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ON CLASSES OF UNIFORMLY STARLIKE AND CONVEX
FUNCTIONS WITH NEGATIVE COEFFICIENTS

K. AL SHAQSI AND M. DARUS

ABSTRACT. Let A be the class of all analytic functions of the form

o0
f(z)=z+ Z apz"
k=2
defined on the open unit disk U = {z : |2] < 1}. In this paper we define a
subclass of a-uniform starlike and convex functions by using the generalized
Ruscheweyh derivatives operator introduced by authors in [9]. Several
properties to this class are obtained.

1. INTRODUCTION

Let A be the class of all analytic functions of the form f(z) = z + Y az2*,
k=2
defined on the open unit disk U = {2z : |z|] < 1}. Let S denote the subclass
of A consisting of functions that are univalent in U. Let S*(8) and C(8) be
the classes of functions respectively starlike of order § and convex of order (3,
(0 < 8 < 1). Finally, let 7 be the subclass of S, consisting of functions of the
form

(1) f(2) = 2= laxl".
k=2

A function f € 7 is called a function with negative coefficients. In this present
paper, we study the following class of function:
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Definition 1.1. For 0 < 8 <1, a > 0,n € Ny and A > 0, we let M} (e, ),
consist of functions f € 7 satisfying the condition

(D) | DR
. m{ D3 f(2) }> Dif(2)

where DY) denote the operator introduced by authors [9] and given by
2(z" Dy f(2))™

145

Dy f(2) = £ . (neNy=NU{0)).
Note that if f is given by (1), then we see that
R(2)=2= ) [L4+ Ak =1)]C(n,k)|ax|2",
k=2

where A > 0, n € Ny and C(n, k) = (k+”71).

n

The family M7} («, 3) is of special interest for it contains many well known,
as well as new, classes of analytic univalent functions. In particular M )1\ (o, 0) =
U(k, A, B) is the class of a-uniformly convex function introduced and studied by
Shanmugam et al. [8]. The classes M{(a,0) = a-ST M} (a,0) = a-UCV is
respectively, the classes of a-uniformly starlike function and a-uniformly convex
function introduced and studied by Kanas and Wisniowska [5, 4]. The classes
MY (0,8) = T*(B) and M} (0,8) = TC(B) is respectively the classes of starlike
functions of order § and classes of convex functions of order 3 studied by Silver-
man [10]. Also, we note that the class M?(1,1) = UCV was studied by Rgnning
[6]. Finally, we remark that Goodman introduced the concept of uniformly star-
like function and of uniformly convex function in [3] and proved some properties
for such functions in [3] and [2].

In this paper we provide necessary and sufficient conditions, coefficient bounds,
extreme points, radius of close-to-convexity, starlikeness and convexity for func-
tions in MY (e, 8). Inclusion theorem involving Hadamard products, convolution
and integral operator are also obtained.

2. CHARACTERIZATION

We employ the technique adopted by Aglan et al. [1] to find the coefficient
estimates for our class.

Theorem 2.1. let f given by (1) then, f € M (a, 3) if and only if

oo

(3) Y [k=B+alk— D1+ Ak —1)]C(n,k)|ax| < (1-5),

k=2
where a, N >0, 0 < <1 and n € Ng. The result is sharp.
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Proof. We have f € M{(a, () if and only if the condition (2) is satisfied. Upon
the fact that

Rw) > alw -1+ 8 < %{w(l +aei‘9) - aew)} >0, —-rm<0<m.

Equation (2) may be written as

(4) %{Z(gé;((j)))l(l + aew) - ozew}

DR () (1 + ae'?) — ae DY f(2)
- %{ DRIC) } P

Now, we let
A(2) = 2D} f(2)) (1 + ae®®) —ac Dy f(z), B(z) = DY f(2).

Then (4) is equivalent to |A(2)+(1—8)B(z)| > |A(z)—(1+8)B(z)| for 0 < § < 1.
For A(z) and B(z) as above, we have

|A(2) + (1 = B)B(2)|

> (2= B)lz| =3 [k+1 =B +alk— 1L+ Ak - DIC(n, k)lagl=l*,

k=2
and similarly
|A(z) — (1+ 8)B(2)|

o0

< Bzl =) [k=1—=B+alk— 1)1+ Ak —1)]C(n, k)ax||2|*.
k=2

Therefore,
|A(z) + (1 = B)B(z)| — |[A(z) — (1 + B)B(2)|

o

>2(1—8) =2 [k—B+alk—1D][1+ Ak —1]C(n, k)|ax],

k=2

or 5;2 [k — B+ a(k = 1)][1+ Ak — 1)]C(n, k)|ax| < (1 — 8), which yields (3).

