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ON FINITE LINEAR GROUPS STABLE UNDER GALOIS
OPERATION

EKATERINA KHREBTOVA AND DMITRY MALININ

Abstract. We consider a Galois extension E/F of characteristic 0 and re-
alization fields of finite abelian subgroups G ⊂ GLn(E) of a given exponent
t. We assume that G is stable under the natural operation of the Galois
group of E/F . It is proven that under some reasonable restrictions for n
any E can be a realization field of G, while if all coefficients of matrices in
G are algebraic integers there are only finitely many fields E of realization
having a given degree d for prescribed integers n and t or prescribed n and
d. Some related results and conjectures are considered.

1. Introduction

In this paper we continue studying some arithmetic problems [4] for repre-
sentations of finite groups over algebraic number fields and arithmetic rings
under the ground field extensions.

We consider some Galois extension E/F of finite degree d with the Galois
group Γ for a field F of characteristic 0 and a finite abelian subgroup G ⊂
GLn(E) of the given exponent t, where we assume that G is stable under the
natural coefficient-wise Γ-operation.

Throughout the paper OE is the maximal order of E and F (G) denotes a
field that is obtained via adjoining to F all matrix coefficients of all matrices
g ∈ G.

The main objective of this paper is to prove the existence of abelian Γ-stable
subgroups G such that F (G) = E provided some reasonable restrictions for the
fixed normal extension E/F and integers n, t, d hold and to study the interplay
between the existence of Γ-stable groups G over algebraic number fields and
over their rings of integers.
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The results related to the Galois stability of finite groups in the situation
similar to ours arise in the theory of definite quadratic forms and Galois coho-
mologies of certain arithmetic groups if F is an algebraic number field and G
is realized over its maximal order ([1], see also [12]). In our context we study
whether a given field E normal over F can be realized as a field E = F (G)
in both cases G ⊂ GLn(E) and G ⊂ GLn(OE), and if this is so what are the
possible orders n of matrix realizations and the structure of G. Some similar
questions for Γ-stable orders in simple algebras are considered in [10], see also
[11] for some applications.

We give a positive answer to the first question: we prove that any finite
normal field extension E/F can be obtained as F (G)/F if n ≥ φE(t)d where
φE(t) = [E(ζt) : E] is the generalized Euler function and ζt is a primitive
t-root of 1. An explicit construction of these fields is given in Theorems 2 and
in section 3. In fact, we construct some Galois algebras in the sense of [3],
and we establish the lower bounds for their possible orders n. We show (see
Proposition 1 in section 2) that the restrictions for the given integers n, t, and
d in Theorem 2 can not be improved.

The situation becomes different if E is an algebraic number field and all
matrix coefficients of g ∈ G are algebraic integers.

The existence of any Galois stable subgroups G ⊂ GLn(OE) such that
F (G) 6= F is a rather subtle question. In particular, for F = Q all fields
F (G) whose discriminant is divisible by an odd prime must contain non-trivial
roots of 1 [2, 8, 6].

Our results have some applications to positive definite quadratic lattices, see
section 2. Note that some interesting results on orthogonal decompositions of
integral lattices can be found in [5].

Notations

We denote C, R and Q the fields of complex, real and rational numbers. Z
is the ring of rational integers. GLn(R) denotes the general linear group over a
ring R. [E : F ] denotes the degree of the field extension E/F . Throughout this
paper we write Γ for Galois groups, σ, γ ∈ Γ for the elements of Γ. Γ(p) ⊂ Γ
denotes the inertia subgroup of a prime ideal p. Finite groups are usually
denoted by capital letters G, H, and their elements by small letters, e.g. g ∈ G,
h ∈ H. We write ζt for a primitive t-root of 1. We denote by φK(t) = [K(ζt) :
K] the generalized Euler function for a field K. Im stands for a unit m ×m-
matrix. det M is the determinant of a matrix M . If G is a finite linear group,
F (G) stands for a field obtained by adjoining to F all matrix coefficients of
all matrices g ∈ G. For Γ acting on G and any σ ∈ Γ and g ∈ G we write
gσ for the image of g under σ-operation. dimK A denotes the dimension of
K-algebra A over the field K. Mn(R) is the full matrix algebra over a ring R.
OK denotes the maximal order of a number field K.
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2. Integral representations stable under the Galois operation

Let K be a totally real algebraic number field with the maximal order OK ,
G an algebraic subgroup of the general linear group GLn(C) defined over the
field of rationals Q. Because of the embedding of G in GLn(C) the intersection
G(OK) of GLn(OK) and G(K), the subgroup of K-rational points of G, can
be considered as the group of OK-points of an affine group scheme over Z, the
ring of rational integers. Assume G to be definite in the following sense: the
real Lie group G(R) is compact. The problem which is our starting point is
the question: Does the condition G(OK) = G(Z) always hold true?

