ON CLASSES OF UNIFORMLY STARLIKE AND CONVEX FUNCTIONS WITH NEGATIVE COEFFICIENTS

K. AL SHAQSI AND M. DARUS

Abstract. Let \mathcal{A} be the class of all analytic functions of the form

$$
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}
$$

defined on the open unit disk $\mathbb{U}=\{z:|z|<1\}$. In this paper we define a subclass of α-uniform starlike and convex functions by using the generalized Ruscheweyh derivatives operator introduced by authors in [9]. Several properties to this class are obtained.

1. Introduction

Let \mathcal{A} be the class of all analytic functions of the form $f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}$, defined on the open unit disk $\mathbb{U}=\{z:|z|<1\}$. Let \mathcal{S} denote the subclass of \mathcal{A} consisting of functions that are univalent in \mathbb{U}. Let $S^{*}(\beta)$ and $C(\beta)$ be the classes of functions respectively starlike of order β and convex of order β, $(0 \leq \beta<1)$. Finally, let \mathcal{T} be the subclass of \mathcal{S}, consisting of functions of the form

$$
\begin{equation*}
f(z)=z-\sum_{k=2}^{\infty}\left|a_{k}\right| z^{k} . \tag{1}
\end{equation*}
$$

A function $f \in \mathcal{T}$ is called a function with negative coefficients. In this present paper, we study the following class of function:

[^0]Definition 1.1. For $0 \leq \beta<1, \alpha \geq 0, n \in \mathbb{N}_{0}$ and $\lambda \geq 0$, we let $M_{\lambda}^{n}(\alpha, \beta)$, consist of functions $f \in \mathcal{T}$ satisfying the condition

$$
\begin{equation*}
\Re\left\{\frac{z\left(D_{\lambda}^{n} f(z)\right)^{\prime}}{D_{\lambda}^{n} f(z)}\right\}>\alpha\left|\frac{z\left(D_{\lambda}^{n} f(z)\right)^{\prime}}{D_{\lambda}^{n} f(z)}-1\right|+\beta \tag{2}
\end{equation*}
$$

where D_{λ}^{n} denote the operator introduced by authors [9] and given by

$$
D_{\lambda}^{n} f(z)=\frac{z\left(z^{n-1} D_{\lambda} f(z)\right)^{(n)}}{n!}, \quad\left(n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}\right) .
$$

Note that if f is given by (1), then we see that

$$
D_{\lambda}^{n} f(z)=z-\sum_{k=2}^{\infty}[1+\lambda(k-1)] C(n, k)\left|a_{k}\right| z^{k}
$$

where $\lambda \geq 0, n \in \mathbb{N}_{0}$ and $C(n, k)=\binom{k+n-1}{n}$.
The family $M_{\lambda}^{n}(\alpha, \beta)$ is of special interest for it contains many well known, as well as new, classes of analytic univalent functions. In particular $M_{\lambda}^{1}(\alpha, \beta) \equiv$ $\mathcal{U}(k, \lambda, \beta)$ is the class of α-uniformly convex function introduced and studied by Shanmugam et al. [8]. The classes $M_{1}^{0}(\alpha, 0) \equiv \alpha-S T M_{1}^{1}(\alpha, 0) \equiv \alpha-U C V$ is respectively, the classes of α-uniformly starlike function and α-uniformly convex function introduced and studied by Kanas and Wisniowska [5, 4]. The classes $M_{0}^{0}(0, \beta) \equiv \mathcal{T}^{*}(\beta)$ and $M_{0}^{1}(0, \beta) \equiv \mathcal{T} C(\beta)$ is respectively the classes of starlike functions of order β and classes of convex functions of order β studied by Silverman [10]. Also, we note that the class $M_{1}^{0}(1,1) \equiv U C V$ was studied by Rønning [6]. Finally, we remark that Goodman introduced the concept of uniformly starlike function and of uniformly convex function in [3] and proved some properties for such functions in [3] and [2].

