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G-CONTINUOUS FRAMES AND COORBIT SPACES

M. A. DEHGHAN AND M. A. HASANKHANI FARD

Abstract. A generalized continuous frame is a family of operators on a
Hilbert space H which allows reproductions of arbitrary elements of H
by continuous superpositions. Generalized continuous frames are natural
generalization of continuous and discrete frames in Hilbert spaces which
include many recent generalization of frames. In this article,we associate to
a generalized continuous frame suitable Banach spaces, called generalized
coorbit spaces, provided the frame satisfies a certain integrability condition.
Also two classes of generalized coorbit spaces associated to a generalized
continuous frame,its standard dual and some results are studied.

1. Introduction

Frames were first introduced in 1952 by Duffin and Schaeffer [5]. Frames have
very important and interesting properties make them very useful in the charac-
terization of function spaces, signal processing and many other fields. A discrete
frame is a countable family of elements in a separable Hilbert spaces allows sta-
ble not necessarily unique decomposition of arbitrary elements into expansions
of frame elements [4]. Given a separable Hilbert spaces H,a collections of ele-
ments {fi}i∈Z is called a discrete frame if there exist constants 0 < A1, A2 <∞
such that

A1‖f‖2 ≤
∑

i∈Z
|< f, fi >|2≤ A2‖f‖2 for all f ∈ H.

Later, this concept was generalized to continuous frames indexed by a Radon
measure space [3, 2, 1] and [7]. For a locally compact Hausdorff space X en-
dowed with a positive Randon measure µ, a family {ψx}x∈X of vectors in a
separable Hilbert spaces H is called a continuous frame if there exist constants
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0 < A1, A2 <∞ such that

A1‖f‖2 ≤
∫

X

|< f, ψx >|2 dµ(x) ≤ A2‖f‖2 for all f ∈ H.

The concept of generalized frames has been introduced by W. Sun [8]. Gener-
alized frames are natural generalizations of frames as members of a Hilbert space
to bounded linear operators. A family {Λi}i∈Z of bonded linear operators from
a separable Hilbert space H into another separable Hilbert space K is called a
generalized frame if there are two positive constants A and B such that

A‖f‖2 ≤
∑

i∈Z
‖Λi(f)‖2 ≤ B‖f‖2 for all f ∈ H.

M. Fornasier and H. Rauhut have studied a kind of Banach spaces called
coorbit spaces that vectors can be decomposed by use continuous frames [6].
Now we are going to extend this action by generalized continuous frames.

2. Generalized Continuous Frames

Let X be a locally compact Hausdorff space endowed with a positive radon
measure µ with suppµ = X.

Definition 2.1. A family F = {Λx}x∈X of bonded linear operator from a
Hilbert space H into another Hilbert space K is called generalized continuous
frame or simply g-continuous frame for H with respect to K if there are positive
constants C1 and C2 such that

(1) C1‖f‖2 ≤
∫

X

‖Λx(f)‖2dµ(x) ≤ C2‖f‖2 for all f ∈ H.

If C1 = C2 then the frame is called tight. We call F a g-continuous frame for H
if H = K.

For the sake of simplicity we assume that the mapping x 7→ Λx is weakly
continuous. Not that, if X is a countable set and µ is counting measure then
we obtain the usual definition of (generalized discrete) frame. By the Riesz
Representation Theorem, to every functional Λ ∈ L(H,C), one can find some
g ∈ H such that Λ(f) =< f, g > for all f ∈ H.Hence a continuous frame is
equivalent to a g-continuous frame frame whenever K = C.

For a g-continuous frame F define the frame operator S = SF in weak sense
by

S : H → H, Sf :=
∫

X

Λ∗xΛxfdµ(x)

where Λ∗x is adjoint of the operator Λx.

Proposition 2.2. The frame operator S is a bounded, positive, self-adjoint, and
invertible.
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Proof. For all f ∈ H

< Sf, f > =
∫

X

< Λ∗xΛxf, f > dµ(x) =
∫

X

< Λxf,Λxf > dµ(x)

=
∫

X

‖ Λx(f) ‖2 dµ(x) ≥ C1 ‖ f ‖2≥ 0 =< Sf, g >

=
∫

X

< Λ∗xΛxf, g > dµ(x) =
∫

X

< Λxf,Λxg > dµ(x)

=
∫

X

< f,Λ∗xΛxg > dµ(x) =< f, Sg >

by (1) we have C1 < f, f >≤< Sf, f >≤ C2 < f, f >, C1I ≤ S ≤ C2I and
‖I − C−1

2 S‖ ≤ 1− C1
C2

< 1. Hence S is invertible operator. ¤

Proposition 2.3. Let F = {Λx}x∈X is a g-continuous frame for Hilbert space
H with frame operator S and bounds C1, C2. Then F̃ = {Λ̃x}x∈X such that
Λ̃x = ΛxS

−1, is a frame for H with bounds C−1
1 , C−1

2 and frame operator S−1.