This problem is easily reduced to the following conjecture from the repre-
sentation theory: Let K/Q be a finite Galois extension of the rationals and
G ⊂ GLn(OK) be a finite subgroup stable under the natural operation of the
Galois group Γ := Gal(K/Q). Then there is the following

Conjecture 1. If K is totally real, then G ⊂ GLn(Z).

There are several reformulations and generalizations of the conjecture. Con-
sider an arbitrary not necessarily totally real finite Galois extension K of the
rationals Q and a free Z-module M of rank n with basis m1, . . . , mn. The
group GLn(OK) acts in a natural way on OK ⊗M ∼= ⊕n

i=1 OKmi. The finite
group G ⊂ GLn(OK) is said to be of A-type, if there exists a decomposition

M =
⊕k

i=1 Mi such that for every g ∈ G there exists a permutation Π(g) of
{1, 2, . . . , k} and roots of unity εi(g) such that εi(g)gMi = MΠ(g)i for 1 ≤ i ≤ k.
The following conjecture generalizes (and would imply) conjecture 1:

Conjecture 2. Any finite subgroup of GLn(OK) stable under the Galois group
Γ = Gal(K/Q) is of A-type.

For totally real fields K conjecture 2 reduces to conjecture 1.
Both conjectures are true in the case of Galois field extension K/Q with

odd discriminant. Also some partial answers are given in the case of field
extensions K/Q which are unramified outside 2.

Let F (G) denote the field obtained via adjoining to F the matrix coefficients
of all matrices g ∈ G. The following result was obtained in [2] (see also [8], [6]
for the case of totally real fields).

The case F = Q, the field of rationals, is specially interesting. The fol-
lowing theorem was proven in [2] using the classification of finite flat group
schemes over Z annihilated by a prime p obtained by V. A. Abrashkin and
J.-M. Fontaine:

Theorem 1. Let K/Q be a normal extension with Galois group Γ, and let
G ⊂ GLn(OK) be a finite Γ-stable subgroup. Then G ⊂ GLn(OKab

) where Kab

is the maximal abelian over Q subfield of K.

Similar results for totally real extensions K/Q were considered earlier. In
this case there are some interesting arithmetic applications to positive definite
quadratic lattices and Galois cohomology.
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Let us formulate a criterion for the existence of an integral realization of an
abelian group G with properties introduced above. This theorem has interest-
ing applications in [2], and [8].

Let E, L be finite extensions of a number field F . Let O′
E, O′

F , O′
L be

semilocal rings that are obtained by intersection of valuation rings of all ram-
ified prime ideals in the rings OE, OF , OL. If F = Q we can define OF to be
the intersection of F and OE. Let w1, w2, . . . , wd be a basis of O′

E over O′
F ,

and let D be a square root of the discriminant of this basis. By the definition
D2 = det[TrE/F (wiwj)]ij. It is known that D = det[wσk

m ]k,m. Let us suppose
that some matrix g ∈ GLn(E) has order t (gt = In) and all Γ-conjugates
gγ, γ ∈ Γ generate a finite subgroup G ⊂ GLn(E) of exponent t. Let σ1 = 1,
σ2, . . . , σd denote all automorphisms of the Galois group Γ of E over F . Assume
that L = E(ζ(1), ζ(2), . . . , ζ(n)) where ζ(1), ζ(2), . . . , ζ(n) are the eigenvalues of the
matrix g. We shall reserve the same notations for certain fixed extensions of σi

to L. Automorphisms of L over F will be denoted σ1, σ2, . . . , σr, r > d. The-
orem 2 below implies the existence of the group G provided n ≥ φE(t)[E : F ].
Let E = F (G) be obtained by adjoining to F all coefficients of all g ∈ G.
For an appropriate set of d eigenvalues ζ(1), ζ(2), . . . , ζ(d) which depends on the
primitive idempotents of algebra LG the following Theorem is true (see also
[2]):

Theorem A. Let G ⊂ GLn(E) be irreducible under GLn(F )-conjugation.
Then G is conjugate in GLn(F ) to a subgroup of GLn(O′

E) if and only if all
determinants

Dk = det

∣∣∣∣∣∣∣∣∣

w1 . . . wk−1 ζ(1) wk+1 . . . wd

wσ2
1 . . . wσ2

k−1 ζσ2

(2) wσ2
k+1 . . . wσ2

d
...

wσd
1 . . . wσd

k−1 ζσd

(t) wσd
k+1 . . . wσd

d

∣∣∣∣∣∣∣∣∣
are divisible by D in the ring O′

L.

In this theorem G is Γ-stable and generated by g and all gγ, γ ∈ Γ but this
condition is not very restrictive for 2 reasons. Firstly, any Γ-stable subgroup
H ∈ GLn(E) contains subgroups like G. And by Theorem 3 below, if H is a
minimal subgroup of exponent t with the property E = F (H), then H is just
of the form given in Theorem A.