In this paper we provide necessary and sufficient conditions, coefficient bounds, extreme points, radius of close-to-convexity, starlikeness and convexity for functions in $M_{\lambda}^{n}(\alpha, \beta)$. Inclusion theorem involving Hadamard products, convolution and integral operator are also obtained.

2. Characterization

We employ the technique adopted by Aqlan et al. [1] to find the coefficient estimates for our class.

Theorem 2.1. let f given by (1) then, $f \in M_{\lambda}^{n}(\alpha, \beta)$ if and only if

$$
\begin{equation*}
\sum_{k=2}^{\infty}[k-\beta+\alpha(k-1)][1+\lambda(k-1)] C(n, k)\left|a_{k}\right| \leq(1-\beta) \tag{3}
\end{equation*}
$$

where $\alpha, \lambda \geq 0,0 \leq \beta<1$ and $n \in \mathbb{N}_{0}$. The result is sharp.

Proof. We have $f \in M_{\lambda}^{n}(\alpha, \beta)$ if and only if the condition (2) is satisfied. Upon the fact that

$$
\left.\Re(w)>\alpha|w-1|+\beta \Leftrightarrow \Re\left\{w\left(1+\alpha e^{i \theta}\right)-\alpha e^{i \theta}\right)\right\}>\beta, \quad-\pi \leq \theta<\pi .
$$

Equation (2) may be written as
(4) $\Re\left\{\frac{z\left(D_{\lambda}^{n} f(z)\right)^{\prime}}{D_{\lambda}^{n} f(z)}\left(1+\alpha e^{i \theta}\right)-\alpha e^{i \theta}\right\}$

$$
=\Re\left\{\frac{z\left(D_{\lambda}^{n} f(z)\right)^{\prime}\left(1+\alpha e^{i \theta}\right)-\alpha e^{i \theta} D_{\lambda}^{n} f(z)}{D_{\lambda}^{n} f(z)}\right\}>\beta .
$$

Now, we let

$$
A(z)=z\left(D_{\lambda}^{n} f(z)\right)^{\prime}\left(1+\alpha e^{i \theta}\right)-\alpha e^{i \theta} D_{\lambda}^{n} f(z), \quad B(z)=D_{\lambda}^{n} f(z)
$$

Then (4) is equivalent to $|A(z)+(1-\beta) B(z)|>|A(z)-(1+\beta) B(z)|$ for $0 \leq \beta<1$.
For $A(z)$ and $B(z)$ as above, we have

$$
\begin{aligned}
& |A(z)+(1-\beta) B(z)| \\
& \quad \geq(2-\beta)|z|-\sum_{k=2}^{\infty}[k+1-\beta+\alpha(k-1)][1+\lambda(k-1)] C(n, k)\left|a_{k}\right||z|^{k},
\end{aligned}
$$

and similarly

$$
\begin{aligned}
& |A(z)-(1+\beta) B(z)| \\
& \quad \leq \beta|z|-\sum_{k=2}^{\infty}[k-1-\beta+\alpha(k-1)][1+\lambda(k-1)] C(n, k)\left|a_{k}\right||z|^{k} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
&|A(z)+(1-\beta) B(z)|-|A(z)-(1+\beta) B(z)| \\
& \geq 2(1-\beta)-2 \sum_{k=2}^{\infty}[k-\beta+\alpha(k-1)][1+\lambda(k-1)] C(n, k)\left|a_{k}\right|
\end{aligned}
$$

or $\sum_{k=2}^{\infty}[k-\beta+\alpha(k-1)][1+\lambda(k-1)] C(n, k)\left|a_{k}\right| \leq(1-\beta)$, which yields (3).
On the other hand, we must have $\Re\left\{\frac{z\left(D_{\lambda}^{n} f(z)\right)^{\prime}}{D_{\lambda}^{n} f(z)}\left(1+\alpha e^{i \theta}\right)-\alpha e^{i \theta}\right\}>\beta$.

