Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 24 (2008), 373-383 www.emis.de/journals ISSN 1786-0091

G-CONTINUOUS FRAMES AND COORBIT SPACES

M. A. DEHGHAN AND M. A. HASANKHANI FARD

ABSTRACT. A generalized continuous frame is a family of operators on a Hilbert space H which allows reproductions of arbitrary elements of H by continuous superpositions. Generalized continuous frames are natural generalization of continuous and discrete frames in Hilbert spaces which include many recent generalization of frames. In this article, we associate to a generalized continuous frame suitable Banach spaces, called generalized coorbit spaces, provided the frame satisfies a certain integrability condition. Also two classes of generalized coorbit spaces associated to a generalized continuous frame, its standard dual and some results are studied.

1. INTRODUCTION

Frames were first introduced in 1952 by Duffin and Schaeffer [5]. Frames have very important and interesting properties make them very useful in the characterization of function spaces, signal processing and many other fields. A discrete frame is a countable family of elements in a separable Hilbert spaces allows stable not necessarily unique decomposition of arbitrary elements into expansions of frame elements [4]. Given a separable Hilbert spaces $\mathcal{H}_{,a}$ collections of elements $\{f_i\}_{i\in\mathbb{Z}}$ is called a discrete frame if there exist constants $0 < A_1, A_2 < \infty$ such that

$$A_1 ||f||^2 \le \sum_{i \in \mathbb{Z}} |\langle f, f_i \rangle|^2 \le A_2 ||f||^2 \text{ for all } f \in \mathcal{H}.$$

Later, this concept was generalized to continuous frames indexed by a Radon measure space [3, 2, 1] and [7]. For a locally compact Hausdorff space X endowed with a positive Randon measure μ , a family $\{\psi_x\}_{x\in X}$ of vectors in a separable Hilbert spaces \mathcal{H} is called a continuous frame if there exist constants

²⁰⁰⁰ Mathematics Subject Classification. 42C15, 42C40, 46B25.

Key words and phrases. Generalized continuous frames, coorbit spaces, m-function spaces.

 $0 < A_1, A_2 < \infty$ such that

$$A_1 ||f||^2 \le \int_X |\langle f, \psi_x \rangle|^2 d\mu(x) \le A_2 ||f||^2 \text{ for all } f \in \mathcal{H}.$$

The concept of generalized frames has been introduced by W. Sun [8]. Generalized frames are natural generalizations of frames as members of a Hilbert space to bounded linear operators. A family $\{\Lambda_i\}_{i\in\mathbb{Z}}$ of bonded linear operators from a separable Hilbert space \mathcal{H} into another separable Hilbert space \mathcal{K} is called a generalized frame if there are two positive constants A and B such that

$$A||f||^2 \le \sum_{i \in \mathbb{Z}} ||\Lambda_i(f)||^2 \le B||f||^2 \text{ for all } f \in \mathcal{H}.$$

M. Fornasier and H. Rauhut have studied a kind of Banach spaces called coorbit spaces that vectors can be decomposed by use continuous frames [6]. Now we are going to extend this action by generalized continuous frames.

2. Generalized Continuous Frames

Let X be a locally compact Hausdorff space endowed with a positive radon measure μ with supp $\mu = X$.

Definition 2.1. A family $\mathcal{F} = {\Lambda_x}_{x \in X}$ of bonded linear operator from a Hilbert space \mathcal{H} into another Hilbert space \mathcal{K} is called generalized continuous frame or simply g-continuous frame for \mathcal{H} with respect to \mathcal{K} if there are positive constants C_1 and C_2 such that

(1)
$$C_1 \|f\|^2 \le \int_X \|\Lambda_x(f)\|^2 d\mu(x) \le C_2 \|f\|^2 \text{ for all } f \in \mathcal{H}.$$

If $C_1 = C_2$ then the frame is called tight. We call \mathcal{F} a g-continuous frame for \mathcal{H} if $\mathcal{H} = \mathcal{K}$.