The proof of Theorem A is constructive. It is based on the commutativity
of the L-algebra LG, the L-span of G, and uses a system of linear equations
that arises from simultaneous diagonalization of commuting matrices

g =
d∑

i=1

wiBi, g
σ =

d∑
i=1

wσ
i Bi, σ ∈ Γ,

whose solutions are the eigenvalues of commuting matrices Bi, i = 1, 2, . . . , d.
In fact, we prove that the eigenvalues of B1, B2, . . . , Bd are just the elements

of the set {(DjD
−1)γ, γ are varying in the Galois group of L/F}.
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We also use the fact that each semisimple matrix B ∈ GLn(F ) is conjugate
in GLn(F ) to a matrix from GLn(O′

F ) if and only if all its eigenvalues are
contained in O′

L (see [2, 8]):

Lemma 1. 1) Let all eigenvalues λi, i = 1, 2, . . . , n of a semisimple matrix
B ⊂ GLn(F ) be contained in the ring O′

L for some field L ⊃ F . Then B is
conjugate in GLn(F ) to a matrix that is contained in GLn(O′

F ).
2) Conversely, if a matrix B is contained in GLn(O′

F ), then its eigenvalues
are contained in O′

L.

We note that the reduction to the case of an irreducible group G is motivated
by the following easy lemma [2, 8]:

Lemma 2. If G ⊂ GLn(E1) is a finite Γ-stable subgroup which has GLn(F1)-
irreducible components G1, G2, . . . , Gr, and E1, F1 are rings having quotient
fields E and F respectively, then F (G) is the composite of fields F (G1), F (G2),
. . . , F (Gr).

Theorem A can be used in the problem of existence for Γ-stable subgroups
G ⊂ GLm(O′

E) with the property F (G) 6= F for some integer m. The following
Corollary of Theorem A reduces the problem of existence for Γ-stable groups
G to the case of GLn(F )-irreducible G.

Theorem A. If there is an abelian Γ-stable subgroup G ⊂ GLm(O′
E) gener-

ated by gγ, γ ∈ Γ such that E = F (G) 6= F as above, then GLm(F )-irreducible
components Gi ⊂ GLmi

(E), i = 1, . . . , k of G are conjugate in GLmi
(F ) to

subgroups G′
i ⊂ GLmi

(O′
E) such that E = F (G1)F (G2) . . . F (Gk). In particu-

lar, F (Gi) 6= F for some indices i.

Proof of Theorem B. If G ⊂ GLm(O′
E) is a group of exponent t and

g = B1w1 + B2w2 + · · ·+ Bdwd

for a basis w1, . . . , wd of O′
E over O′

F , then Bi ∈ Mm(O′
F ), and it follows

from Lemma 1 that the eigenvalues of Bj are contained in O′
L. But eigen-

values are preserved under conjugation, so the latter claim is also true for
all components Gi. We can apply Theorem A to Gi, i = 1, . . . , k. It follows
that Gi are conjugate to subgroups G′

i ⊂ GLmi
(O′

E). Now, Lemma 2 implies
E = F (G1)F (G2) . . . F (Gk). This completes the proof of Theorem B. ¤
Theorem A. Let E/F be a normal extension of number fields with Galois
group Γ. Let G ⊂ GLn(E) be an abelian Γ-stable subgroup of exponent t
generated by g = B1w1 +B2w2 + · · ·+Bdwd and all matrices gγ, γ ∈ Γ, and let
E = F (G). Then G is conjugate in GLn(F ) to G ⊂ GLn(O′

F ) if and only if all
eigenvalues of matrices Bi, i = 1, . . . , d are contained in O′

L, where L = E(ζt).

Proof of Theorem C. Let

C−1GC =

∣∣∣∣∣∣

G1 ∗
. . .

0 Gk

∣∣∣∣∣∣
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for C ∈ GLn(F ) and irreducible components Gi ⊂ GLni
(E), i = 1, . . . , k.

Then

C−1gC =

∣∣∣∣∣∣

g1 ∗
. . .

0 gk

∣∣∣∣∣∣
= B′

1w1 + B′
2w2 + · · ·+ B′

dwd

for B′
i = C−1BiC. Let us consider F -algebra A generated by all B′

i, i = 1, . . . , d
over F . Since A is semisimple, it is completely reducible. It follows that
matrices B′

i are simultaneously conjugate in GLn(F ) to the block-diagonal
form. Therefore, G is conjugate in GLn(F ) to a direct sum of its irreducible
components Gi. We can apply Theorem A to each of them. Theorem B
implies that each Gi is conjugate in GLni

(F ) to G′
i ⊂ GLni

(O′
F ) if and only

if all eigenvalues of matrices B′
i, i = 1, . . . , d are contained in O′

Li
, where Li =

F (Gi)(ζt). But F (G) = F (G1)F (G2) . . . F (Gk) by Lemma 2, and so L =
L1L2 . . . Lk. This completes the proof of Theorem C. ¤
Remark. Theorems A, B, C remain true for some other Dedekind subrings
R ⊂ L. They can also be modified for the rings of integers OE, OF and OL

provided OE and OL have OF -basises (the latter is always true for F = Q).