Upon choosing the values of z on the positive real axis where $0 \leq|z|=r<1$, the above inequality reduces to

$$
\Re\left\{\frac{(1-\beta) r-\sum_{k=2}^{\infty}\left[k-\beta+\alpha e^{i \theta}(k-1)\right][1+\lambda(k-1)] C(n, k)\left|a_{k}\right| r^{k}}{z-\sum_{k=2}^{\infty}[1+\lambda(k-1)] C(n, k)\left|a_{k}\right| r^{k}}\right\} \geq 0
$$

Since $\Re\left(-e^{i \theta}\right) \geq-\left|e^{i \theta}\right|=-1$, the above inequality reduces to

$$
\Re\left\{\frac{(1-\beta) r-\sum_{k=2}^{\infty}[k-\beta+\alpha(k-1)][1+\lambda(k-1)] C(n, k)\left|a_{k}\right| r^{k}}{z-\sum_{k=2}^{\infty}[1+\lambda(k-1)] C(n, k)\left|a_{k}\right| r^{k}}\right\} \geq 0
$$

Letting $r \rightarrow 1^{-}$, we get the desired result. Finally the result is sharp with the extremal function f given by

$$
\begin{equation*}
f(z)=z-\frac{1-\beta}{[k-\beta+\alpha(k-1)][1+\lambda(k-1)] C(n, k)} z^{n} . \tag{5}
\end{equation*}
$$

3. Growth and Distortion Theorems

Theorem 3.1. Let the function f defined by (1) be in the class $M_{\lambda}^{n}(\alpha, \beta)$. Then for $|z|=r$ we have
(6) $\quad r-\frac{1-\beta}{(n+1)(2-\beta+\alpha)(1+\lambda)} r^{2} \leq|f(z)|$

$$
\leq r+\frac{1-\beta}{(n+1)(2-\beta+\alpha)(1+\lambda)} r^{2}
$$

Equality holds for the function

$$
\begin{equation*}
f(z)=z-\frac{1-\beta}{(n+1)(2-\beta+\alpha)(1+\lambda)} z^{2} \tag{7}
\end{equation*}
$$

Proof. We only prove the right hand side inequality in (6), since the other inequality can be justified using similar arguments. In view of Theorem 2.1, we have

$$
\sum_{k=2}^{\infty}\left|a_{k}\right| \leq \frac{1-\beta}{(n+1)(2-\beta+\alpha)(1+\lambda)}
$$

Since, $f(z)=z-\sum_{k=2}^{\infty}\left|a_{k}\right| z^{k}$

$$
|f(z)|=|z|-\sum_{k=2}^{\infty}\left|a_{k}\right||z|^{k} \leq r+\sum_{k=2}^{\infty}\left|a_{k}\right| r^{k}
$$

$$
\leq r+r^{2} \sum_{k=2}^{\infty}\left|a_{k}\right| \leq r+\frac{1-\beta}{(n+1)(2-\beta+\alpha)(1+\lambda)} r^{2},
$$

which yields the right hand side inequality of (6).
Next, by using the same technique as in proof of Theorem 3.1, we give the distortion result.

Theorem 3.2. Let the function f defined by (1) be in the class $M_{\lambda}^{n}(\alpha, \beta)$. Then for $|z|=r$ we have

$$
1-\frac{2(1-\beta)}{(n+1)(2-\beta+\alpha)(1+\lambda)} r \leq\left|f^{\prime}(z)\right| \leq 1+\frac{2(1-\beta)}{(n+1)(2-\beta+\alpha)(1+\lambda)} r .
$$

Equality holds for the function given by (7).
Theorem 3.3. $f \in M_{\lambda}^{n}(\alpha, \beta)$, then $f \in T^{*}(\gamma)$, where

$$
\gamma=1-\frac{(k-1)(1-\beta)}{[k-\beta+\alpha(k-1)][1+\lambda(k-1)] C(n, k)-(1-\beta)} .
$$