For the sake of simplicity we assume that the mapping $x \mapsto \Lambda_x$ is weakly continuous. Not that, if X is a countable set and μ is counting measure then we obtain the usual definition of (generalized discrete) frame. By the Riesz Representation Theorem, to every functional $\Lambda \in L(\mathcal{H}, \mathbb{C})$, one can find some $g \in \mathcal{H}$ such that $\Lambda(f) = \langle f, g \rangle$ for all $f \in \mathcal{H}$. Hence a continuous frame is equivalent to a g-continuous frame frame whenever $\mathcal{K} = \mathbb{C}$.

For a g-continuous frame \mathcal{F} define the frame operator $S = S_{\mathcal{F}}$ in weak sense by

$$S\colon \mathcal{H} \to \mathcal{H}, \quad Sf:=\int_X \Lambda_x^* \Lambda_x f d\mu(x)$$

where Λ_x^* is adjoint of the operator Λ_x .

Proposition 2.2. The frame operator S is a bounded, positive, self-adjoint, and invertible.

Proof. For all $f \in \mathcal{H}$

$$< Sf, f > = \int_X < \Lambda_x^* \Lambda_x f, f > d\mu(x) = \int_X < \Lambda_x f, \Lambda_x f > d\mu(x)$$
$$= \int_X \| \Lambda_x(f) \|^2 d\mu(x) \ge C_1 \| f \|^2 \ge 0 = < Sf, g >$$
$$= \int_X < \Lambda_x^* \Lambda_x f, g > d\mu(x) = \int_X < \Lambda_x f, \Lambda_x g > d\mu(x)$$
$$= \int_X < f, \Lambda_x^* \Lambda_x g > d\mu(x) = < f, Sg >$$

by (1) we have $C_1 < f, f > \leq S < Sf, f > \leq C_2 < f, f >, C_1I \leq S \leq C_2I$ and $\|I - C_2^{-1}S\| \leq 1 - \frac{C_1}{C_2} < 1$. Hence S is invertible operator. \Box

Proposition 2.3. Let $\mathcal{F} = \{\Lambda_x\}_{x \in X}$ is a g-continuous frame for Hilbert space \mathcal{H} with frame operator S and bounds C_1, C_2 . Then $\widetilde{\mathcal{F}} = \{\widetilde{\Lambda_x}\}_{x \in X}$ such that $\widetilde{\Lambda_x} = \Lambda_x S^{-1}$, is a frame for \mathcal{H} with bounds C_1^{-1}, C_2^{-1} and frame operator S^{-1} .

Proof. We show that $S^{-1}f = \int_X (S^{-1}\Lambda_x^*S^{-1}\Lambda_x)fd\mu(x).$

$$\begin{split} \int_X (S^{-1}\Lambda_x^* S^{-1}\Lambda_x) f d\mu(x) &= S^{-1} \int_X (\Lambda_x^* S^{-1}\Lambda_x) f d\mu(x) \\ &= S^{-1} \int_X \Lambda_x^* \Lambda_x (S^{-1}f) d\mu(x) \\ &= S^{-1} (S(S^{-1}f)) = S^{-1}f \end{split}$$

also since $\mathcal{F} = {\Lambda_x}_{x \in X}$ is a frame for \mathcal{H} then $C_1 I \leq S \leq C_2 I$. On other hand since I and S are self-adjoint and S^{-1} commutative with I and S,

$$C_1 I S^{-1} \le S S^{-1} \le C_2 I S^{-1}$$

and hence

$$C_2^{-1}I \le S^{-1} \le C_1^{-1}I.$$

If \mathcal{F} is tight frame with bound $A = B = \lambda$ then $S = \lambda I$. Now the set

$$L^{2}(X,\mathcal{H}) := \{F \colon X \to \mathcal{H} \mid \int_{X} \|F(x)\|^{2} d\mu(x) < \infty\},$$

with inner product $\langle F, G \rangle := \int_X \langle F(x), G(x) \rangle d\mu(x)$, is a Hilbert space. We define the following two transformations associated to \mathcal{F} ,

$$V \colon \mathcal{H} \to L^2(X, \mathcal{H}), \quad Vf(x) := \Lambda_x(f),$$
$$W \colon \mathcal{H} \to L^2(X, \mathcal{H}), \quad Wf(x) := \Lambda_x(S^{-1}f).$$

