Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 25(1) (2009), 1-7 www.emis.de/journals ISSN 1786-0091

ACYCLIC NUMBERS OF GRAPHS

VLADMIR SAMODIVKIN

ABSTRACT. A subset S of vertices in a graph G is *acyclic* if the subgraph $\langle S \rangle$ induced by S contains no cycles. The *lower acyclic number*, $i_a(G)$, is the smallest number of vertices in a maximal acyclic set in G. The *upper acyclic number*, $\beta_a(G)$, is the maximum cardinality of an acyclic set in G. Let $\mu \in \{\beta_a, i_a\}$. Any maximal acyclic set S of a graph G with $|S| = \mu(G)$ is called a μ -set of G. A vertex x of a graph G is called: (i) μ -good if x belongs to some μ -set, (ii) μ -fixed if x belongs to every μ -set, (iii) μ -free if x belongs to some μ -set but not to all μ -sets, (iv) μ -bad if x belongs to no μ -set. In this paper we deal with μ -good/bad/fixed/free vertices and present results on upper and lower acyclic numbers in graphs having cut-vertices.

1. INTRODUCTION

We consider finite, simple graphs. The vertex set and the edge set of a graph G is denoted by V(G) and E(G), respectively. The subgraph induced by $S \subseteq V(G)$ is denoted by $\langle S, G \rangle$. For a vertex x of G, N(x, G) denote the set of all neighbors of x in G and $N[x, G] = N(x, G) \cup \{x\}$.

A subset of vertices S in a graph G is said to be *acyclic* if $\langle S, G \rangle$ contains no cycles. Note that the property of being acyclic is a hereditary property, that is, any subset of an acyclic set is itself acyclic. An acyclic set $S \subseteq V(G)$ is *maximal* if for every vertex $v \in V(G) - S$, the set $S \cup \{v\}$ is not acyclic. The *lower acyclic number*, $i_a(G)$, is the smallest number of vertices in a maximal acyclic set in G. The *upper acyclic number*, $\beta_a(G)$, is the maximum cardinality of an acyclic set in G. These two numbers were defined by S.M. Hedetniemi et al. in [4]. We denote by MAS(G) the set of all maximal acyclic sets of a graph G. For every vertex $x \in V(G)$, let MAS $(x, G) = \{A \in MAS(G) : x \in A\}$.

Let $\mu(G)$ be a numerical invariant of a graph G defined in such a way that it is the minimum or maximum number of vertices of a set $S \subseteq V(G)$ with a given property P. A set with property P and with $\mu(G)$ vertices in G is called a μ -set of G. A vertex v of a graph G is defined to be

²⁰⁰⁰ Mathematics Subject Classification. 05C69.

Key words and phrases. acyclic numbers; i_a/β_a -fixed/free/bad/good vertex.

VLADMIR SAMODIVKIN

- (a) μ -good, if v belongs to some μ -set of G [3];
- (b) μ -bad, if v belongs to no μ set of G [3];
- (c) μ -fixed if v belongs to every μ -set [5];

(d) μ -free if v belongs to some μ -set but not to all μ -sets [5].

For a graph G and $\mu \in \{i_a, \beta_a\}$ we define:

$$\mathbf{G}(G,\mu) = \{x \in V(G) : x \text{ is } \mu\text{-good}\}; \\
\mathbf{B}(G,\mu) = \{x \in V(G) : x \text{ is } \mu\text{-bad}\}; \\
\mathbf{F}i(G,\mu) = \{x \in V(G) : x \text{ is } \mu\text{-fixed}\}; \\
\mathbf{F}r(G,\mu) = \{x \in V(G) : x \text{ is } \mu\text{-free}\}; \\
\mathbf{V}_0(G,\mu) = \{x \in V(G) : \mu(G-x) = \mu(G)\}; \\
\mathbf{V}_-(G,\mu) = \{x \in V(G) : \mu(G-x) < \mu(G)\}; \\
\mathbf{V}_+(G,\mu) = \{x \in V(G) : \mu(G-x) > \mu(G)\}.$$

Clearly, $\{\mathbf{V}_{-}(G,\mu), \mathbf{V}_{0}(G,\mu), \mathbf{V}_{+}(G,\mu)\}$ and $\{\mathbf{G}(G,\mu), \mathbf{B}(G,\mu)\}$ are partitions of V(G), and $\{\mathbf{F}i(G,\mu), \mathbf{F}r(G,\mu)\}$ is a partition of $\mathbf{G}(G)$.