The result is sharp, with function given by (7).
Proof. It is sufficient to show that (3) implies $\sum_{k=2}^{\infty}(k-\gamma)\left|a_{k}\right| \leq 1-\gamma$, that is,

$$
\begin{gathered}
\frac{k-\gamma}{1-\gamma} \leq \frac{[k-\beta+\alpha(k-1)][1+\lambda(k-1)] C(n, k)}{1-\beta}, \text { then } \\
\gamma \leq 1-\frac{(k-1)(1-\beta)}{[k-\beta+\alpha(k-1)][1+\lambda(k-1)] C(n, k)-(1-\beta)} .
\end{gathered}
$$

The above inequality holds true for $n \in \mathbb{N}_{0}, k \geq 2, \alpha, \lambda \geq 0$ and $0 \leq \beta<1$.

4. Extreme points

Theorem 4.1. Let $f_{1}(z)=z$ and

$$
f_{k}(z)=z-\frac{1-\beta}{[k-\beta+\alpha(k-1)][1+\lambda(k-1)] C(n, k)} z^{k}, \quad(k \geq 2) .
$$

Then $f \in M_{\lambda}^{n}(\alpha, \beta)$, if and only if it can be represented in the form

$$
\begin{equation*}
f(z)=\sum_{k=1}^{\infty} \mu_{k} f_{k}(z), \quad\left(\mu_{k} \geq 0, \quad \sum_{k=1}^{\infty} \mu_{k}=1\right) \tag{8}
\end{equation*}
$$

Proof. Suppose $f(z)$ can be expressed as in (8). Then

$$
f(z)=\sum_{k=1}^{\infty} \mu_{k} f_{k}(z)=\mu_{1} f_{1}(z)+\sum_{k=2}^{\infty} \mu_{k} f_{k}(z)
$$

$$
\begin{aligned}
& =\mu_{1} f_{1}(z)+\sum_{k=2}^{\infty} \mu_{k}\left\{z-\frac{1-\beta}{[k-\beta+\alpha(k-1)][1+\lambda(k-1)] C(n, k)} z^{k}\right\} \\
& =\mu_{1} z+\sum_{k=2}^{\infty} \mu_{k} z-\sum_{k=2}^{\infty} \mu_{k}\left\{\frac{1-\beta}{[k-\beta+\alpha(k-1)][1+\lambda(k-1)] C(n, k)} z^{k}\right\} \\
& =z-\sum_{k=2}^{\infty} \mu_{k} \frac{1-\beta}{[k-\beta+\alpha(k-1)][1+\lambda(k-1)] C(n, k)} z^{k}
\end{aligned}
$$

Thus

$$
\begin{gathered}
=\sum_{k=2}^{\infty} \mu_{k}\left(\frac{1-\beta}{[k-\beta+\alpha(k-1)][1+\lambda(k-1)] C(n, k)}\right) \\
\times\left(\frac{[k-\beta+\alpha(k-1)][1+\lambda(k-1)] C(n, k)}{1-\beta}\right) \\
=\sum_{k=2}^{\infty} \mu_{k}=\sum_{k=1}^{\infty} \mu_{k}-\mu_{1}=1-\mu_{1} \leq 1
\end{gathered}
$$

So by Theorem 2.1, $f \in M_{\lambda}^{n}(\alpha, \beta)$.
Conversely, we suppose $f \in M_{\lambda}^{n}(\alpha, \beta)$. Since

$$
\left|a_{k}\right| \leq \frac{1-\beta}{[k-\beta+\alpha(k-1)][1+\lambda(k-1)] C(n, k)} \quad k \geq 2
$$