The operators V and W are well define since by (1) we have

$$\int_X \|Vf(x)\|^2 d\mu(x) = \int_X \|\Lambda_x(f)\|^2 d\mu(x) \le C_2 \|f\|^2 < \infty$$

and

$$\begin{split} \int_X \|Wf(x)\|^2 d\mu(x) &= \int_X \|\Lambda_x(S^{-1}f)\|^2 d\mu(x) \\ &= \int_X \|S^{-1}\Lambda_x(f)\|^2 d\mu(x) \le C_1^{-1} \|f\|^2 < \infty. \end{split}$$

In the following we show that adjoint operator of V and W given weakly by

$$V^* \colon L^2(X, \mathcal{H}) \to \mathcal{H}, \quad V^*F := \int_X \Lambda_y^* F(y) d\mu(y),$$
$$W^* \colon L^2(X, \mathcal{H}) \to \mathcal{H}, \quad W^*F := \int_X S^{-1} \Lambda_y^* F(y) d\mu(y)$$

Since for all $h \in \mathcal{H}$, we have

$$\begin{split} < V^*F, h > &= \int_X < \Lambda_y^*F(y), h > d\mu(y) = \int_X < F(y), \Lambda_y(h) > d\mu(y) \\ &= \int_X < F(y), Vh(y) > d\mu(y) = < F, Vh > \end{split}$$

and

$$< W^*F, h > = \int_X < S^{-1}\Lambda_y^*F(y), h > d\mu(y)$$

=
$$\int_X < F(y), \Lambda_y(S^{-1}h) > d\mu(y)$$

=
$$\int_X < F(y), Wh(y) > d\mu(y) = < F, Wh >$$

Proposition 2.4. Let $\mathcal{F} = {\Lambda_x}_{x \in X}$ is a g-continuous frame for Hilbert space \mathcal{H} with frame operator S, then the following holds,

- a) $S = V^*V, S^{-1} = W^*W,$
- b) $\langle f, g \rangle = \langle Vf, Wg \rangle = \langle Wf, Vg \rangle$,
- c) V and W are unitary if \mathcal{F} is a tight frame,
- d) Range V = Range W,
- e) V and W are bijective transformations from $\mathcal H$ onto the Hilbert space $\mathcal M$ where

$$\mathcal{M} = \{ F \in L^2(X, \mathcal{H}) : \int_X R(x, y) F(y) d\mu = F(x) a.e, R(x, y) = S^{-1} \Lambda_x \Lambda_y^* \}.$$

Proof. Let $f \in \mathcal{H}$, we have

$$(V^*V)(f) = \int_X \Lambda_y^* V f(y) d\mu(y) = \int_X \Lambda_y^* \Lambda_y f d\mu(y) = Sf,$$

and

$$(V^*W)f = \int_X \Lambda_y^* Wf(y) d\mu(y) = \int_X \Lambda_y^* \Lambda_y(S^{-1}f) d\mu(y) = S(S^{-1}f) = f.$$

In the same argument, $(W^*V)f = f$ and hence for all f and g in \mathcal{H} ,

 $\langle f,g \rangle = \langle Vf,Wg \rangle$.

Therefore a), b) and c) hold.