On the other hand, we must have §R{ Z(DDE;((;’:)”' (1+ ae') — aeie} > 3.
A
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Upon choosing the values of z on the positive real axis where 0 < |z| =7 < 1,
the above inequality reduces to

o0

(1=0)r— > [k—B+ac?(k—1)][1+ Ak —1)]C(n, k)|a|r"
R =2 > 0.

z— > [14+ Xk —1)]C(n, k)|ag|r*

=2
Since R(—e?) > —|e?| = —1, the above inequality reduces to
(1= B)r— > [k— B+ alk— D]+ Ak — D]C(n, K)|ag|r*
R =2 > 0.

z— Y. [14+ Xk —1D]C(n,k)|ag|r*

k=2

Letting r — 17, we get the desired result. Finally the result is sharp with the
extremal function f given by

(5) S =21 L= p n

k—pB+alk—D]1+Ar(k—1DCnk)

3. GROWTH AND DISTORTION THEOREMS

Theorem 3.1. Let the function f defined by (1) be in the class M3 («, 3). Then
for |z| = r we have

1-p 2
© = Give-graary’ SHE)
<r-+ 1-5 r2.
- m+1)2-0+a)(1+A)
Equality holds for the function
1-p 2

(7) J()=2-

mtrD2-Bradtn "

Proof. We ounly prove the right hand side inequality in (6), since the other in-
equality can be justified using similar arguments. In view of Theorem 2.1, we
have

D lail < '
P n+1)2-8+a)(1+A)

Since, f(z) =z — i lag|2*
k=2

o0

1F@ =12l =D lawllzl* <7+ laglr®

k=2 k=2
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1-8 .2
DE-F+a)(l+A)

which yields the right hand side inequality of (6). O

oo
<r+4r? ap| <r+

Next, by using the same technique as in proof of Theorem 3.1, we give the
distortion result.

Theorem 3.2. Let the function f defined by (1) be in the class M3 («, 3). Then
for |z| = r we have
N 2(1—-5)
m+1D2-0+a)(1+N)
Equality holds for the function given by (7).

2(1 - 5) .
m+1D2-8+a)(1+A) "

rlfi(z)l <14+

Theorem 3.3. f € M} («, (), then f € T*(vy), where

(k—1)(1-p)
[k— 5+ a(k— D]+ Ak — DIC(n. k) — (1 5)

The result is sharp, with function given by (7).

y=1-

o0

Proof. Tt is sufficient to show that (3) implies > (k —v)|ax| <1 —~, that is,

k—~ < [k—ﬁ+oz(l<:—1)][1+/\(k—1)]0(n,k:)

1—~ — 1-3 ’
(k-1 -p)

[k — B+ alk — 1)] 1+ Ak —-1)]C(n,k)—(1-75)

The above inequality holds true for n € Ny, k> 2, o, A>0and 0< < 1. O

then

y<1—

4. EXTREME POINTS

Theorem 4.1. Let fi(z) = z and

fr(z) = 1 -0 ook >2).

e Z, =
[k — B+ alk—1)][1+ Ak —1)]C(n, k)
Then f € MY (e, 8), if and only if it can be represented in the form

(8) )= mefe(z), (ue>0, > pp=1).
k=1 k=1
Proof. Suppose f(z) can be expressed as in (8). Then

1) =S fe®) = i) + 3 i)
k=1 k=2
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= pf1(z) + kZ:QMk {Z [k — B+ alk— 1)] [1 + Ak — 1)]C(n7k) k}

B 0o o0 1—5
«—mz+§:m¢_§zﬂh{kﬂ+a(HU+A%1HC@J9J}

. 1- p
= kZQMk[k B+ alk—1)][L+ Xk —1)]C(n, k)~

Thus

5 15
_kZ_QMk<[k6+a(kl)][1+/\(k1)]C(n,k)>

y [k — B+ alk—1)][1+ Ak —1)]C(n, k)
1-p

:Zﬂk:ZM@_ﬂlzl_ngl'
k=2 k=1

So by Theorem 2.1, f € M{(a, ).
Conversely, we suppose f € M} («, 3). Since
1-p
[k — B+ alk—1)][1+ Ak —1)]C(n, k)

lax| < k> 2.