Observation 1.1. For any nontrivial graph G the following holds:

- (1) $V(G) = \mathbf{V}_{-}(G, \beta_a) \cup \mathbf{V}_{0}(G, \beta_a);$
- (2) $\mathbf{V}_{-}(G,\beta_{a}) = \{x \in V(G) : \beta_{a}(G-x) = \beta_{a}(G) 1\} = \mathbf{F}i(G,\beta_{a});$
- (3) $\mathbf{V}_{-}(G, i_a) = \{x \in V(G) : i_a(G x) = i_a(G) 1\};$
- (4) $\mathbf{V}_+(G, i_a) \subseteq \mathbf{F}i(G, i_a);$
- (5) $\mathbf{B}(G, i_a) \subseteq \mathbf{V}_0(G, i_a).$

Proof. (1): Let $v \in V(G)$ and M be a β_a -set of G - v. Then M be an acyclic set of G which implies $\beta_a(G - v) \leq \beta_a(G)$.

(2): Let $v \in V(G)$ and M_1 be a β_a -set of G. First assume v be no β_a -fixed. Hence the set M_1 may be chosen so that $v \notin M_1$ and then M_1 is an acyclic set of G - v implying $\beta_a(G) = |M_1| \leq \beta_a(G - v)$. Now by (1) it follows $\beta_a(G) = \beta_a(G - v)$.

Let v be β_a -fixed. Then each β_a -set of G - v is an acyclic set of G but is no β_a -set of G. Hence $\beta_a(G) > \beta_a(G - v)$. Since $M_1 - \{v\}$ is an acyclic set of G - v then $\beta_a(G - v) \ge |M_1 - \{v\}| = \beta_a(G) - 1$.

(3), (4) and (5): Let $v \in V(G)$, M_2 be an i_a -set of G and $v \notin M_2$. Then $M_2 \in MAS(G-v)$ implying $i_a(G) \ge i_a(G-v)$. Now let M_3 be an i_a -set of G-v. Then either M_3 or $M_3 \cup \{v\}$ is a maximal acyclic set of G. Hence $i_a(G-v)+1 \ge i_a(G)$ and if the equality holds then v is i_a -good. \Box

A set $D \subseteq V(G)$ is called a *decycling set* if V(G) - D is acyclic. A decycling set $D \subseteq V(G)$ is a *minimal decycling set* if no proper subset $D_1 \subset D$ is a decycling set.

The minimum order of a decycling set of G is called the *decycling number* of G and is denoted by $\nabla(G)$ (see [2]). Note that the set A is in MAS(G) if and only if V(G) - A is a minimal decycling set. Hence $\nabla(G) + \beta_a(G) = |V(G)|$. For a survey of results and open problems on $\nabla(G)$ see [1]. In [2] the decycling

 $\mathbf{2}$

of combinations of two graphs were considered, namely the sum, the join and the Cartesian product. Let G_1 and G_2 be connected graphs, both of order at least two, and let they have an unique vertex in common, say x. Then a *coalescence* $G_1 \stackrel{x}{\circ} G_2$ is the graph $G_1 \cup G_2$. Clearly, x is a cut-vertex of $G_1 \stackrel{x}{\circ} G_2$. In this paper we present results on maximal acyclic sets, lower acyclic number and upper acyclic number in a coalescence of graphs.