We may set

$$
\mu_{k}=\frac{[k-\beta+\alpha(k-1)][1+\lambda(k-1)] C(n, k)}{1-\beta}\left|a_{k}\right| \quad k \geq 2
$$

and $\mu_{1}=1-\sum_{k=2}^{\infty} \mu_{k}$. Then

$$
\begin{aligned}
f(z) & =z-\sum_{k=2}^{\infty} a_{k} z^{k}=z-\sum_{k=2}^{\infty} \mu_{k} \frac{1-\beta}{[k-\beta+\alpha(k-1)][1+\lambda(k-1)] C(n, k)} z^{k} \\
& =z-\sum_{k=2}^{\infty} \mu_{k}\left[z-f_{k}(z)\right]=z-\sum_{k=2}^{\infty} \mu_{k} z+\sum_{k=2}^{\infty} \mu_{k} f_{k}(z) \\
& =\mu_{1} f_{1}(z)+\sum_{k=2}^{\infty} \mu_{k} f_{k}(z)=\sum_{k=1}^{\infty} \mu_{k} f_{k}(z)
\end{aligned}
$$

Corollary 4.2. The extreme points of $M_{\lambda}^{n}(\alpha, \beta)$ are the functions

$$
f_{1}(z)=z \text { and } f_{k}(z)=z-\frac{1-\beta}{[k-\beta+\alpha(k-1)][1+\lambda(k-1)] C(n, k)} z^{k}, \quad k \geq 2
$$

5. Radii of Close-to-convexity, Starlikeness and Convexity

A function $f \in M_{\lambda}^{n}(\alpha, \beta)$ is said to be close-to-convex of order δ if it satisfies

$$
\Re\left\{f^{\prime}(z)\right\}>\delta, \quad(0 \leq \delta<1 ; z \in \mathbb{U})
$$

Also a function $f \in M_{\lambda}^{n}(\alpha, \beta)$ is said to be starlike of order δ if it satisfies

$$
\Re \frac{z f^{\prime}(z)}{f(z)}>\delta, \quad(0 \leq \delta<1 ; z \in \mathbb{U})
$$

Further a function $f \in M_{\lambda}^{n}(\alpha, \beta)$ is said to be convex of order δ if and only if $z f^{\prime}(z)$ is starlike of order δ, that is if

$$
\Re\left\{1+\frac{z f^{\prime}(z)}{f(z)}\right\}>\delta, \quad(0 \leq \delta<1 ; z \in \mathbb{U})
$$

Theorem 5.1. Let $f \in M_{\lambda}^{n}(\alpha, \beta)$. Then f is close-to-convex of order δ in $|z|<R_{1}$, where

$$
R_{1}=\inf _{k \geq 2}\left[\frac{(1-\delta)[k-\beta+\alpha(k-1)][1+\lambda(k-1)] C(n, k)}{k(1-\beta)}\right]^{\frac{1}{k-1}}
$$

The result is sharp with the extremal function f given by (5).
Proof. It is sufficient to show that $\left|f^{\prime}(z)-1\right| \leq 1-\delta$ for $|z|<R_{1}$. We have

$$
\left|f^{\prime}(z)-1\right|=\left|-\sum_{k=2}^{\infty} k a_{k} z^{k-1}\right| \leq \sum_{k=1}^{\infty} k a_{k}|z|^{k-1}
$$

Thus $\left|f^{\prime}(z)-1\right| \leq 1-\delta$ if

$$
\begin{equation*}
\sum_{k=2}^{\infty}\left(\frac{k}{1-\delta}\right)\left|a_{k}\right||z|^{k-1} \leq 1 \tag{9}
\end{equation*}
$$

But Theorem 2.1 confirms that

$$
\begin{equation*}
\sum_{k=2}^{\infty} \frac{[k-\beta+\alpha(k-1)][1+\lambda(k-1)] C(n, k)}{1-\beta}\left|a_{k}\right| \leq 1 \tag{10}
\end{equation*}
$$

Hence (9) will be true if $\frac{k|z|^{k-1}}{1-\delta} \leq \frac{[k-\beta+\alpha(k-1)][1+\lambda(k-1)] C(n, k)}{1-\beta}$.
We obtain

$$
|z| \leq\left\{\frac{(1-\delta)[k-\beta+\alpha(k-1)][1+\lambda(k-1)] C(n, k)}{k(1-\beta)}\right\}^{\frac{1}{k-1}}, \quad(k \geq 2)
$$

as required.

