ACYCLIC NUMBERS OF GRAPHS

VLADMIR SAMODIVKIN

Abstract

A subset S of vertices in a graph G is acyclic if the subgraph $\langle S\rangle$ induced by S contains no cycles. The lower acyclic number, $i_{a}(G)$, is the smallest number of vertices in a maximal acyclic set in G. The upper acyclic number, $\beta_{a}(G)$, is the maximum cardinality of an acyclic set in G. Let $\mu \in\left\{\beta_{a}, i_{a}\right\}$. Any maximal acyclic set S of a graph G with $|S|=\mu(G)$ is called a μ-set of G. A vertex x of a graph G is called: (i) μ-good if x belongs to some μ-set, (ii) μ-fixed if x belongs to every μ-set, (iii) μ-free if x belongs to some μ-set but not to all μ-sets, (iv) μ-bad if x belongs to no μ set. In this paper we deal with μ-good/bad/fixed/free vertices and present results on upper and lower acyclic numbers in graphs having cut-vertices.

1. Introduction

We consider finite, simple graphs. The vertex set and the edge set of a graph G is denoted by $V(G)$ and $E(G)$, respectively. The subgraph induced by $S \subseteq V(G)$ is denoted by $\langle S, G\rangle$. For a vertex x of $G, N(x, G)$ denote the set of all neighbors of x in G and $N[x, G]=N(x, G) \cup\{x\}$.

A subset of vertices S in a graph G is said to be acyclic if $\langle S, G\rangle$ contains no cycles. Note that the property of being acyclic is a hereditary property, that is, any subset of an acyclic set is itself acyclic. An acyclic set $S \subseteq V(G)$ is maximal if for every vertex $v \in V(G)-S$, the set $S \cup\{v\}$ is not acyclic. The lower acyclic number, $i_{a}(G)$, is the smallest number of vertices in a maximal acyclic set in G. The upper acyclic number, $\beta_{a}(G)$, is the maximum cardinality of an acyclic set in G. These two numbers were defined by S.M. Hedetniemi et al. in [4]. We denote by $\operatorname{MAS}(G)$ the set of all maximal acyclic sets of a graph G. For every vertex $x \in V(G)$, let $\operatorname{MAS}(x, G)=\{A \in \operatorname{MAS}(G): x \in A\}$.

Let $\mu(G)$ be a numerical invariant of a graph G defined in such a way that it is the minimum or maximum number of vertices of a set $S \subseteq V(G)$ with a given property P. A set with property P and with $\mu(G)$ vertices in G is called a μ-set of G. A vertex v of a graph G is defined to be

[^0](a) μ-good, if v belongs to some μ-set of G [3];
(b) μ-bad, if v belongs to no μ - set of G [3];
(c) μ-fixed if v belongs to every μ-set [5];
(d) μ-free if v belongs to some μ-set but not to all μ-sets [5].

For a graph G and $\mu \in\left\{i_{a}, \beta_{a}\right\}$ we define:

$$
\begin{aligned}
\mathbf{G}(G, \mu) & =\{x \in V(G): x \text { is } \mu \text {-good }\} ; \\
\mathbf{B}(G, \mu) & =\{x \in V(G): x \text { is } \mu \text {-bad }\} ; \\
\mathbf{F} i(G, \mu) & =\{x \in V(G): x \text { is } \mu \text {-fixed }\} ; \\
\mathbf{F} r(G, \mu) & =\{x \in V(G): x \text { is } \mu \text {-free }\} ; \\
\mathbf{V}_{0}(G, \mu) & =\{x \in V(G): \mu(G-x)=\mu(G)\} ; \\
\mathbf{V}_{-}(G, \mu) & =\{x \in V(G): \mu(G-x)<\mu(G)\} ; \\
\mathbf{V}_{+}(G, \mu) & =\{x \in V(G): \mu(G-x)>\mu(G)\} .
\end{aligned}
$$

Clearly, $\left\{\mathbf{V}_{-}(G, \mu), \mathbf{V}_{0}(G, \mu), \mathbf{V}_{+}(G, \mu)\right\}$ and $\{\mathbf{G}(G, \mu), \mathbf{B}(G, \mu)\}$ are partitions of $V(G)$, and $\{\mathbf{F} i(G, \mu), \mathbf{F} r(G, \mu)\}$ is a partition of $\mathbf{G}(G)$.