Since S is invertible and self-adjoint we have

$$f = SS^{-1}f = \int_X \Lambda_y^* \Lambda_y(S^{-1}f) d\mu(y) = \int_X \Lambda_y^* W f(y) d\mu(y) d$$

and

$$f = S^{-1}Sf = \int_X S^{-1}\Lambda_y^*\Lambda_y f d\mu(y) = \int_X S^{-1}\Lambda_y^*Vf(y)d\mu(y)$$

in the weak sense. Furthermore we have

$$\begin{split} Wf(x) &= \Lambda_x(S^{-1}f) = \Lambda_x S^{-1}(\int_X \Lambda_y^* Wf(y) d\mu(y)) \\ &= \int_X \Lambda_x S^{-1} \Lambda_y^* Wf(y) d\mu(y), \\ Vf(x) &= \Lambda_x(f) = \Lambda_x(\int_X S^{-1} \Lambda_y^* Vf(y) d\mu(y)) = \int_X \Lambda_x S^{-1} \Lambda_y^* Vf(y) d\mu(y). \end{split}$$

Therefore

$$Wf(x) = \int_X R(x,y)Wf(y)d\mu(y), \quad Vf(x) = \int_X R(x,y)Vf(y)d\mu(y),$$

and hence Vf and Wf are in \mathcal{M} .

Conversely, let F be in \mathcal{M} then

$$F(x) = \int_X R(x, y)F(y)d\mu(y) = \int_X \Lambda_x S^{-1}\Lambda_y^*F(y)d\mu(y)$$
$$= \Lambda_x S^{-1} \int_X \Lambda_y^*F(y)d\mu(y) = \Lambda_x S^{-1}(V^*F) = W(V^*F)(x).$$

Therefore $F \in \text{Range } W$, $\mathcal{M} \subseteq \text{Range } W$ and $\mathcal{M} = \text{Range } W$. The same argument implies that $\mathcal{M} = \text{Range } V$. Finally by (1) V and W are injective and the proof is complete.

For every kernel function $K \colon X \times X \to L(\mathcal{H})$ and every function $F \colon X \to \mathcal{H}$ corresponds an operator K such that

(2)
$$K(F)(x) := \int_X K(x,y)F(y)d\mu(y).$$

Proposition 2.5. Let $\mathbb{R}: L^2(X, \mathcal{H}) \to L^2(X, \mathcal{H})$ and

$$\mathbf{R}(F)(x) := \int_X R(x,y)F(y)d\mu(y),$$

then,

- a) $R(x,y) = R(y,x)^*$ for all x and y in X,
- b) R(Vf) = Vf, R(Wf) = Wf for all f in \mathcal{H} ,
- c) R is self-adjoint as an operator on $L^2(X, \mathcal{H})$,
- d) R is orthogonal projection from $L^2(X, \mathcal{H})$ onto \mathcal{M} .

Proof. a) and b) are trivial. R is self-adjoint as an operator on $L^2(X, \mathcal{H})$, since for all $F, G \in L^2(X, \mathcal{H})$ we have

$$< \mathbf{R}(F), G > = \int_X < \mathbf{R}(F)(x), G(x) > d\mu(x)$$

$$= \int_X < \int_X R(x, y)F(y)d\mu(y), G(x) > d\mu(x)$$

$$= \int_X \int_X < R(x, y)F(y), G(x) > d\mu(y)d\mu(x)$$

$$= \int_X \int_X < F(y), R(x, y)^*G(x) > d\mu(y)d\mu(x)$$

$$= \frac{\int_X \int_X < F(y), R(y, x)G(x) > d\mu(y)d\mu(x) }{\int_X \int_X < R(y, x)G(x), F(y) > d\mu(y)d\mu(x) }$$

$$= \frac{\int_X \int_X < R(y, x)G(x), F(y) > d\mu(x)d\mu(y) }{\int_X < R(y, x)G(x)d\mu(x), F(y) > d\mu(y)}$$

$$= \frac{\int_X < R(G)(y), F(y) > d\mu(y) }{\int_X < R(G)(y), F(y) > d\mu(y) }$$