2. Maximal acyclic sets

In this section we begin an investigation of maximal acyclic sets in graphs having cut-vertices.

Proposition 2.1. Let $G = H_1 \stackrel{x}{\circ} H_2$, $M \in MAS(x, G)$ and $M_j = M \cap V(H_j)$, j = 1, 2. Then $M_j \in MAS(x, H_j)$ for j = 1, 2.

Proof. Clearly M_j is an acyclic set of H_j , j = 1, 2. Assume $M_i \notin MAS(x, H_i)$ for some $i \in \{1, 2\}$. Then there is a vertex $u \in V(H_i) - M_i$ such that $M_i \cup \{u\}$ is an acyclic set in H_i . But then $M \cup \{u\}$ is an acyclic set of G - a contradiction with the maximality of M.

Proposition 2.2. Let $G = H_1 \stackrel{x}{\circ} H_2$, $M_j \in MAS(x, H_j)$ for j = 1, 2. Then $M = M_1 \cup M_2 \in MAS(x, G)$.

Proof. Since x is a cut-vertex then M is an acyclic set of G. If $M \notin MAS(G)$ then there is $u \in V(G - M)$ such that $M \cup \{u\}$ is an acyclic set of G. Let without loss of generalities $u \in V(H_1)$. Then $M_1 \cup \{u\}$ is an acyclic set of H_1 contradicting $M_1 \in MAS(H_1)$. Hence $M \in MAS(G)$.

Proposition 2.3. Let $G = H_1 \stackrel{x}{\circ} H_2$, $M \in MAS(G)$, $x \notin M$ and $M_j = M \cap V(H_j)$, j = 1, 2. Then one of the following holds:

- (1) $M_j \in MAS(H_j)$ for j = 1, 2;
- (2) there are l and m such that $\{l, m\} = \{1, 2\}, M_l \in MAS(H_l), M_m \in MAS(H_m x) \text{ and } M_m \cup \{x\} \in MAS(H_m).$

Proof. Clearly M_i is an acyclic set of H_i , i = 1, 2. Assume there be $j \in \{1, 2\}$ such that $M_j \notin MAS(H_j)$, say j = 1. If $M_1 \notin MAS(H_1 - x)$ then there is $v \in V(H_1 - x), v \notin M_1$ such that $M_1 \cup \{v\}$ is an acyclic set of $H_1 - x$ and since $x \notin M$ then $M \cup \{v\}$ is an acyclic set of G - a contradiction. So, $M_1 \in MAS(H_1 - x)$. Since $M_1 \notin MAS(H_1)$ then there is $u \in V(H_1 - M_1)$ such that $M_1 \cup \{u\}$ is an acyclic set of H_1 . Since $M_1 \in MAS(H_1 - x)$ then u = x. Hence $M_1 \cup \{x\} \in MAS(H_1)$. Suppose $M_2 \notin MAS(H_2)$. Then $M_2 \cup \{x\} \in MAS(H_2)$ and by Proposition 2.2, $M \cup \{x\} \in MAS(G)$ contradicting $M \in MAS(G)$.

Proposition 2.4. Let $G = H_1 \stackrel{x}{\circ} H_2$, $M_j \in MAS(H_j)$ for j = 1, 2 and $x \notin M = M_1 \cup M_2$. Then $M \in MAS(H)$.

Proof. The proof is analogous to the proof of Proposition 2.2.

VLADMIR SAMODIVKIN

Proposition 2.5. Let $G = H_1 \stackrel{x}{\circ} H_2$, $M_1 \in MAS(x, H_1)$, $M_2 \in MAS(H_2)$ and $x \notin M_2$. Then $M = M_1 \cup M_2$ is no acyclic set of G and there is a set M_3 such that $M_1 - \{x\} \subseteq M_3 \in MAS(H_1 - x)$ and $M_3 \cup M_2 \in MAS(G)$.