Observation 1.1. For any nontrivial graph G the following holds:
(1) $V(G)=\mathbf{V}_{-}\left(G, \beta_{a}\right) \cup \mathbf{V}_{0}\left(G, \beta_{a}\right)$;
(2) $\mathbf{V}_{-}\left(G, \beta_{a}\right)=\left\{x \in V(G): \beta_{a}(G-x)=\beta_{a}(G)-1\right\}=\mathbf{F} i\left(G, \beta_{a}\right)$;
(3) $\mathbf{V}_{-}\left(G, i_{a}\right)=\left\{x \in V(G): i_{a}(G-x)=i_{a}(G)-1\right\}$;
(4) $\mathbf{V}_{+}\left(G, i_{a}\right) \subseteq \mathbf{F} i\left(G, i_{a}\right)$;
(5) $\mathbf{B}\left(G, i_{a}\right) \subseteq \mathbf{V}_{0}\left(G, i_{a}\right)$.

Proof. (1): Let $v \in V(G)$ and M be a β_{a}-set of $G-v$. Then M be an acyclic set of G which implies $\beta_{a}(G-v) \leq \beta_{a}(G)$.
(2): Let $v \in V(G)$ and M_{1} be a β_{a}-set of G. First assume v be no β_{a}-fixed. Hence the set M_{1} may be chosen so that $v \notin M_{1}$ and then M_{1} is an acyclic set of $G-v$ implying $\beta_{a}(G)=\left|M_{1}\right| \leq \beta_{a}(G-v)$. Now by (1) it follows $\beta_{a}(G)=\beta_{a}(G-v)$.

Let v be β_{a}-fixed. Then each β_{a}-set of $G-v$ is an acyclic set of G but is no β_{a}-set of G. Hence $\beta_{a}(G)>\beta_{a}(G-v)$. Since $M_{1}-\{v\}$ is an acyclic set of $G-v$ then $\beta_{a}(G-v) \geq\left|M_{1}-\{v\}\right|=\beta_{a}(G)-1$.
(3), (4) and (5): Let $v \in V(G), M_{2}$ be an i_{a}-set of G and $v \notin M_{2}$. Then $M_{2} \in \operatorname{MAS}(G-v)$ implying $i_{a}(G) \geq i_{a}(G-v)$. Now let M_{3} be an i_{a}-set of $G-v$. Then either M_{3} or $M_{3} \cup\{v\}$ is a maximal acyclic set of G. Hence $i_{a}(G-v)+1 \geq i_{a}(G)$ and if the equality holds then v is i_{a}-good.

A set $D \subseteq V(G)$ is called a decycling set if $V(G)-D$ is acyclic. A decycling set $D \subseteq V(G)$ is a minimal decycling set if no proper subset $D_{1} \subset D$ is a decycling set.

The minimum order of a decycling set of G is called the decycling number of G and is denoted by $\nabla(G)$ (see [2]). Note that the set A is in $\operatorname{MAS}(G)$ if and only if $V(G)-A$ is a minimal decycling set. Hence $\nabla(G)+\beta_{a}(G)=|V(G)|$. For a survey of results and open problems on $\nabla(G)$ see [1]. In [2] the decycling
of combinations of two graphs were considered, namely the sum, the join and the Cartesian product. Let G_{1} and G_{2} be connected graphs, both of order at least two, and let they have an unique vertex in common, say x. Then a coalescence $G_{1} \stackrel{x}{\circ} G_{2}$ is the graph $G_{1} \cup G_{2}$. Clearly, x is a cut-vertex of $G_{1} \stackrel{x}{\circ} G_{2}$. In this paper we present results on maximal acyclic sets, lower acyclic number and upper acyclic number in a coalescence of graphs.