For all $F \in L^2(X, \mathcal{H})$ we have $R(F) \in \text{Range}(R) = \text{Range}(V)$ then R(F) = Vg, for some $g \in \mathcal{H}$ and hence

$$R^{2}(F) = R(R(F)) = R(Vg) = Vg = R(F)$$

then $\mathbf{R}^2 = \mathbf{R}$ and

$$L^{2}(X, \mathcal{H}) = N(\mathbf{R}) \bigoplus \operatorname{Range}(\mathbf{R}).$$

We assume in the following that $||\Lambda_x|| \leq C$ for all $x \in X$. This implies $|Vf(x)| \leq C||f||$ and $|Wf| \leq C||S^{-1}|| ||f||$ for all $x \in X$ and, together with the weak continuity assumption, we conclude $Vf, Wf \in C^b(X, \mathcal{H})$ for all $f \in \mathcal{H}$, where $C^b(X, \mathcal{H})$ denotes the bonded continuous function of X to \mathcal{H} .

3. Coorbit Spaces

Associated to a g-continuous frames, there are Banach spaces called coorbit spaces where describe vectors in the Hilbert spaces of kernel functions. M. Fornasier and H. Rauhut [6] associated coorbit spaces to continuous frames. First, to built a weighted algebra, we need to introduce an special weight function.

Definition 3.1. Let *m* be a real weight function on $X \times X$. *m* is called admissible if,

- a) m is continuous,
- b) $1 \le m(x, y) \le m(x, z)m(z, y)$ for all $x, y, z \in X$,
- c) m(x,y) = m(y,x) for all $x, y \in X$,
- d) $m(x,y) \leq C < \infty$ for all $x, y \in X$.

In order to get a weighted algebra we need to make a norm and a multiplication on kernel functions.

Proposition 3.2. Let

$$\mathcal{A}_1 := \{ K \colon X \times X \to L(\mathcal{H}), \ K \ is \ measurable, \|K|\mathcal{A}_1\| < \infty \}$$

where

$$||K|\mathcal{A}_1|| := \max\{ ess \sup_{x \in X} \int_X ||K(x,y)|| d\mu(y), ess \sup_{y \in X} \int_X ||K(x,y)|| d\mu(x) \}$$

is its norm (the norm in integral is uniform norm) and the multiplication in \mathcal{A}_1 is given by

$$K_1 \circ K_2(x, y) = \int_X K_1(x, z) K_2(z, y) d\mu(z),$$

such that in weak sense

$$K_1 \circ K_2(x,y) : \mathcal{H} \to \mathcal{H}, \quad K_1 \circ K_2(x,y)f = \int_X K_1(x,z)K_2(z,y)fd\mu(z).$$

Then \mathcal{A}_1 with $\|.|\mathcal{A}_1\|$ and the multiplication is a Banach algebra.

Proof. Obviously $\|.|\mathcal{A}_1\|$ is a norm and the conditions of an algebra satisfy. We prove the associativity of multiplication and completeness of the norm. For all $f \in \mathcal{H}$ and $K_1, K_2, K_3 \in \mathcal{A}_1$ we have

$$[K_1 \circ (K_2 \circ K_3)](x, y)f = \int_X K_1(x, z)(K_2 \circ K_3)(z, y)fd\mu(z)$$
$$= \int_X K_1(x, z)\int_X K_2(z, t)K_3(t, y)fd\mu(t)d\mu(z)$$

$$= \int_X \int_X K_1(x, z) K_2(z, t) K_3(t, y) f d\mu(t) d\mu(z)$$

= $\int_X \int_X K_1(x, z) K_2(z, t) d\mu(z) K_3(t, y) f d\mu(t)$
= $\int_X (K_1 \circ K_2)(x, t) K_3(t, y) f d\mu(t)$
= $[(K_1 \circ K_2) \circ K_3](x, y) f,$

and then $K_1 \circ (K_2 \circ K_3) = (K_1 \circ K_2) \circ K_3$.