Proof. We show that S−1f =
∫

X
(S−1Λ∗xS

−1Λx)fdµ(x).
∫

X

(S−1Λ∗xS
−1Λx)fdµ(x) = S−1

∫

X

(Λ∗xS
−1Λx)fdµ(x)

= S−1

∫

X

Λ∗xΛx(S−1f)dµ(x)

= S−1(S(S−1f)) = S−1f

also since F = {Λx}x∈X is a frame for H then C1I ≤ S ≤ C2I. On other hand
since I and S are self-adjoint and S−1 commutative with I and S,

C1IS
−1 ≤ SS−1 ≤ C2IS

−1

and hence
C−1

2 I ≤ S−1 ≤ C−1
1 I.

¤

If F is tight frame with bound A = B = λ then S = λI. Now the set

L2(X,H) := {F : X → H |
∫

X

‖F (x)‖2dµ(x) <∞},

with inner product < F,G >:=
∫

X
< F (x), G(x) > dµ(x), is a Hilbert space.

We define the following two transformations associated to F ,

V : H → L2(X,H), V f(x) := Λx(f),

W : H → L2(X,H), Wf(x) := Λx(S−1f).
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The operators V and W are well define since by (1) we have∫

X

‖V f(x)‖2dµ(x) =
∫

X

‖Λx(f)‖2dµ(x) ≤ C2‖f‖2 <∞

and ∫

X

‖Wf(x)‖2dµ(x) =
∫

X

‖Λx(S−1f)‖2dµ(x)

=
∫

X

‖S−1Λx(f)‖2dµ(x) ≤ C−1
1 ‖f‖2 <∞.

In the following we show that adjoint operator of V and W given weakly by

V ∗ : L2(X,H) →→ H, V ∗F :=
∫

X

Λ∗yF (y)dµ(y),

W ∗ : L2(X,H) →→ H, W ∗F :=
∫

X

S−1Λ∗yF (y)dµ(y).

Since for all h ∈ H, we have

< V ∗F, h > =
∫

X

< Λ∗yF (y), h > dµ(y) =
∫

X

< F (y),Λy(h) > dµ(y)

=
∫

X

< F (y), V h(y) > dµ(y) =< F, V h >

and

< W ∗F, h > =
∫

X

< S−1Λ∗yF (y), h > dµ(y)

=
∫

X

< F (y),Λy(S−1h) > dµ(y)

=
∫

X

< F (y),Wh(y) > dµ(y) =< F,Wh > .

Proposition 2.4. Let F = {Λx}x∈X is a g-continuous frame for Hilbert space
H with frame operator S, then the following holds,

a) S = V ∗V , S−1 = W ∗W ,
b) < f, g >=< V f,Wg >=< Wf, V g >,
c) V and W are unitary if F is a tight frame,
d) RangeV = RangeW ,
e) V and W are bijective transformations from H onto the Hilbert space
M where

M = {F ∈ L2(X,H) :
∫

X

R(x, y)F (y)dµ = F (x)a.e,R(x, y) = S−1ΛxΛ∗y}.

Proof. Let f ∈ H, we have

(V ∗V )(f) =
∫

X

Λ∗yV f(y)dµ(y) =
∫

X

Λ∗yΛyfdµ(y) = Sf,
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and

(V ∗W )f =
∫

X

Λ∗yWf(y)dµ(y) =
∫

X

Λ∗yΛy(S−1f)dµ(y) = S(S−1f) = f.

In the same argument, (W ∗V )f = f and hence for all f and g in H,

< f, g >=< V f,Wg > .

Therefore a), b) and c) hold.
Since S is invertible and self-adjoint we have

f = SS−1f =
∫

X

Λ∗yΛy(S−1f)dµ(y) =
∫

X

Λ∗yWf(y)dµ(y),

and

f = S−1Sf =
∫

X

S−1Λ∗yΛyfdµ(y) =
∫

X

S−1Λ∗yV f(y)dµ(y)

in the weak sense. Furthermore we have

Wf(x) = Λx(S−1f) = ΛxS
−1(

∫

X

Λ∗yWf(y)dµ(y))

=
∫

X

ΛxS
−1Λ∗yWf(y)dµ(y),

V f(x) = Λx(f) = Λx(
∫

X

S−1Λ∗yV f(y)dµ(y)) =
∫

X

ΛxS
−1Λ∗yV f(y)dµ(y).