2. Maximal acyclic Sets

In this section we begin an investigation of maximal acyclic sets in graphs having cut-vertices.

Proposition 2.1. Let $G=H_{1} \stackrel{x}{\circ} H_{2}, M \in \operatorname{MAS}(x, G)$ and $M_{j}=M \cap V\left(H_{j}\right)$, $j=1,2$. Then $M_{j} \in \operatorname{MAS}\left(x, H_{j}\right)$ for $j=1,2$.

Proof. Clearly M_{j} is an acyclic set of $H_{j}, j=1,2$. Assume $M_{i} \notin \operatorname{MAS}\left(x, H_{i}\right)$ for some $i \in\{1,2\}$. Then there is a vertex $u \in V\left(H_{i}\right)-M_{i}$ such that $M_{i} \cup\{u\}$ is an acyclic set in H_{i}. But then $M \cup\{u\}$ is an acyclic set of G - a contradiction with the maximality of M.

Proposition 2.2. Let $G=H_{1} \stackrel{x}{\circ} H_{2}, M_{j} \in \operatorname{MAS}\left(x, H_{j}\right)$ for $j=1,2$. Then $M=M_{1} \cup M_{2} \in \operatorname{MAS}(x, G)$.
Proof. Since x is a cut-vertex then M is an acyclic set of G. If $M \notin \operatorname{MAS}(G)$ then there is $u \in V(G-M)$ such that $M \cup\{u\}$ is an acyclic set of G. Let without loss of generalities $u \in V\left(H_{1}\right)$. Then $M_{1} \cup\{u\}$ is an acyclic set of H_{1} contradicting $M_{1} \in \operatorname{MAS}\left(H_{1}\right)$. Hence $M \in \operatorname{MAS}(G)$.
Proposition 2.3. Let $G=H_{1} \stackrel{x}{\circ} H_{2}, M \in \operatorname{MAS}(G), x \notin M$ and $M_{j}=$ $M \cap V\left(H_{j}\right), j=1,2$. Then one of the following holds:
(1) $M_{j} \in \operatorname{MAS}\left(H_{j}\right)$ for $j=1,2$;
(2) there are l and m such that $\{l, m\}=\{1,2\}, M_{l} \in \operatorname{MAS}\left(H_{l}\right), M_{m} \in$ $\operatorname{MAS}\left(H_{m}-x\right)$ and $M_{m} \cup\{x\} \in \operatorname{MAS}\left(H_{m}\right)$.
Proof. Clearly M_{i} is an acyclic set of $H_{i}, i=1,2$. Assume there be $j \in\{1,2\}$ such that $M_{j} \notin \operatorname{MAS}\left(H_{j}\right)$, say $j=1$. If $M_{1} \notin \operatorname{MAS}\left(H_{1}-x\right)$ then there is $v \in V\left(H_{1}-x\right), v \notin M_{1}$ such that $M_{1} \cup\{v\}$ is an acyclic set of $H_{1}-x$ and since $x \notin M$ then $M \cup\{v\}$ is an acyclic set of G - a contradiction. So, $M_{1} \in \operatorname{MAS}\left(H_{1}-x\right)$. Since $M_{1} \notin \operatorname{MAS}\left(H_{1}\right)$ then there is $u \in V\left(H_{1}-M_{1}\right)$ such that $M_{1} \cup\{u\}$ is an acyclic set of H_{1}. Since $M_{1} \in \operatorname{MAS}\left(H_{1}-x\right)$ then $u=x$. Hence $M_{1} \cup\{x\} \in \operatorname{MAS}\left(H_{1}\right)$. Suppose $M_{2} \notin \operatorname{MAS}\left(H_{2}\right)$. Then $M_{2} \cup\{x\} \in \operatorname{MAS}\left(H_{2}\right)$ and by Proposition $2.2, M \cup\{x\} \in \operatorname{MAS}(G)$ contradicting $M \in \operatorname{MAS}(G)$.
Proposition 2.4. Let $G=H_{1} \stackrel{x}{\circ} H_{2}, M_{j} \in \operatorname{MAS}\left(H_{j}\right)$ for $j=1,2$ and $x \notin$ $M=M_{1} \cup M_{2}$. Then $M \in \operatorname{MAS}(H)$.
Proof. The proof is analogous to the proof of Proposition 2.2.