Finally $\|.|\mathcal{A}_1\|$ is Banach since if $\{K_n\}_{n=1}^{\infty}$ is Cauchy sequence in \mathcal{A}_1 , then $\|K_n - K_m|\mathcal{A}_1\| \to 0$ as $m, n \to \infty$. Hence $\|K_n(x, y) - K_m(x, y)\|_{sup} \to 0$ as $m, n \to \infty$. Since $L(\mathcal{H})$ with uniform norm is Banach then there is $K \in L(\mathcal{H})$ such that $\|K_n(x, y) - K(x, y)\|_{sup} \to 0$ as $m, n \to \infty$ and hence $\|K_n - K|\mathcal{A}_1\| \to 0$ as $m, n \to \infty$. Therefore \mathcal{A}_1 is a Banach algebra.

Now we define a corresponding weighted subalgebra respect to an admissible weight function m.

Proposition 3.3. Let *m* be an admissible weight function and let,

 $\mathcal{A}_m := \{ K \colon X \times X \to L(\mathcal{H}), \quad Km \in \mathcal{A}_1 \},\$

with the natural norm $||K|\mathcal{A}_m|| := ||K_m|\mathcal{A}_1||$. Then

- a) \mathcal{A}_m is a Banach algebra,
- b) For every $K \in \mathcal{A}_m$, corresponding operator K on $L^2(X, \mathcal{H})$ defined by

$$K(F)(x) = \int_X K(x, y) F(y) d\mu(y),$$

is self adjoint.

Proof. Clearly, K is a linear operator on $L^2(X, \mathcal{H})$. For every $F, G \in L^2(X, \mathcal{H})$ we have

$$< K(F), G > = \int_X < K(F)(x), G(x) > d\mu(x)$$

$$= \int_X \int_X < K(x, y)F(y), G(x) > d\mu(y)d\mu(x)$$

$$= \int_X \int_X < F(y), K^*(x, y)G(x) > d\mu(y)d\mu(x)$$

$$= \frac{\int_X \int_X < F(y), K(y, x)G(x) > d\mu(y)d\mu(x) }{\int_X \int_X < K(y, x)G(x), F(y) > d\mu(y)d\mu(x) }$$

$$= \frac{\int_X \int_X K(y, x)G(x)d\mu(x), F(y) > d\mu(y)$$

$$= \overline{\int_X \langle K(G)(y), F(y) \rangle d\mu(y)}$$

= $\overline{\langle K(G), F \rangle} = \langle F, K(G) \rangle$.

A function space Y that satisfies some properties is other tool for definition coorbit spaces associated to g-continuous frames.

Definition 3.4. Let $(Y, \|.|Y\|)$ be a non-trivial Banach space of functions $F: X \to \mathcal{H}$ such that

1) Y is continuously embedded into $L^1_{loc}(X, \mathcal{H})$, where

$$L^{1}_{loc}(X,\mathcal{H}) := \{F \colon X \to \mathcal{H}, \int_{K} \|F(x)\| d\mu(x) < \infty$$

for every compact subset K of X,

- 2) If F is measurable and $G \in Y$ such that $||F(x)|| \le ||G(x)||$ a.e. then $F \in Y$ and $||F|Y|| \le ||G|Y||$.
- 3) There exists an admissible weight function m such that $\mathcal{A}_m(Y) \subset Y$ and

$$||K(F)|Y|| \le ||K|\mathcal{A}_m|| ||F|Y||$$

for all $K \in \mathcal{A}_m$, $F \in Y$, then $(Y, \|.|Y\|)$ is called an *m*-function space.