Proof. Since $M_1 - \{x\}$ is an acyclic set of $H_1 - x$ then there is $M_3 \in MAS(H_1 - x)$ with $M_1 - \{x\} \subseteq M_3$. Hence $U = M_3 \cup M_2$ is an acyclic set of G. Assume $U \notin MAS(G)$. Then there is $v \in V(G) - U$ such that $U \cup \{v\}$ is an acyclic set of G. Now either $M_3 \cup \{u\}$ is an acyclic set of $H_1 - x$ or $M_2 \cup \{u\}$ is an acyclic set of H_2 depending on whether $u \in V(H_1 - x)$ or $u \in V(H_2)$. In both cases we have a contradiction. \Box

3. β_a -sets and i_a -sets

In this section we present some results concerning the lower acyclic number and the upper acyclic number of graphs having cut-vertices.

Theorem 3.1. Let $G = H_1 \stackrel{x}{\circ} H_2$. Then $\beta_a(H_1) + \beta_a(H_2) - 1 \leq \beta_a(G) \leq \beta_a(H_1) + \beta_a(H_2)$. Moreover, $\beta_a(G) = \beta_a(H_1) + \beta_a(H_2)$ if and only if x is no β_a -fixed vertex of H_i , i = 1, 2.

Proof. We need the following claims:

Claim 1. If x is a β_a -fixed vertex of G then $\beta_a(G) \leq \beta_a(H_1) + \beta_a(H_2) - 1$.

Let M be a β_a -set of G. Then

$$\beta_a(G) = |M| = |M \cap V(H_1)| + |M \cap V(H_2)| - 1 \le \beta_a(H_1) + \beta_a(H_2) - 1.$$

Claim 2. If x is no β_a -fixed vertex of G then $\beta_a(G) \leq \beta_a(H_1) + \beta_a(H_2)$.

Let M be a β_a -set of G such that $x \notin M$. Hence

$$\beta_a(G) = |M| = |M \cap V(H_1)| + |M \cap V(H_2)| \le \beta_a(H_1) + \beta_a(H_2).$$

Claim 3. If x is no β_a -fixed vertex of H_i , i = 1, 2 then $\beta_a(G) \ge \beta_a(H_1) + \beta_a(H_2)$.

Let M_i be a β_a -set of H_i and $x \notin M_i$, i = 1, 2. Then $M = M_1 \cup M_2$ is an acyclic set of G and $\beta_a(G) \ge |M| = |M_1| + |M_2| = \beta_a(H_1) + \beta_a(H_2)$.

Claim 4. If x is β_a -fixed vertex of H_i for some $i \in \{1, 2\}$ then

$$\beta_a(G) \ge \beta_a(H_1) + \beta_a(H_2) - 1.$$

Let without loss of generalities i = 1. Let M_j be a β_a -set of H_j , j = 1, 2. Then $M = (M_1 - \{x\}) \cup M_2$ is an acyclic set of G and

$$\beta_a(G) \ge |M| = |M_1| - 1 + |M_2| = \beta_a(H_1) + \beta_a(H_2) - 1.$$

By the above claims it immediately follows

(1)
$$\beta_a(H_1) + \beta_a(H_2) - 1 \le \beta_a(G) \le \beta_a(H_1) + \beta_a(H_2)$$

If x is no β_a -fixed vertex of H_i , i = 1, 2 then by (1) and Claim 3 it follows $\beta_a(G) = \beta_a(H_1) + \beta_a(H_2)$. Now, let without loss of generalities x is a β_a -fixed

vertex of H_1 . If x is a β_a -fixed vertex of G then by Claim 1 and (1) it follows $\beta_a(G) = \beta_a(H_1) + \beta_a(H_2) - 1$. Assume x is no β_a -fixed vertex of G. Then there is a β_a -set of G with $x \notin M$. Hence

$$\beta_a(G) = |M| = |M \cap V(H_1)| + |M \cap V(H_2)|$$

$$\leq \beta_a(H_1 - x) + \beta_a(H_2) = (\beta_a(H_1) - 1) + \beta_a(H_2)$$

ecause of Observation 1.1 (2).

because of Observation 1.1 (2).