Theorem 5.2. Let $f \in M_{\lambda}^{n}(\alpha, \beta)$. Then f is starlike of order δ in $|z|<R_{2}$, where

$$
R_{2}=\inf _{k \geq 2}\left[\frac{(1-\delta)[k-\beta+\alpha(k-1)][1+\lambda(k-1)] C(n, k)}{(k-\delta)(1-\beta)}\right]^{\frac{1}{k-1}}
$$

The result is sharp with the extremal function f given by (5).
Proof. We must show that $\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leq 1-\delta$ for $|z|<R_{2}$. We have

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|=\left|\frac{-\sum_{k=2}^{\infty}(k-1) a_{k} z^{k-1}}{1-\sum_{k=2}^{\infty} a_{k} z^{k-1}}\right| \leq \frac{\sum_{k=2}^{\infty}(k-1)\left|a_{k} \| z\right|^{k-1}}{1-\sum_{k=2}^{\infty}\left|a_{k}\right||z|^{k-1}} \leq 1-\delta . \tag{11}
\end{equation*}
$$

Hence (11) holds true if $\sum_{k=2}^{\infty}(k-1)\left|a_{k}\right||z|^{k-1} \leq(1-\delta)\left\{1-\sum_{k=2}^{\infty}\left|a_{k}\right||z|^{k-1}\right\}$ or, equivalently,

$$
\begin{equation*}
\sum_{k=2}^{\infty} \frac{(k-\delta)}{(1-\delta)}\left|a_{k}\right||z|^{k-1} \leq 1 . \tag{12}
\end{equation*}
$$

Hence, by using (10) and (12) will be true if

$$
\frac{(k-\delta)}{(1-\delta)}|z|^{k-1} \leq \frac{[k-\beta+\alpha(k-1)][1+\lambda(k-1)] C(n, k)}{1-\beta}
$$

or if

$$
|z| \leq\left\{\frac{(1-\delta)[k-\beta+\alpha(k-1)][1+\lambda(k-1)] C(n, k)}{(k-\delta)(1-\beta)}\right\}^{\frac{1}{k-1}}, \quad(k \geq 2)
$$

which completes the proof.
Theorem 5.3. Let $f \in M_{\lambda}^{n}(\alpha, \beta)$. Then f is convex of order δ in $|z|<R_{3}$, where

$$
R_{3}=\inf _{k \geq 2}\left[\frac{(1-\delta)[k-\beta+\alpha(k-1)][1+\lambda(k-1)] C(n, k)}{k(k-\delta)(1-\beta)}\right]^{\frac{1}{k-1}} .
$$

The result is sharp with the extremal function f given by (5).
Proof. By using the same technique in the proof of Theorem 5.2, we can show that $\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq 1-\delta$ for $|z| \leq R_{3}$, with the aid of Theorem 2.1. Thus we have the assertion of Theorem 5.3.

6. Inclusion theorem involving modified Hadamard products

For functions

$$
\begin{equation*}
f_{j}(z)=z-\sum_{k=2}^{\infty}\left|a_{k, j}\right| z^{k} \quad(j=1,2) \tag{13}
\end{equation*}
$$

in the class \mathcal{A}, we define the modified Hadamard product $f_{1} * f_{2}(z)$ of $f_{1}(z)$ and $f_{2}(z)$ given by $f_{1}(z) * f_{2}(z)=z-\sum_{k=2}^{\infty}\left|a_{k, 1}\right|\left|a_{k, 2}\right| z^{k}$. We can prove the following.
Theorem 6.1. Let the functions $f_{j}(z)(j=1,2)$ given by (13) be on the class $M_{\lambda}^{n}(\alpha, \beta)$ respectively. Then $\left(f_{1} * f_{2}\right)(z) \in M_{\lambda}^{n}(\alpha, \xi)$, where

$$
\xi=1-\frac{(1-\beta)^{2}}{(n+1)(2-\beta)(2-\beta+\alpha)(1+\lambda)-(1-\beta)^{2}}
$$

