[1 + λ(k − 1)]C(n, k)− (1− β)

.

The above inequality holds true for n ∈ N0, k ≥ 2, α, λ ≥ 0 and 0 ≤ β < 1. ¤

4. Extreme points

Theorem 4.1. Let f1(z) = z and

fk(z) = z − 1− β[
k − β + α(k − 1)

]
[1 + λ(k − 1)]C(n, k)

zk, (k ≥ 2).

Then f ∈ Mn
λ (α, β), if and only if it can be represented in the form

f(z) =
∞∑

k=1

µkfk(z), (µk ≥ 0,

∞∑

k=1

µk = 1).(8)

Proof. Suppose f(z) can be expressed as in (8). Then

f(z) =
∞∑

k=1

µkfk(z) = µ1f1(z) +
∞∑

k=2

µkfk(z)
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= µ1f1(z) +
∞∑

k=2

µk

{
z − 1− β[

k − β + α(k − 1)
]
[1 + λ(k − 1)]C(n, k)

zk

}

= µ1z +
∞∑

k=2

µkz −
∞∑

k=2

µk

{
1− β[

k − β + α(k − 1)
]
[1 + λ(k − 1)]C(n, k)

zk

}

= z −
∞∑

k=2

µk
1− β[

k − β + α(k − 1)
]
[1 + λ(k − 1)]C(n, k)

zk.

Thus

=
∞∑

k=2

µk

(
1− β[

k − β + α(k − 1)
]
[1 + λ(k − 1)]C(n, k)

)

×
([

k − β + α(k − 1)
]
[1 + λ(k − 1)]C(n, k)

1− β

)

=
∞∑

k=2

µk =
∞∑

k=1

µk − µ1 = 1− µ1 ≤ 1.

So by Theorem 2.1, f ∈ Mn
λ (α, β).

Conversely, we suppose f ∈ Mn
λ (α, β). Since

|ak| ≤ 1− β[
k − β + α(k − 1)

]
[1 + λ(k − 1)]C(n, k)

k ≥ 2.

We may set

µk =

[
k − β + α(k − 1)

]
[1 + λ(k − 1)]C(n, k)

1− β
|ak| k ≥ 2.

and µ1 = 1−
∞∑

k=2

µk. Then

f(z) = z −
∞∑

k=2

akzk = z −
∞∑

k=2

µk
1− β[

k − β + α(k − 1)
]
[1 + λ(k − 1)]C(n, k)

zk

= z −
∞∑

k=2

µk[z − fk(z)] = z −
∞∑

k=2

µkz +
∞∑

k=2

µkfk(z)

= µ1f1(z) +
∞∑

k=2

µkfk(z) =
∞∑

k=1

µkfk(z).

¤
Corollary 4.2. The extreme points of Mn

λ (α, β) are the functions

f1(z) = z and fk(z) = z − 1− β[
k − β + α(k − 1)

]
[1 + λ(k − 1)]C(n, k)

zk, k ≥ 2.



ON CLASSES OF UNIFORMLY STARLIKE AND CONVEX FUNCTIONS 361

5. Radii of Close-to-convexity, Starlikeness and Convexity

A function f ∈ Mn
λ (α, β) is said to be close-to-convex of order δ if it satisfies

<{f ′(z)} > δ, (0 ≤ δ < 1; z ∈ U).

Also a function f ∈ Mn
λ (α, β) is said to be starlike of order δ if it satisfies

<zf ′(z)
f(z)

> δ, (0 ≤ δ < 1; z ∈ U).

Further a function f ∈ Mn
λ (α, β) is said to be convex of order δ if and only if

zf ′(z) is starlike of order δ, that is if

<
{

1 +
zf ′(z)
f(z)

}
> δ, (0 ≤ δ < 1; z ∈ U).

Theorem 5.1. Let f ∈ Mn
λ (α, β). Then f is close-to-convex of order δ in

|z| < R1 , where

R1 = inf
k≥2

[
(1− δ)

[
k − β + α(k − 1)

]
[1 + λ(k − 1)]C(n, k)

k(1− β)

] 1
k−1

.

The result is sharp with the extremal function f given by (5).