Corollary 3.2. Let $G = H_1 \circ H_2$ and x is a β_a -fixed vertex of G. Then $\beta_a(G) = \beta_a(H_1) + \beta_a(H_2) - 1.$

Theorem 3.3. Let $G = H_1 \stackrel{x}{\circ} H_2$. Then:

- (1) $i_a(G) \ge i_a(H_1) + i_a(H_2) 1;$
- (2) Let x be an i_a -good vertex of G, $i_a(G) = i_a(H_1) + i_a(H_2) 1$, let M be an i_a -set of G and $x \in M$. Then $M \cap V(H_j)$ is an i_a -set of H_j , j = 1, 2;
- (3) Let x be an i_a -bad vertex of the graph G, $i_a(H) = i_a(H_1) + i_a(H_2) 1$ and let M be an i_a -set of G. Then there are l, m such that $\{l, m\} = \{1, 2\},\$ $M \cap V(H_l)$ is a i_a -set of H_l , $M \cap V(H_m)$ is an i_a -set of $H_m - x$, $i_a(H_m - x) = i_a(H_m) - 1$ and $(M \cap V(H_m)) \cup \{x\}$ is an i_a -set of H_m ;
- (4) Let x be an i_a -good vertex of graphs H_1 and H_2 . Then

$$i_a(G) = i_a(H_1) + i_a(H_2) - 1.$$

If M_i is an i_a -set of H_i , j = 1, 2 and $\{x\} = M_1 \cap M_2$ then $M_1 \cup M_2$ is an i_a -set of the graph G;

(5) Let x be an i_a -bad vertex of graphs H_1 and H_2 . Then

$$i_a(G) = i_a(H_1) + i_a(H_2).$$

If M_i is a i_a -set of H_i , j = 1, 2 then $M_1 \cup M_2$ is an i_a -set of G.

Proof. (2): Let M be an i_a -set of G and $M_j = M \cap V(H_j), j = 1, 2$. If $x \in M$ then by Proposition 2.1 it follows $M_j \in MAS(x, H_j), j = 1, 2$. So that

$$i_a(G) = |M| = |M_1| + |M_2| - 1 \ge i_a(H_1) + i_a(H_2) - 1.$$

Clearly the equality holds if and only if M_i is an i_a -set of H_i , i = 1, 2.

(3): Let M be an i_a -set of G and $M_j = M \cap V(H_j), j = 1, 2$. Since x is i_a -bad, $x \notin M$. If $M_j \in MAS(H_j), j = 1, 2$ then

$$i_a(G) = |M| = |M_1| + |M_2| \ge i_a(H_1) + i_a(H_2).$$

If there are l and m such that $\{l, m\} = \{1, 2\}, M_l \in MAS(H_l), M_m \in$ $MAS(H_m - x)$ and $M_m \cup \{x\} \in MAS(H_m)$ then

$$i_a(G) = |M| = |M_l| + |M_m| \ge i_a(H_l) + i_a(H_m) - 1$$

and the equality holds if and only if M_l is an i_a -set of H_l , M_m is an i_a -set of $H_m - x$ and $M_m \cup \{x\}$ is an i_a -set of H_m . There is no other possibilities because of Proposition 2.3.

VLADMIR SAMODIVKIN

(1): Immediately follows by the proofs of (2) and (3).

(4): Let M_j be an i_a -set of H_j , j = 1, 2 and $\{x\} = M_1 \cap M_2$. It follows by Proposition 2.2 that $M_1 \cup M_2 \in MAS(G)$. Hence

$$i_a(G) \le |M_1 \cup M_2| = |M_1| + |M_2| - 1 = i_a(H_1) + i_a(H_2) - 1.$$

Now, by (1), $i_a(G) = i_a(H_1) + i_a(H_2) - 1$ and then $M_1 \cup M_2$ is an i_a -set of G.