We may set
[k — B+ alk—1)][1+ Ak —1)]C(n, k)
1-p

and 3 =1— > pg. Then
k=2

f(z z—ZW —Z‘Z“kk B alh— D]+ A= DR

k=2

—Z—Zukz—fk —Z—ZMkZ-FZukfk

= pfi(z +Z/M<:fk Zﬂkfk

Corollary 4.2. The extreme points of M} (e, B) are the functions

_ _ 1-0
f1(z) = 2 and fi(2) = 2 = (k= B+ alk— D]+ A(k—1)]C(n, k)Zk’

k> 2.
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5. RADII OF CLOSE—TO—CONVEXITY, STARLIKENESS AND CONVEXITY
A function f € M} (e, ) is said to be close-to-convex of order ¢ if it satisfies
R{f'(2)} >8, (0<5<1;z€0).
Also a function f € M{(«, 3) is said to be starlike of order § if it satisfies
22/(2)
f(2)

Further a function f € M} («, ) is said to be convex of order § if and only if
z2f'(2) is starlike of order ¢, that is if

>4, (0<d<1;zel).

2f'(2) .
§R{1+ f(z)}>6, (0<d<1;z€l).

Theorem 5.1. Let f € M} (o, (). Then f is close-to-convex of order ¢ in
|z| < Ry , where

R1 = inf
k>2

(1= 8)[k— B +alk— D]+ Ak-1CmR] =
k(1 —p) )

The result is sharp with the extremal function f given by (5).

Proof. Tt is sufficient to show that |f/(z) — 1] <1 —§ for |z| < R;. We have

If'(z) = 1] = | — Zkakzk_l < Zkak|z|k_1.
k=2 k=1

Thus |f'(z) — 1] <1-94if

9) fj (%)|ak||z|k_l <1.

k=2
But Theorem 2.1 confirms that
i [k — B+ alk - 1)} [14+ Ak —1)]C(n,k)

(10) lax| < 1.
k=2 1-8
Hence (9) will be true if klfl_ké_l < [k_m_a(k_l)]l[i;“k_1)]C(n’k).
We obtain
(1=0)[k—B+alk—D]1+Ak—-1)])Cn,k) | "

as required. O
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Theorem 5.2. Let f € MY («,3). Then f is starlike of order 6 in |z| < Ry ,
where

U—Jﬂk—ﬂ+a%—lﬂﬂ+A@_1mﬂmk)?%
(k=0)(1-p) :

The result is sharp with the extremal function f given by (5).

Proof. We must show that

ZJ{ES) - 1‘ <1—9¢ for [z| < Ry. We have

= 3 (k=Dapz"t 30 (k= 1aglz|*
E=2 < k=2

oo = o0
1= apzk-1 1= |ag||z]F—1
k=2 k=2

(11) <1-4.

£9-1-

Hence (11) holds true if Y (k — 1)|ax||z[*~* < (1 — 6){1 - > |ak||z|k_1} or,
k=2 k=2

equivalently,

(12) 50t <1
k=2

Hence, by using (10) and (12) will be true if

(h=8) s [r= B+ alk = DI+ A= DICEE)
(1-9) - 1-3
or if
(1= &)k B +alk— DL+ Ak - 1)]Cnk) | ™
'ZS{ (=315 } =2
which completes the proof. O

Theorem 5.3. Let f € M{(«, ). Then f is convex of order ¢ in |z| < R3 ,
where

k>2

k(k—6)(1-0)

The result is sharp with the extremal function f given by (5).

Rs = inf [(1 —8)[k =B+ alk — D][1+ Ak~ 1)]C(n,k)] —

Proof. By using the same technique in the proof of Theorem 5.2, we can show

that Zf,/;S) < 1-§ for |z| < Rs, with the aid of Theorem 2.1. Thus we have

the assertion of Theorem 5.3. O
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6. INCLUSION THEOREM INVOLVING MODIFIED HADAMARD PRODUCTS

For functions
(13) fi()=2=> lar;lz" (=12
k=2

in the class A, we define the modified Hadamard product f; * fo(z) of f1(z) and

(&)
f2(2) given by f1(2) * f2(2) = 2 — > |ak.1]|ax2|2*. We can prove the following.
k=2

Theorem 6.1. Let the functions f;(z) (j = 1,2) given by (18) be on the class
MY (a, B) respectively. Then (fi * f2)(z) € MY (e, €), where

_ (1-p)?
(n+1D)2=-p)2-F+a)(l+A) - (1-p)*

Proof. Employing the technique used earlier by Schild and Silverman [7], we
need to find the largest & such that

= [k — &+ a(k—1D][1+ Ak —1)]C(n, k)
2 1

Since f;(z) € MY («, ) (j =1,2), then we have

< [k =B+ alk—D][1+ A(k — 1)]C(n, k)
> jo

€=

lak1]lak,2| < 1.

lak1| <1,

and

k= B+alk—1)][1+ Ak —1)]C(n, k)
> o

by the Cauchy-Schwartz inequality, we have

Z I:kiﬂJra(k— 1)1][_1;)\(]@ D]C(n, k) lag.1llar.2| < 1.