Proposition 2.5. Let $G=H_{1} \stackrel{x}{\circ} H_{2}, M_{1} \in \operatorname{MAS}\left(x, H_{1}\right), M_{2} \in \operatorname{MAS}\left(H_{2}\right)$ and $x \notin M_{2}$. Then $M=M_{1} \cup M_{2}$ is no acyclic set of G and there is a set M_{3} such that $M_{1}-\{x\} \subseteq M_{3} \in \operatorname{MAS}\left(H_{1}-x\right)$ and $M_{3} \cup M_{2} \in \operatorname{MAS}(G)$.
Proof. Since $M_{1}-\{x\}$ is an acyclic set of $H_{1}-x$ then there is $M_{3} \in \operatorname{MAS}\left(H_{1}-x\right)$ with $M_{1}-\{x\} \subseteq M_{3}$. Hence $U=M_{3} \cup M_{2}$ is an acyclic set of G. Assume $U \notin \operatorname{MAS}(G)$. Then there is $v \in V(G)-U$ such that $U \cup\{v\}$ is an acyclic set of G. Now either $M_{3} \cup\{u\}$ is an acyclic set of $H_{1}-x$ or $M_{2} \cup\{u\}$ is an acyclic set of H_{2} depending on whether $u \in V\left(H_{1}-x\right)$ or $u \in V\left(H_{2}\right)$. In both cases we have a contradiction.

3. β_{a}-SETS AND i_{a}-SETS

In this section we present some results concerning the lower acyclic number and the upper acyclic number of graphs having cut-vertices.

Theorem 3.1. Let $G=H_{1} \stackrel{x}{\circ} H_{2}$. Then $\beta_{a}\left(H_{1}\right)+\beta_{a}\left(H_{2}\right)-1 \leq \beta_{a}(G) \leq$ $\beta_{a}\left(H_{1}\right)+\beta_{a}\left(H_{2}\right)$. Moreover, $\beta_{a}(G)=\beta_{a}\left(H_{1}\right)+\beta_{a}\left(H_{2}\right)$ if and only if x is no β_{a}-fixed vertex of $H_{i}, i=1,2$.

Proof. We need the following claims:
Claim 1. If x is a β_{a}-fixed vertex of G then $\beta_{a}(G) \leq \beta_{a}\left(H_{1}\right)+\beta_{a}\left(H_{2}\right)-1$.
Let M be a β_{a}-set of G. Then

$$
\beta_{a}(G)=|M|=\left|M \cap V\left(H_{1}\right)\right|+\left|M \cap V\left(H_{2}\right)\right|-1 \leq \beta_{a}\left(H_{1}\right)+\beta_{a}\left(H_{2}\right)-1 .
$$

Claim 2. If x is no β_{a}-fixed vertex of G then $\beta_{a}(G) \leq \beta_{a}\left(H_{1}\right)+\beta_{a}\left(H_{2}\right)$.
Let M be a β_{a}-set of G such that $x \notin M$. Hence

$$
\beta_{a}(G)=|M|=\left|M \cap V\left(H_{1}\right)\right|+\left|M \cap V\left(H_{2}\right)\right| \leq \beta_{a}\left(H_{1}\right)+\beta_{a}\left(H_{2}\right) .
$$

Claim 3. If x is no β_{a}-fixed vertex of $H_{i}, i=1,2$ then $\beta_{a}(G) \geq \beta_{a}\left(H_{1}\right)+\beta_{a}\left(H_{2}\right)$.
Let M_{i} be a β_{a}-set of H_{i} and $x \notin M_{i}, i=1,2$. Then $M=M_{1} \cup M_{2}$ is an acyclic set of G and $\beta_{a}(G) \geq|M|=\left|M_{1}\right|+\left|M_{2}\right|=\beta_{a}\left(H_{1}\right)+\beta_{a}\left(H_{2}\right)$.