(5): Assume $i_a(G) = i_a(H_1) + i_a(H_2) - 1$. If x is an i_a -bad vertex of G then by (3) there exists $m \in \{1, 2\}$ such that $i_a(H_m - x) = i_a(H_m) - 1$. Now, by Observation 1.1(5) x is an i_a -good vertex of H_m - a contradiction. If x is an i_a -good vertex of G, M is an i_a -set of G and $x \in M$ then by (2) we have $M \cap V(H_s)$ is an i_a -set of H_s , s = 1, 2. But then x is an i_a -good vertex of H_s , s = 1, 2. But then x is an i_a -good vertex of H_s , s = 1, 2 which is a contradiction. Hence, $i_a(G) \ge i_a(H_1) + i_a(H_2)$. Let M_j be an i_a -set of H_j , j = 1, 2. By Proposition 2.4, $M = M_1 \cup M_2 \in MAS(G)$. Hence, $i_a(H_1) + i_a(H_2) \le i_a(G) \le |M| = |M_1| + |M_2| = i_a(H_1) + i_a(H_2)$.

Example 3.4. Let H_1 and H_2 be the graphs defined as follows:

$$V(H_1) = \{x; x_{11}, \dots, x_{1m}; x_{21}, \dots, x_{2m}\},\$$

$$E(H_1) = \bigcup_{i=1}^m \{xx_{1i}, xx_{2i}, x_{1i}x_{2i}\},\$$

$$V(H_2) = \{x, y, z; y_{11}, \dots, y_{1n}; y_{21}, \dots, y_{2n}; z_{11}, \dots, z_{1p}; z_{21}, \dots, z_{2p}\},\$$

$$E(H_2) = \{xy, yz, zx\} \cup \bigcup_{i=1}^n \{yy_{1i}, yy_{2i}, y_{1i}y_{2i}\} \cup \bigcup_{j=1}^p \{zz_{1j}, zz_{2j}, z_{1j}z_{2j}\},\$$

where m, n and p be positive integers such that $m + 1 \leq n \leq p$. Now, let $G = H_1 \stackrel{x}{\circ} H_2$. It is easy to see that $i_a(H_1) = m + 1$, $i_a(H_2) = n + p + 2$ and $i_a(G) = 2m + n + p + 2$. Hence, $i_a(G) - i_a(H_1) - i_a(H_2) = m - 1$.

This example establish the following result.

Theorem 3.5. For each positive integer r there exists a pair of graphs H_1 and H_2 such that they have an unique vertex in common, say x, and

$$i_a(H_1 \circ H_2) - i_a(H_1) - i_a(H_2) > r.$$

References

- S. Bau and L. W. Beineke. The decycling number of graphs. Australas. J. Combin., 25:285–298, 2002.
- [2] L. W. Beineke and R. C. Vandell. Decycling graphs. J. Graph Theory, 25(1):59–77, 1997.
- [3] G. H. Fricke, T. W. Haynes, S. M. Hedetniemi, S. T. Hedetniemi, and R. C. Laskar. Excellent trees. Bull. Inst. Combin. Appl., 34:27–38, 2002.
- [4] S. M. Hedetniemi, S. T. Hedetniemi, and D. F. Rall. Acyclic domination. Discrete Math., 222(1-3):151–165, 2000.
- [5] E. Sampathkumar and P. S. Neeralagi. Domination and neighbourhood critical, fixed, free and totally free points. *Sankhyā Ser. A*, 54(Special Issue):403–407, 1992. Combinatorial mathematics and applications (Calcutta, 1988).

Received December 6, 2006.

 $\mathbf{6}$

DEPARTMENT OF MATHEMATICS, UACG, 1046 Sofia, Bulgaria. *E-mail address*: VLSAM_FTE@UACG.BG