Therefore

Wf(x) =
∫

X

R(x, y)Wf(y)dµ(y), V f(x) =
∫

X

R(x, y)V f(y)dµ(y),

and hence V f and Wf are in M.
Conversely, let F be in M then

F (x) =
∫

X

R(x, y)F (y)dµ(y) =
∫

X

ΛxS
−1Λ∗yF (y)dµ(y)

= ΛxS
−1

∫

X

Λ∗yF (y)dµ(y) = ΛxS
−1(V ∗F ) = W (V ∗F )(x).

Therefore F ∈ RangeW , M ⊆ RangeW and M = RangeW . The same argu-
ment implies that M = RangeV . Finally by (1) V and W are injective and the
proof is complete. ¤

For every kernel function K : X ×X → L(H) and every function F : X → H
corresponds an operator K such that

(2) K(F )(x) :=
∫

X

K(x, y)F (y)dµ(y).
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Proposition 2.5. Let R: L2(X,H) → L2(X,H) and

R(F )(x) :=
∫

X

R(x, y)F (y)dµ(y),

then,

a) R(x, y) = R(y, x)∗ for all x and y in X,
b) R(V f) = V f ,R(Wf) = Wf for all f in H,
c) R is self-adjoint as an operator on L2(X,H),
d) R is orthogonal projection from L2(X,H) onto M.

Proof. a) and b) are trivial. R is self-adjoint as an operator on L2(X,H), since
for all F,G ∈ L2(X,H) we have

< R(F ), G > =
∫

X

< R(F )(x), G(x) > dµ(x)

=
∫

X

<

∫

X

R(x, y)F (y)dµ(y), G(x) > dµ(x)

=
∫

X

∫

X

< R(x, y)F (y), G(x) > dµ(y)dµ(x)

=
∫

X

∫

X

< F (y), R(x, y)∗G(x) > dµ(y)dµ(x)

=
∫

X

∫

X

< F (y), R(y, x)G(x) > dµ(y)dµ(x)

=
∫

X

∫

X

< R(y, x)G(x), F (y) > dµ(y)dµ(x)

=
∫

X

∫

X

< R(y, x)G(x), F (y) > dµ(x)dµ(y)

=
∫

X

<

∫

X

R(y, x)G(x)dµ(x), F (y) > dµ(y)

=
∫

X

< R(G)(y), F (y) > dµ(y)

= < R(G), F > =< F,R(G) > .

For all F ∈ L2(X,H) we have R(F ) ∈ Range(R) = Range(V ) then R(F ) = V g,
for some g ∈ H and hence

R2(F ) = R(R(F )) = R(V g) = V g = R(F )

then R2 = R and
L2(X,H) = N(R)

⊕
Range(R).

¤
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We assume in the following that ‖Λx‖ ≤ C for all x ∈ X. This implies
|V f(x)| ≤ C‖f‖ and |Wf | ≤ C‖S−1‖‖f‖ for all x ∈ X and, together with the
weak continuity assumption, we conclude V f,Wf ∈ Cb(X,H) for all f ∈ H,
where Cb(X,H) denotes the bonded continuous function of X to H.

3. Coorbit Spaces

Associated to a g-continuous frames, there are Banach spaces called coorbit
spaces where describe vectors in the Hilbert spaces of kernel functions. M. For-
nasier and H. Rauhut [6] associated coorbit spaces to continuous frames. First,to
built a weighted algebra, we need to introduce an special weight function.

Definition 3.1. Letm be a real weight function onX×X. m is called admissible
if,

a) m is continuous,
b) 1 ≤ m(x, y) ≤ m(x, z)m(z, y) for all x, y, z ∈ X,
c) m(x, y) = m(y, x) for all x, y ∈ X,
d) m(x, y) ≤ C <∞ for all x, y ∈ X.

In order to get a weighted algebra we need to make a norm and a multiplica-
tion on kernel functions.