Claim 4. If x is β_{a}-fixed vertex of H_{i} for some $i \in\{1,2\}$ then

$$
\beta_{a}(G) \geq \beta_{a}\left(H_{1}\right)+\beta_{a}\left(H_{2}\right)-1 .
$$

Let without loss of generalities $i=1$. Let M_{j} be a β_{a}-set of $H_{j}, j=1,2$. Then $M=\left(M_{1}-\{x\}\right) \cup M_{2}$ is an acyclic set of G and

$$
\beta_{a}(G) \geq|M|=\left|M_{1}\right|-1+\left|M_{2}\right|=\beta_{a}\left(H_{1}\right)+\beta_{a}\left(H_{2}\right)-1 .
$$

By the above claims it immediately follows

$$
\begin{equation*}
\beta_{a}\left(H_{1}\right)+\beta_{a}\left(H_{2}\right)-1 \leq \beta_{a}(G) \leq \beta_{a}\left(H_{1}\right)+\beta_{a}\left(H_{2}\right) \tag{1}
\end{equation*}
$$

If x is no β_{a}-fixed vertex of $H_{i}, i=1,2$ then by (1) and Claim 3 it follows $\beta_{a}(G)=\beta_{a}\left(H_{1}\right)+\beta_{a}\left(H_{2}\right)$. Now, let without loss of generalities x is a β_{a}-fixed
vertex of H_{1}. If x is a β_{a}-fixed vertex of G then by Claim 1 and (1) it follows $\beta_{a}(G)=\beta_{a}\left(H_{1}\right)+\beta_{a}\left(H_{2}\right)-1$. Assume x is no β_{a}-fixed vertex of G. Then there is a β_{a}-set of G with $x \notin M$. Hence

$$
\begin{aligned}
& \beta_{a}(G)=|M|=\left|M \cap V\left(H_{1}\right)\right|+\left|M \cap V\left(H_{2}\right)\right| \\
& \quad \leq \beta_{a}\left(H_{1}-x\right)+\beta_{a}\left(H_{2}\right)=\left(\beta_{a}\left(H_{1}\right)-1\right)+\beta_{a}\left(H_{2}\right)
\end{aligned}
$$

because of Observation 1.1 (2).
Corollary 3.2. Let $G=H_{1} \stackrel{x}{\circ} H_{2}$ and x is a β_{a}-fixed vertex of G. Then $\beta_{a}(G)=\beta_{a}\left(H_{1}\right)+\beta_{a}\left(H_{2}\right)-1$.

Theorem 3.3. Let $G=H_{1} \stackrel{x}{\circ} H_{2}$. Then:
(1) $i_{a}(G) \geq i_{a}\left(H_{1}\right)+i_{a}\left(H_{2}\right)-1$;
(2) Let x be an i_{a}-good vertex of $G, i_{a}(G)=i_{a}\left(H_{1}\right)+i_{a}\left(H_{2}\right)-1$, let M be an i_{a}-set of G and $x \in M$. Then $M \cap V\left(H_{j}\right)$ is an i_{a}-set of H_{j}, $j=1,2$;
(3) Let x be an i_{a}-bad vertex of the graph $G, i_{a}(H)=i_{a}\left(H_{1}\right)+i_{a}\left(H_{2}\right)-1$ and let M be an i_{a}-set of G. Then there are l, m such that $\{l, m\}=\{1,2\}$, $M \cap V\left(H_{l}\right)$ is a i_{a}-set of $H_{l}, M \cap V\left(H_{m}\right)$ is an i_{a}-set of $H_{m}-x$, $i_{a}\left(H_{m}-x\right)=i_{a}\left(H_{m}\right)-1$ and $\left(M \cap V\left(H_{m}\right)\right) \cup\{x\}$ is an i_{a}-set of H_{m};
(4) Let x be an i_{a}-good vertex of graphs H_{1} and H_{2}. Then