Proof. Employing the technique used earlier by Schild and Silverman [7], we need to find the largest ξ such that

$$
\sum_{k=2}^{\infty} \frac{[k-\xi+\alpha(k-1)][1+\lambda(k-1)] C(n, k)}{1-\xi}\left|a_{k, 1}\right|\left|a_{k, 2}\right| \leq 1
$$

Since $f_{j}(z) \in M_{\lambda}^{n}(\alpha, \beta)(j=1,2)$, then we have

$$
\sum_{k=2}^{\infty} \frac{[k-\beta+\alpha(k-1)][1+\lambda(k-1)] C(n, k)}{1-\beta}\left|a_{k, 1}\right| \leq 1
$$

and

$$
\sum_{k=2}^{\infty} \frac{[k-\beta+\alpha(k-1)][1+\lambda(k-1)] C(n, k)}{1-\beta}\left|a_{k, 2}\right| \leq 1
$$

by the Cauchy-Schwartz inequality, we have

$$
\sum_{k=2}^{\infty} \frac{[k-\beta+\alpha(k-1)][1+\lambda(k-1)] C(n, k)}{1-\beta} \sqrt{\left|a_{k, 1}\right|\left|a_{k, 2}\right|} \leq 1
$$

Thus it is sufficient to show that

$$
\begin{aligned}
& \frac{[k-\xi+\alpha(k-1)][1+\lambda(k-1)] C(n, k)}{1-\xi}\left|a_{k, 1}\right|\left|a_{k, 2}\right| \\
& \leq \frac{[k-\beta+\alpha(k-1)][1+\lambda(k-1)] C(n, k)}{1-\beta} \sqrt{\left|a_{k, 1}\right|\left|a_{k, 2}\right|} \quad(k \geq 2),
\end{aligned}
$$

that is,

$$
\sqrt{\left|a_{k, 1}\right|\left|a_{k, 2}\right|} \leq \frac{(1-\xi)[k-\beta+\alpha(k-1)]}{(1-\beta)[k-\xi+\alpha(k-1)]}
$$

Note that

$$
\sqrt{\left|a_{k, 1}\right|\left|a_{k, 2}\right|} \leq \frac{(1-\beta)}{[k-\beta+\alpha(k-1)][1+\lambda(k-1)] C(n, k)}
$$

Consequently, we need only to prove that

$$
\begin{aligned}
& \frac{(1-\beta)}{[k-\beta+\alpha(k-1)][1+\lambda(k-1)] C(n, k)} \\
& \quad \leq \frac{(1-\xi)[k-\beta+\alpha(k-1)]}{(1-\beta)[k-\xi+\alpha(k-1)]} \quad(k \geq 2),
\end{aligned}
$$

or, equivalently, that

$$
\xi \leq 1-\frac{(k-1)(1+\alpha)(1-\beta)^{2}}{[k-\beta+\alpha(k-1)]^{2}[1+\lambda(k-1)] C(n, k)-(1-\beta)^{2}} \quad(k \geq 2)
$$

Since

$$
A(k)=1-\frac{(k-1)(1+\alpha)(1-\beta)^{2}}{[k-\beta+\alpha(k-1)]^{2}[1+\lambda(k-1)] C(n, k)-(1-\beta)^{2}} \quad(k \geq 2)
$$

is an increasing function of $k(k \geq 2)$, letting $k=2$ in last equation, we obtain

$$
\xi \leq A(2)=1-\frac{(1+\alpha)(1-\beta)^{2}}{[2-\beta+\alpha]^{2}(1+\lambda)(n+1)-(1-\beta)^{2}}
$$

Finally, by taking the function given by (7). we can see that the result is sharp.