Proposition 3.2. Let

A1 := {K : X ×X → L(H), K is measurable, ‖K|A1‖ <∞}
where

‖K|A1‖ := max{ess sup
x∈X

∫

X

‖K(x, y)‖dµ(y), ess sup
y∈X

∫

X

‖K(x, y)‖dµ(x)}

is its norm (the norm in integral is uniform norm) and the multiplication in A1

is given by

K1 ◦K2(x, y) =
∫

X

K1(x, z)K2(z, y)dµ(z),

such that in weak sense

K1 ◦K2(x, y) : H → H, K1 ◦K2(x, y)f =
∫

X

K1(x, z)K2(z, y)fdµ(z).

Then A1 with ‖.|A1‖ and the multiplication is a Banach algebra.

Proof. Obviously ‖.|A1‖ is a norm and the conditions of an algebra satisfy. We
prove the associativity of multiplication and completeness of the norm. For all
f ∈ H and K1,K2,K3 ∈ A1 we have

[K1 ◦ (K2 ◦K3)](x, y)f =
∫

X

K1(x, z)(K2 ◦K3)(z, y)fdµ(z)

=
∫

X

K1(x, z)
∫

X

K2(z, t)K3(t, y)fdµ(t)dµ(z)
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=
∫

X

∫

X

K1(x, z)K2(z, t)K3(t, y)fdµ(t)dµ(z)

=
∫

X

∫

X

K1(x, z)K2(z, t)dµ(z)K3(t, y)fdµ(t)

=
∫

X

(K1 ◦K2)(x, t)K3(t, y)fdµ(t)

= [(K1 ◦K2) ◦K3](x, y)f,

and then K1 ◦ (K2 ◦K3) = (K1 ◦K2) ◦K3.
Finally ‖.|A1‖ is Banach since if {Kn}∞n=1 is Cauchy sequence in A1, then

‖Kn − Km|A1‖ → 0 as m,n → ∞. Hence ‖Kn(x, y) − Km(x, y)‖sup → 0 as
m,n → ∞. Since L(H) with uniform norm is Banach then there is K ∈ L(H)
such that ‖Kn(x, y)−K(x, y)‖sup → 0 asm,n→∞ and hence ‖Kn−K|A1‖ → 0
as m,n→∞. Therefore A1 is a Banach algebra. ¤

Now we define a corresponding weighted subalgebra respect to an admissible
weight function m.

Proposition 3.3. Let m be an admissible weight function and let,

Am := {K : X ×X → L(H), Km ∈ A1},
with the natural norm ‖K|Am‖ := ‖Km|A1‖. Then

a) Am is a Banach algebra,
b) For every K ∈ Am, corresponding operator K on L2(X,H) defined by

K(F )(x) =
∫

X

K(x, y)F (y)dµ(y),

is self adjoint.

Proof. Clearly, K is a linear operator on L2(X,H). For every F,G ∈ L2(X,H)
we have

< K(F ), G > =
∫

X

< K(F )(x), G(x) > dµ(x)

=
∫

X

∫

X

< K(x, y)F (y), G(x) > dµ(y)dµ(x)

=
∫

X

∫

X

< F (y),K∗(x, y)G(x) > dµ(y)dµ(x)

=
∫

X

∫

X

< F (y),K(y, x)G(x) > dµ(y)dµ(x)

=
∫

X

∫

X

< K(y, x)G(x), F (y) > dµ(y)dµ(x)

=
∫

X

<

∫

X

K(y, x)G(x)dµ(x), F (y) > dµ(y)
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=
∫

X

< K(G)(y), F (y) > dµ(y)

= < K(G), F > =< F,K(G) > .

¤

A function space Y that satisfies some properties is other tool for definition
coorbit spaces associated to g-continuous frames.

Definition 3.4. Let (Y, ‖.|Y ‖) be a non-trivial Banach space of functions F : X →
H such that

1) Y is continuously embedded into L1
loc(X,H), where

L1
loc(X,H) := {F : X → H,

∫

K

‖F (x)‖dµ(x) <∞
for every compact subset K of X},

2) If F is measurable and G ∈ Y such that ‖F (x)‖ ≤ ‖G(x)‖ a.e. then
F ∈ Y and ‖F |Y ‖ ≤ ‖G|Y ‖.

3) There exists an admissible weight function m such that Am(Y ) ⊂ Y and

‖K(F )|Y ‖ ≤ ‖K|Am‖‖F |Y ‖
for all K ∈ Am, F ∈ Y , then (Y, ‖.|Y ‖) is called an m-function space.

In the rest of this article, let (Y, ‖.|Y ‖) with a weight function m be fixed.
For fixed point z ∈ X define a weight function on X by

ν(x) := νz(x) := m(x, z).