$$
i_{a}(G)=i_{a}\left(H_{1}\right)+i_{a}\left(H_{2}\right)-1 .
$$

If M_{j} is an i_{a}-set of $H_{j}, j=1,2$ and $\{x\}=M_{1} \cap M_{2}$ then $M_{1} \cup M_{2}$ is an i_{a}-set of the graph G;
(5) Let x be an i_{a}-bad vertex of graphs H_{1} and H_{2}. Then

$$
i_{a}(G)=i_{a}\left(H_{1}\right)+i_{a}\left(H_{2}\right)
$$

If M_{j} is a i_{a}-set of $H_{j}, j=1,2$ then $M_{1} \cup M_{2}$ is an i_{a}-set of G.
Proof. (2): Let M be an i_{a}-set of G and $M_{j}=M \cap V\left(H_{j}\right), j=1,2$. If $x \in M$ then by Proposition 2.1 it follows $M_{j} \in \operatorname{MAS}\left(x, H_{j}\right), j=1,2$. So that

$$
i_{a}(G)=|M|=\left|M_{1}\right|+\left|M_{2}\right|-1 \geq i_{a}\left(H_{1}\right)+i_{a}\left(H_{2}\right)-1 .
$$

Clearly the equality holds if and only if M_{i} is an i_{a}-set of $H_{i}, i=1,2$.
(3): Let M be an i_{a}-set of G and $M_{j}=M \cap V\left(H_{j}\right), j=1,2$. Since x is i_{a}-bad, $x \notin M$. If $M_{j} \in \operatorname{MAS}\left(H_{j}\right), j=1,2$ then

$$
i_{a}(G)=|M|=\left|M_{1}\right|+\left|M_{2}\right| \geq i_{a}\left(H_{1}\right)+i_{a}\left(H_{2}\right) .
$$

If there are l and m such that $\{l, m\}=\{1,2\}, M_{l} \in \operatorname{MAS}\left(H_{l}\right), M_{m} \in$ $\operatorname{MAS}\left(H_{m}-x\right)$ and $M_{m} \cup\{x\} \in \operatorname{MAS}\left(H_{m}\right)$ then

$$
i_{a}(G)=|M|=\left|M_{l}\right|+\left|M_{m}\right| \geq i_{a}\left(H_{l}\right)+i_{a}\left(H_{m}\right)-1
$$

and the equality holds if and only if M_{l} is an i_{a}-set of H_{l}, M_{m} is an i_{a}-set of $H_{m}-x$ and $M_{m} \cup\{x\}$ is an i_{a}-set of H_{m}. There is no other possibilities because of Proposition 2.3.
(1): Immediately follows by the proofs of (2) and (3).
(4): Let M_{j} be an i_{a}-set of $H_{j}, j=1,2$ and $\{x\}=M_{1} \cap M_{2}$. It follows by Proposition 2.2 that $M_{1} \cup M_{2} \in \operatorname{MAS}(G)$. Hence

$$
i_{a}(G) \leq\left|M_{1} \cup M_{2}\right|=\left|M_{1}\right|+\left|M_{2}\right|-1=i_{a}\left(H_{1}\right)+i_{a}\left(H_{2}\right)-1 .
$$