7. Convolution and Integral Operators

Let $f(z)$ be defined by (1), and suppose that $g(z)=z-\sum_{k=2}^{\infty}\left|b_{k}\right| z^{k}$. Then, the Hadamard product (or convolution) of $f(z)$ and $g(z)$ defined here by

$$
f(z) * g(z)=(f * g)(z)=z-\sum_{k=2}^{\infty}\left|a_{k}\right|\left|b_{k}\right| z^{k}
$$

Theorem 7.1. Let $f \in M_{\lambda}^{n}(\alpha, \beta)$, and $g(z)=z-\sum_{k=2}^{\infty}\left|b_{k}\right| z^{k} \quad\left(0 \leq\left|b_{n}\right| \leq 1\right)$.
Then $f * g \in M_{\lambda}^{n}(\alpha, \beta)$
Proof. In view of Theorem 2.1, we have

$$
\begin{aligned}
& \sum_{k=2}^{\infty}[k-\beta+\alpha(k-1)][1+\lambda(k-1)] C(n, k)\left|a_{k}\right|\left|b_{k}\right| \\
\leq & \sum_{k=2}^{\infty}[k-\beta+\alpha(k-1)][1+\lambda(k-1)] C(n, k)\left|a_{k}\right| \leq(1-\beta) .
\end{aligned}
$$

Theorem 7.2. Let $f \in M_{\lambda}^{n}(\alpha, \beta)$ and let v be real number such that $v>-1$, then the function $F(z)=\frac{v+1}{z^{v}} \int_{0}^{z} t^{v-1} f(t) d t$ also belongs to the class $M_{\lambda}^{n}(\alpha, \beta)$.
Proof. From the representation of $F(z)$, it follows that

$$
F(z)=z-\sum_{k=2}^{\infty}\left|A_{k}\right| z^{k}, \text { where } A_{k}=\left(\frac{v+1}{v+k}\right)\left|a_{k}\right|
$$

Since $v>-1$, than $0 \leq A_{k} \leq\left|a_{k}\right|$. Which in view of Theorem 2.1, $F \in$ $M_{\lambda}^{n}(\alpha, \beta)$.

References

[1] E. Aqlan, J. M. Jahangiri, and S. R. Kulkarni. New classes of k-uniformly convex and starlike functions. Tamkang J. Math., 35(3):261-266, 2004.
[2] A. W. Goodman. On uniformly convex functions. Ann. Polon. Math., 56(1):87-92, 1991.
[3] A. W. Goodman. On uniformly starlike functions. J. Math. Anal. Appl., 155(2):364-370, 1991.
[4] S. Kanas and A. Wisniowska. Conic regions and k-uniform convexity. J. Comput. Appl. Math., 105(1-2):327-336, 1999. Continued fractions and geometric function theory (CONFUN) (Trondheim, 1997).
[5] S. Kanas and A. Wiśniowska. Conic domains and starlike functions. Rev. Roumaine Math. Pures Appl., 45(4):647-657 (2001), 2000.
[6] F. Rønning. On starlike functions associated with parabolic regions. Ann. Univ. Mariae Curie-Sktodowska Sect. A, 45:117-122 (1992), 1991.
[7] A. Schild and H. Silverman. Convolutions of univalent functions with negative coefficients. Ann. Univ. Mariae Curie-Sktodowska Sect. A, 29:99-107 (1977), 1975.
[8] T. N. Shanmugam, S. Sivasubramanian, and M. Darus. On a subclass of k-uniformly convex functions with negative coefficients. Int. Math. Forum, 1(33-36):1677-1689, 2006.
[9] K. A. Shaqsi and M. Darus. On univalent functions with respect to k-symmetric points defined by a generalized Ruscheweyh derivatives operator. Submitted.
[10] H. Silverman. Univalent functions with negative coefficients. Proc. Amer. Math. Soc., 51:109-116, 1975.

```
School of Mathematical Sciences,
Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600 Selangor D. Ehsan, Malaysia
E-mail address: ommath@hotmail.com
```


[^0]: 2000 Mathematics Subject Classification. 30C45.
 Key words and phrases. Analytic functions; Derivatives operator; α-uniformly starlike functions; α-uniformly convex functions; Hadamard product.

 The work presented here was supported by SAGA GRANT: STGL-012-2006, Academy of Sciences Malaysia, Malaysia.