Now, we define the spaces

H1
ν := H1

ν(X,H) := {f ∈ H, V f ∈ L1
ν(X,H)},

K1
ν := K1

ν(X,H) := {f ∈ H,Wf ∈ L1
ν(X,H)}

with natural norms

‖f |H1
ν‖ := ‖V f |L1

ν‖, ‖f |H1
ν‖ := ‖V f |L1

ν‖.
The frame operator S is an isometric isomorphism between H1

ν and K1
ν .

Proposition 3.5. The spaces (H1
ν , ‖.|H1

ν‖) and (K1
ν , ‖.|K1

ν‖) are Banach spaces.

The proof is completely analogous to the proof of proposition 1 in [6] and
hence omitted.

Now let R be in Am and let g ∈ H then,

‖Λ∗yg|K1
ν‖ =

∫

X

‖W (Λ∗yg)(x)‖ν(x)dµ(x)

=
∫

X

‖ΛxS
−1Λ∗yg‖ν(x)dµ(x) ≤

∫

X

‖R(x, y)‖‖g‖m(x, z)dµ(x)
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≤ ‖g‖m(y, z)
∫

X

‖R(x, y)‖m(x, y)dµ(x) ≤ ‖g‖‖R|Am‖ν(y),

and similarly

‖S−1Λ∗yg|H1
ν‖ =

∫

X

‖V (S−1Λ∗yg)(x)‖ν(x)dµ(x)

=
∫

X

‖ΛxS
−1Λ∗yg‖ν(x)dµ(x)

≤ ‖g‖m(y, z)
∫

X

‖R(x, y)‖m(x, y)dµ(x) ≤ ‖g‖‖R|Am‖ν(y).

Hence, Λ∗yg ∈ K1
ν and S−1Λ∗yg ∈ H1

ν for all y ∈ X.
Now,we define the spaces

(H1
ν)q := {f : H1

ν → H, f is continuous and conjugat-linear},
(K1

ν)q := {f : K1
ν → H, f is continuous and conjugat-linear}.

Since Λ∗xg ∈ K1
ν we may extend the transform V to (K1

ν)q by

V f(x) = Vgf(x) = f(Λ∗xg) =< f,Λ∗xg >, f ∈ K1
ν .

By the same argument, the transform W extends to (H1
ν)q by

Wf(x) = Wgf(x) = f(S−1Λ∗xg) =< f, S−1Λ∗xg >, f ∈ H1
ν .

We may also extend the operator S to an isometric isomorphism between (K1
ν)q

and (H1
ν)q by < Sf, g >=< f, Sg > for f ∈ (K1

ν)q and g ∈ H1
ν .

Definition 3.6. The coorbits of Y with respect the frame F = {Λx}x∈x are
defined as

CoY := Cog(F , Y ) := {f ∈ (K1
ν)q, V f = Vgf ∈ Y },

C̃oY := Cog(F̃ , Y ) := {f ∈ (H1
ν)q, Wf = Wg ∈ Y }

with natural norm

‖f |CoY ‖ := ‖V f |Y ‖, ‖f |C̃oY ‖ := ‖Wf |Y ‖.
The operator S is an isometric isomorphism between CoY and C̃oY .

There are some results in what follows and their proofs are similar to corre-
spond results in [6].

Proposition 3.7. Suppose that R(Y ) ⊂ L∞1
ν

(X,H). Then the following state-
ments hold.

a) The spaces (CoY, ‖.|CoY ‖) and (C̃oY, ‖.|C̃oY ‖) are Banach spaces.
b) A function F ∈ Y is of the form V f (resp. Wf) for some f ∈ CoY

(resp. C̃oY ) if and only if F = R(F ).
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c) The map V : CoY → Y (resp. W : C̃oY → Y ) establishes an isometric
isomorphism between CoY (resp. C̃oY ) and the closed subspace R(Y )
of Y.

Corollary 1. If Y also is a Hilbert space and R(Y ) ⊂ L∞1
ν

(X,H) then CoY and

C̃oY are Hilbert spaces.
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monic Analysis. Birkhäuser Boston Inc., Boston, MA, 2003.

[5] R. J. Duffin and A. C. Schaeffer. A class of nonharmonic Fourier series. Trans. Amer.
Math. Soc., 72:341–366, 1952.

[6] M. Fornasier and H. Rauhut. Continuous frames, function spaces, and the discretization
problem. J. Fourier Anal. Appl., 11(3):245–287, 2005.

[7] G. Kaiser. A friendly guide to wavelets. Birkhäuser Boston Inc., Boston, MA, 1994.
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