Now, by (1), $i_{a}(G)=i_{a}\left(H_{1}\right)+i_{a}\left(H_{2}\right)-1$ and then $M_{1} \cup M_{2}$ is an i_{a}-set of G.
(5): Assume $i_{a}(G)=i_{a}\left(H_{1}\right)+i_{a}\left(H_{2}\right)-1$. If x is an i_{a}-bad vertex of G then by (3) there exists $m \in\{1,2\}$ such that $i_{a}\left(H_{m}-x\right)=i_{a}\left(H_{m}\right)-1$. Now, by Observation 1.1(5) x is an i_{a}-good vertex of H_{m} - a contradiction. If x is an i_{a}-good vertex of G, M is an i_{a}-set of G and $x \in M$ then by (2) we have $M \cap V\left(H_{s}\right)$ is an i_{a}-set of $H_{s}, s=1,2$. But then x is an i_{a}-good vertex of H_{s}, $s=1,2$ which is a contradiction. Hence, $i_{a}(G) \geq i_{a}\left(H_{1}\right)+i_{a}\left(H_{2}\right)$. Let M_{j} be an i_{a}-set of $H_{j}, j=1,2$. By Proposition 2.4, $M=M_{1} \cup M_{2} \in \operatorname{MAS}(G)$. Hence, $i_{a}\left(H_{1}\right)+i_{a}\left(H_{2}\right) \leq i_{a}(G) \leq|M|=\left|M_{1}\right|+\left|M_{2}\right|=i_{a}\left(H_{1}\right)+i_{a}\left(H_{2}\right)$.

Example 3.4. Let H_{1} and H_{2} be the graphs defined as follows:

$$
\begin{aligned}
& V\left(H_{1}\right)=\left\{x ; x_{11}, \ldots, x_{1 m} ; x_{21}, \ldots, x_{2 m}\right\}, \\
& E\left(H_{1}\right)=\cup_{i=1}^{m}\left\{x x_{1 i}, x x_{2 i}, x_{1 i} x_{2 i}\right\}, \\
& V\left(H_{2}\right)=\left\{x, y, z ; y_{11}, \ldots, y_{1 n} ; y_{21}, \ldots, y_{2 n} ; z_{11}, \ldots, z_{1 p} ; z_{21}, \ldots, z_{2 p}\right\}, \\
& E\left(H_{2}\right)=\{x y, y z, z x\} \cup \cup_{i=1}^{n}\left\{y y_{1 i}, y y_{2 i}, y_{1 i} y_{2 i}\right\} \cup \cup_{j=1}^{p}\left\{z z_{1 j}, z z_{2 j}, z_{1 j} z_{2 j}\right\},
\end{aligned}
$$

where m, n and p be positive integers such that $m+1 \leq n \leq p$. Now, let $G=H_{1} \stackrel{x}{\circ} H_{2}$. It is easy to see that $i_{a}\left(H_{1}\right)=m+1, i_{a}\left(H_{2}\right)=n+p+2$ and $i_{a}(G)=2 m+n+p+2$. Hence, $i_{a}(G)-i_{a}\left(H_{1}\right)-i_{a}\left(H_{2}\right)=m-1$.

This example establish the following result.
Theorem 3.5. For each positive integer r there exists a pair of graphs H_{1} and H_{2} such that they have an unique vertex in common, say x, and

$$
i_{a}\left(H_{1} \stackrel{x}{\circ} H_{2}\right)-i_{a}\left(H_{1}\right)-i_{a}\left(H_{2}\right)>r .
$$

References

[1] S. Bau and L. W. Beineke. The decycling number of graphs. Australas. J. Combin., 25:285-298, 2002.
[2] L. W. Beineke and R. C. Vandell. Decycling graphs. J. Graph Theory, 25(1):59-77, 1997.
[3] G. H. Fricke, T. W. Haynes, S. M. Hedetniemi, S. T. Hedetniemi, and R. C. Laskar. Excellent trees. Bull. Inst. Combin. Appl., 34:27-38, 2002.
[4] S. M. Hedetniemi, S. T. Hedetniemi, and D. F. Rall. Acyclic domination. Discrete Math., 222(1-3):151-165, 2000.
[5] E. Sampathkumar and P. S. Neeralagi. Domination and neighbourhood critical, fixed, free and totally free points. Sankhy \bar{a} Ser. A, 54(Special Issue):403-407, 1992. Combinatorial mathematics and applications (Calcutta, 1988).

Department of Mathematics, UACG,
1046 Sofia,
Bulgaria.
E-mail address: VLSAM_FTE@UACG.BG

[^0]: 2000 Mathematics Subject Classification. 05C69.
 Key words and phrases. acyclic numbers; i_{a} / β_{a}-fixed/free/bad/good vertex.