In the rest of this article, let (Y, ||.|Y||) with a weight function m be fixed. For fixed point $z \in X$ define a weight function on X by

$$\nu(x) := \nu_z(x) := m(x, z).$$

Now, we define the spaces

$$\mathcal{H}^{1}_{\nu} := \mathcal{H}^{1}_{\nu}(X, \mathcal{H}) := \{ f \in \mathcal{H}, V f \in L^{1}_{\nu}(X, \mathcal{H}) \},\$$
$$\mathcal{K}^{1}_{\nu} := \mathcal{K}^{1}_{\nu}(X, \mathcal{H}) := \{ f \in \mathcal{H}, W f \in L^{1}_{\nu}(X, \mathcal{H}) \}$$

with natural norms

$$||f|\mathcal{H}^1_{\nu}|| := ||Vf|L^1_{\nu}||, \quad ||f|\mathcal{H}^1_{\nu}|| := ||Vf|L^1_{\nu}||.$$

The frame operator S is an isometric isomorphism between \mathcal{H}^1_{ν} and \mathcal{K}^1_{ν} .

Proposition 3.5. The spaces $(\mathcal{H}^1_{\nu}, \|.|\mathcal{H}^1_{\nu}\|)$ and $(\mathcal{K}^1_{\nu}, \|.|\mathcal{K}^1_{\nu}\|)$ are Banach spaces.

The proof is completely analogous to the proof of proposition 1 in [6] and hence omitted.

Now let R be in \mathcal{A}_m and let $g \in \mathcal{H}$ then,

$$\begin{split} \|\Lambda_y^* g|\mathcal{K}_{\nu}^1\| &= \int_X \|W(\Lambda_y^* g)(x)\|\nu(x)d\mu(x) \\ &= \int_X \|\Lambda_x S^{-1}\Lambda_y^* g\|\nu(x)d\mu(x) \le \int_X \|R(x,y)\|\|g\|m(x,z)d\mu(x) \end{split}$$

$$\leq \|g\|m(y,z) \int_X \|R(x,y)\|m(x,y)d\mu(x) \leq \|g\|\|R|\mathcal{A}_m\|\nu(y),$$

and similarly

$$\begin{split} \|S^{-1}\Lambda_{y}^{*}g|\mathcal{H}_{\nu}^{1}\| &= \int_{X} \|V(S^{-1}\Lambda_{y}^{*}g)(x)\|\nu(x)d\mu(x) \\ &= \int_{X} \|\Lambda_{x}S^{-1}\Lambda_{y}^{*}g\|\nu(x)d\mu(x) \\ &\leq \|g\|m(y,z)\int_{X} \|R(x,y)\|m(x,y)d\mu(x) \leq \|g\|\|R|\mathcal{A}_{m}\|\nu(y). \end{split}$$

Hence, $\Lambda_y^* g \in \mathcal{K}_{\nu}^1$ and $S^{-1} \Lambda_y^* g \in \mathcal{H}_{\nu}^1$ for all $y \in X$. Now we define the spaces

Now, we define the spaces

 $(\mathcal{H}^1_{\nu})^{\neg} := \{ f : \mathcal{H}^1_{\nu} \to \mathcal{H}, f \text{ is continuous and conjugat-linear} \},\$

 $(\mathcal{K}^1_{\nu})^{\neg} := \{ f \colon \mathcal{K}^1_{\nu} \to \mathcal{H}, f \text{ is continuous and conjugat-linear} \}.$

Since $\Lambda_x^* g \in \mathcal{K}^1_{\nu}$ we may extend the transform V to $(\mathcal{K}^1_{\nu})^{\neg}$ by

$$Vf(x) = V_g f(x) = f(\Lambda_x^* g) = \langle f, \Lambda_x^* g \rangle, \quad f \in \mathcal{K}^1_{\nu}.$$

By the same argument, the transform W extends to $(\mathcal{H}^1_{\nu})^{\neg}$ by

$$Wf(x) = W_g f(x) = f(S^{-1}\Lambda_x^* g) = \langle f, S^{-1}\Lambda_x^* g \rangle, f \in \mathcal{H}^1_{\nu}$$

We may also extend the operator S to an isometric isomorphism between $(\mathcal{K}^1_{\nu})^{\neg}$ and $(\mathcal{H}^1_{\nu})^{\neg}$ by $\langle Sf, g \rangle = \langle f, Sg \rangle$ for $f \in (\mathcal{K}^1_{\nu})^{\neg}$ and $g \in \mathcal{H}^1_{\nu}$.