Proof. It is sufficient to show that |f ′(z)− 1| ≤ 1− δ for |z| < R1. We have

|f ′(z)− 1| =
∣∣∣∣∣−

∞∑

k=2

kakzk−1

∣∣∣∣∣ ≤
∞∑

k=1

kak|z|k−1.

Thus |f ′(z)− 1| ≤ 1− δ if
∞∑

k=2

( k

1− δ

)
|ak||z|k−1 ≤ 1.(9)

But Theorem 2.1 confirms that
∞∑

k=2

[
k − β + α(k − 1)

]
[1 + λ(k − 1)]C(n, k)

1− β
|ak| ≤ 1.(10)

Hence (9) will be true if k|z|k−1

1−δ ≤
[
k−β+α(k−1)

]
[1+λ(k−1)]C(n,k)

1−β .
We obtain

|z| ≤
{

(1− δ)
[
k − β + α(k − 1)

]
[1 + λ(k − 1)]C(n, k)

k(1− β)

} 1
k−1

, (k ≥ 2)

as required. ¤
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Theorem 5.2. Let f ∈ Mn
λ (α, β). Then f is starlike of order δ in |z| < R2 ,

where

R2 = inf
k≥2

[
(1− δ)

[
k − β + α(k − 1)

]
[1 + λ(k − 1)]C(n, k)

(k − δ)(1− β)

] 1
k−1

.

The result is sharp with the extremal function f given by (5).

Proof. We must show that
∣∣∣ zf ′(z)

f(z) − 1
∣∣∣ ≤ 1− δ for |z| < R2. We have

(11)
∣∣∣∣
zf ′(z)
f(z)

− 1
∣∣∣∣ =

∣∣∣∣∣∣∣∣

−
∞∑

k=2

(k − 1)akzk−1

1−
∞∑

k=2

akzk−1

∣∣∣∣∣∣∣∣
≤

∞∑
k=2

(k − 1)|ak||z|k−1

1−
∞∑

k=2

|ak||z|k−1

≤ 1− δ.

Hence (11) holds true if
∞∑

k=2

(k − 1)|ak||z|k−1 ≤ (1− δ)

{
1−

∞∑
k=2

|ak||z|k−1

}
or,

equivalently,
∞∑

k=2

(k − δ)
(1− δ)

|ak||z|k−1 ≤ 1.(12)

Hence, by using (10) and (12) will be true if

(k − δ)
(1− δ)

|z|k−1 ≤
[
k − β + α(k − 1)

]
[1 + λ(k − 1)]C(n, k)

1− β

or if

|z| ≤
{

(1− δ)
[
k − β + α(k − 1)

]
[1 + λ(k − 1)]C(n, k)

(k − δ)(1− β)

} 1
k−1

, (k ≥ 2)

which completes the proof. ¤

Theorem 5.3. Let f ∈ Mn
λ (α, β). Then f is convex of order δ in |z| < R3 ,

where

R3 = inf
k≥2

[
(1− δ)

[
k − β + α(k − 1)

]
[1 + λ(k − 1)]C(n, k)

k(k − δ)(1− β)

] 1
k−1

.

The result is sharp with the extremal function f given by (5).

Proof. By using the same technique in the proof of Theorem 5.2, we can show
that

∣∣∣ zf ′′(z)
f ′(z)

∣∣∣ ≤ 1 − δ for |z| ≤ R3, with the aid of Theorem 2.1. Thus we have
the assertion of Theorem 5.3. ¤
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6. Inclusion theorem involving modified Hadamard products

For functions

fj(z) = z −
∞∑

k=2

|ak,j |zk (j = 1, 2)(13)

in the class A, we define the modified Hadamard product f1 ∗ f2(z) of f1(z) and

f2(z) given by f1(z) ∗ f2(z) = z−
∞∑

k=2

|ak,1||ak,2|zk. We can prove the following.

Theorem 6.1. Let the functions fj(z) (j = 1, 2) given by (13) be on the class
Mn

λ (α, β) respectively. Then (f1 ∗ f2)(z) ∈ Mn
λ (α, ξ), where

ξ = 1− (1− β)2

(n + 1)(2− β)(2− β + α)(1 + λ)− (1− β)2
.