k=2
Thus it is sufficient to show that
[k — &+ alk—1][1+ Ak —1)]C(n, k)
1-¢

S[k—ﬁJrOé(/f—l)lMl;)‘(k_1)]C(n’k) lakallaxz| (k> 2),

that is,
o 0Okt a(k - 1)
PHERE = 0ok — ¢+ ak—1)]

|a'k,2| S 17
k=2

|lak1|a 2|
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Note that

arallaxs] < F |
A= T B alk — D]+ Ak — D]C(n, k)

Consequently, we need only to prove that
(1-7)
[k — B+ alk— 1)] [14+ Ak —1)]C(n,k)
L=k —B+alk-1)]

S U Pr—trak-1 *=?
or, equivalently, that
£<1— (k_zl)(1+a)(1_ﬁ)2 (k22)
[k—B+alk—1]" 1+ Ak —-1)]C(n, k) — (1— )2
Since

k—1)(1 1-p3)?2
A —1- (= D1 +a)1 = ) o)
[k =B+ alk—1D][1+Ak—-1)]C(n k) —(1—p)?
is an increasing function of k(k > 2), letting k = 2 in last equation, we obtain
(1+a)(1-p)°
[2-8+a’A+Nn+1)—(1-p)?
Finally, by taking the function given by (7). we can see that the result is
sharp. O

E<A@)=1-

7. CONVOLUTION AND INTEGRAL OPERATORS

Let f(z) be defined by (1), and suppose that g(z) = z — 3_ |bx|2*. Then,the
k=2

Hadamard product (or convolution) of f(z) and g(z) defined here by

F2) % g(z) = (f*g)(z) = 2= ) laxllbal2".
k=2

Theorem 7.1. Let f € M (a,3), and g(z) = z — 3 |bi|zF (0 < |by] < 1).
k=2
Then fx g € M} (a, 5)

Proof. In view of Theorem 2.1, we have

Y k=B +alk = D]+ Ak = 1)]C(n, k)|ax] by

=
||
N

< [k—ﬁ+a(k—1)][1+/\(I<:—1)]C(n,k)|ak| <(1-p0).

M8

ol
/|
N
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Theorem 7.2. Let f € M{(«,3) and let v be real number such that v > —1,
z
then the function F(z) = “EL [¢v=1f(t)dt also belongs to the class M} (a, ).

2
0

Proof. From the representation of F'(z), it follows that

= E v+1
F(z) :z—Z|Ak|z , where Ay = P |ak|.
k=2

Since v > —1, than 0 < Ay < |ag|. Which in view of Theorem 2.1, F €
M (e, B). O

il

2
3

4

5
©
[7
8
[9

10

REFERENCES

| E. Aqlan, J. M. Jahangiri, and S. R. Kulkarni. New classes of k-uniformly convex and
starlike functions. Tamkang J. Math., 35(3):261-266, 2004.

] A. W. Goodman. On uniformly convex functions. Ann. Polon. Math., 56(1):87-92, 1991.

] A. W. Goodman. On uniformly starlike functions. J. Math. Anal. Appl., 155(2):364-370,
1991.

| S. Kanas and A. Wisniowska. Conic regions and k-uniform convexity. J. Comput. Appl.
Math., 105(1-2):327-336, 1999. Continued fractions and geometric function theory (CON-
FUN) (Trondheim, 1997).

] S. Kanas and A. Wisniowska. Conic domains and starlike functions. Rev. Roumaine Math.
Pures Appl., 45(4):647-657 (2001), 2000.

| F. Ronning. On starlike functions associated with parabolic regions. Ann. Univ. Mariae
Curie-Sktodowska Sect. A, 45:117-122 (1992), 1991.

] A. Schild and H. Silverman. Convolutions of univalent functions with negative coefficients.
Ann. Univ. Mariae Curie-Sktodowska Sect. A, 29:99-107 (1977), 1975.

| T. N. Shanmugam, S. Sivasubramanian, and M. Darus. On a subclass of k-uniformly
convex functions with negative coefficients. Int. Math. Forum, 1(33-36):1677-1689, 2006.

| K. A. Shagsi and M. Darus. On univalent functions with respect to k-symmetric points
defined by a generalized Ruscheweyh derivatives operator. Submitted.

| H. Silverman. Univalent functions with negative coefficients. Proc. Amer. Math. Soc.,
51:109-116, 1975.

SCHOOL OF MATHEMATICAL SCIENCES,
FACULTY OF SCIENCE AND TECHNOLOGY,
UNIVERSITI KEBANGSAAN MALAYSIA,

BANGI 43600 SELANGOR D. EHSAN, MALAYSIA
E-mail address: ommath@hotmail.com