Definition 3.6. The coorbits of Y with respect the frame $\mathcal{F} = {\Lambda_x}_{x \in x}$ are defined as

$$Co Y := Co_g(\mathcal{F}, Y) := \{ f \in (\mathcal{K}^1_{\nu})^{\neg}, \quad V f = V_g f \in Y \},$$
$$\widetilde{Co} Y := Co_g(\tilde{\mathcal{F}}, Y) := \{ f \in (\mathcal{H}^1_{\nu})^{\neg}, \quad W f = W_g \in Y \}$$

with natural norm

$$||f| \operatorname{Co} Y|| := ||Vf|Y||, \quad ||f| \widetilde{\operatorname{Co}} Y|| := ||Wf|Y||.$$

The operator S is an isometric isomorphism between $\operatorname{Co} Y$ and $\operatorname{Co} Y$.

There are some results in what follows and their proofs are similar to correspond results in [6].

Proposition 3.7. Suppose that $R(Y) \subset L^{\infty}_{\frac{1}{\nu}}(X, \mathcal{H})$. Then the following statements hold.

- a) The spaces $(\operatorname{Co} Y, \|.| \operatorname{Co} Y\|)$ and $(\operatorname{Co} Y, \|.| \operatorname{Co} Y\|)$ are Banach spaces.
- b) A function $F \in Y$ is of the form Vf (resp. Wf) for some $f \in \operatorname{Co} Y$ (resp. $\widetilde{Co}Y$) if and only if F = R(F).

c) The map $V: \operatorname{Co} Y \to Y$ (resp. $W: \operatorname{\widetilde{Co}} Y \to Y$) establishes an isometric isomorphism between $\operatorname{Co} Y$ (resp. $\operatorname{\widetilde{Co}} Y$) and the closed subspace R(Y) of Y.

Corollary 1. If Y also is a Hilbert space and $R(Y) \subset L^{\infty}_{\frac{1}{\nu}}(X, \mathcal{H})$ then CoY and \widetilde{CoY} are Hilbert spaces.

References

- S. T. Ali, J.-P. Antoine, and J.-P. Gazeau. Continuous frames in Hilbert space. Ann. Physics, 222(1):1–37, 1993.
- [2] S. T. Ali, J.-P. Antoine, and J.-P. Gazeau. Coherent states, wavelets and their generalizations. Graduate Texts in Contemporary Physics. Springer-Verlag, New York, 2000.
- [3] S. T. Ali, J.-P. Antoine, J.-P. Gazeau, and U. A. Mueller. Coherent states and their generalizations: a mathematical overview. *Rev. Math. Phys.*, 7(7):1013–1104, 1995.
- [4] O. Christensen. An introduction to frames and Riesz bases. Applied and Numerical Harmonic Analysis. Birkhäuser Boston Inc., Boston, MA, 2003.
- [5] R. J. Duffin and A. C. Schaeffer. A class of nonharmonic Fourier series. Trans. Amer. Math. Soc., 72:341–366, 1952.
- [6] M. Fornasier and H. Rauhut. Continuous frames, function spaces, and the discretization problem. J. Fourier Anal. Appl., 11(3):245–287, 2005.
- [7] G. Kaiser. A friendly guide to wavelets. Birkhäuser Boston Inc., Boston, MA, 1994.
- [8] W. Sun. G-frames and g-Riesz bases. J. Math. Anal. Appl., 322(1):437-452, 2006.

DEPARTMENT OF MATHEMATICS, VALI-ASR UNIVERSITY, RAFSANJAN, IRAN *E-mail address:* dehghan@mail.vru.ac.ir