Proof. Employing the technique used earlier by Schild and Silverman [7], we
need to find the largest ξ such that

∞∑

k=2

[
k − ξ + α(k − 1)

]
[1 + λ(k − 1)]C(n, k)

1− ξ
|ak,1||ak,2| ≤ 1.

Since fj(z) ∈ Mn
λ (α, β) (j = 1, 2), then we have

∞∑

k=2

[
k − β + α(k − 1)

]
[1 + λ(k − 1)]C(n, k)

1− β
|ak,1| ≤ 1,

and
∞∑

k=2

[
k − β + α(k − 1)

]
[1 + λ(k − 1)]C(n, k)

1− β
|ak,2| ≤ 1,

by the Cauchy-Schwartz inequality, we have
∞∑

k=2

[
k − β + α(k − 1)

]
[1 + λ(k − 1)]C(n, k)

1− β

√
|ak,1||ak,2| ≤ 1.

Thus it is sufficient to show that[
k − ξ + α(k − 1)

]
[1 + λ(k − 1)]C(n, k)

1− ξ
|ak,1||ak,2|

≤
[
k − β + α(k − 1)

]
[1 + λ(k − 1)]C(n, k)

1− β

√
|ak,1||ak,2| (k ≥ 2),

that is,
√
|ak,1||ak,2| ≤

(1− ξ)
[
k − β + α(k − 1)

]

(1− β)
[
k − ξ + α(k − 1)

] .
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Note that √
|ak,1||ak,2| ≤ (1− β)[

k − β + α(k − 1)
]
[1 + λ(k − 1)]C(n, k)

.

Consequently, we need only to prove that

(1− β)[
k − β + α(k − 1)

]
[1 + λ(k − 1)]C(n, k)

≤ (1− ξ)
[
k − β + α(k − 1)

]

(1− β)
[
k − ξ + α(k − 1)

] (k ≥ 2),

or, equivalently, that

ξ ≤ 1− (k − 1)(1 + α)(1− β)2[
k − β + α(k − 1)

]2[1 + λ(k − 1)]C(n, k)− (1− β)2
(k ≥ 2).

Since

A(k) = 1− (k − 1)(1 + α)(1− β)2[
k − β + α(k − 1)

]2[1 + λ(k − 1)]C(n, k)− (1− β)2
(k ≥ 2).

is an increasing function of k(k ≥ 2), letting k = 2 in last equation, we obtain

ξ ≤ A(2) = 1− (1 + α)(1− β)2[
2− β + α

]2(1 + λ)(n + 1)− (1− β)2
.

Finally, by taking the function given by (7). we can see that the result is
sharp. ¤

7. Convolution and Integral Operators

Let f(z) be defined by (1), and suppose that g(z) = z −
∞∑

k=2

|bk|zk. Then,the

Hadamard product (or convolution) of f(z) and g(z) defined here by

f(z) ∗ g(z) = (f ∗ g)(z) = z −
∞∑

k=2

|ak||bk|zk.

Theorem 7.1. Let f ∈ Mn
λ (α, β), and g(z) = z −

∞∑
k=2

|bk|zk (0 ≤ |bn| ≤ 1).

Then f ∗ g ∈ Mn
λ (α, β)

Proof. In view of Theorem 2.1, we have
∞∑

k=2

[
k − β + α(k − 1)

]
[1 + λ(k − 1)]C(n, k)|ak||bk|

≤
∞∑

k=2

[
k − β + α(k − 1)

]
[1 + λ(k − 1)]C(n, k)|ak| ≤ (1− β).

¤
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Theorem 7.2. Let f ∈ Mn
λ (α, β) and let v be real number such that v > −1,

then the function F (z) = v+1
zv

z∫
0

tv−1f(t)dt also belongs to the class Mn
λ (α, β).

Proof. From the representation of F (z), it follows that

F (z) = z −
∞∑

k=2

|Ak|zk, where Ak =
(

v + 1
v + k

)
|ak|.

Since v > −1, than 0 ≤ Ak ≤ |ak|. Which in view of Theorem 2.1, F ∈
Mn

λ (α, β). ¤
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