The approach to describe all Γ-stable matrix groups up to GLn(R)-conju-
gation for certain Dedekind rings R ⊂ E can be based on either of Theorems
A, B, C for the existence of integral realization of the given Γ-stable subgroup
G ⊂ GLn(E). So, if we have a description of G up to GLn(F )-conjugation, we
can also determine whether G is GLn(F )-conjugate to a subgroup of GLn(R)
for any fixed n,E and F . In fact, we have an algorithm to answer the question:
for a given field extension E/F is it possible to find a Γ-stable subgroup G ⊂
GLn(R) which is not contained in GLn(F )? Theorem A and Theorem B reduce
this question to the case of GLn(F )−irreducible G.

Actually, for a given Galois extension E/F having Galois group Γ and given t
and n with φE(t)[E : F ] ≤ n Theorem 2 (see section 4) provides a construction
of a Γ-stable subgroup G ⊂ GLn(E) such that E = F (G). Our argument in
proof of Theorems 2 and 3 below specify that G can be chosen as a group
generated by gγ, γ ∈ Γ. Theorem A allows us to check efficiently, whether it is
possible to realize G over the ring O′

E, in the terms of the basis of O′
E over O′

F

and t. Certain refinement of our argument in Theorem A for OE instead of O′
E

provided OE is a free OF -module (and OE has an OF -basis) makes possible
to apply this approach to subgroups G ⊂ GLn(OE), in particular for F = Q,
as well as for other arithmetic rings R. If a list of Γ-stable finite subgroups
G ⊂ GLn(E) is given, we can apply Theorem A to their generating elements.

Now we can formulate the following finiteness theorem for groups G in ques-
tion (see [4], Theorem 3 and also [8]).

Theorem (Finiteness Theorem). 1) For a given number field F and integers n
and t, there are only a finite number of normal extensions E/F such that E =
F (G) and G is a finite abelian Γ-stable subgroup of GLn(OE) of exponent t.



ON FINITE LINEAR GROUPS 23

2) For a given number field F and integers n and d = [E : F ], there is only
a finite number of fields E = F (G) for some finite Γ-stable subgroup G of
GLn(OE).

3. Galois stability for representations over fields

We are interested in the following existence theorem. Note that the proof
is constructive, so we can give explicitly the structure and the construction of
the abelian Γ- stable subgroup G ⊂ GLn(E) in the theorem below.

Theorem 2. Let F be a field of characteristic 0, let d > 1, t > 1 and n ≥
φE(t)d be given integers, and let E be a given normal extension of F having
the Galois group Γ and degree d. Then there is an abelian Γ- stable subgroup
G ⊂ GLn(E) of the exponent t such that E = F (G).

In fact, G can be generated by matrices gγ, γ ∈ Γ for some g ∈ GLn(E).
Note that the order n = dφE(t) in our construction is the minimum possible.

Proof of Theorem 2. For a given basis w1, w2, . . . , wn of E/F we intend to

construct a matrix g = [gij]i,j =
∑d

i=1 Biwi and pairwise commuting matrices
Bi in such a way that the normal closure of the field F (g11, g12, . . . , gnn) over
F coincides with E and so the group G generated by gσ, σ ∈ Γ is an abelian Γ-
stable group of exponent t. Firstly, we determine the eigenvalues that matrices
Bi should have if g has the prescribed set of eigenvalues. Collecting the given
eigenvalues of pairwise commuting semisimple matrices and using the regular
representation, we construct a Γ-stable abelian group G for integral parameters
given in Theorem 2.

We consider two different cases in our proof.
1) We suppose that F (ζt) and E are linearly disjoint over F and [E : F ] = d.

In this case φE(t) = φF (t). Let w1 = 1, w2, . . . , wd be a basis of E(ζt) over
F (ζt), and let Γ be the Galois group of E(ζt) over F (ζt). Let g be a semisimple
d× d-matrix having eigenvalues ζt, 1, . . . , 1. Using the expansion

g = B1 + w2B2 + · · ·+ wdBd

we can construct the matrices Bi, i = 1, 2, . . . , d, and we can prove that the
group G generated by gγ, γ ∈ Γ is an abelian Γ-stable group of exponent t.
Let us consider the matrix W = [w

σj

i ]i,j for {σ1 = 1, σ2, . . . , σd} = Γ. Denote
by Wi the matrix W whose i-th column is replaced by d chosen eigenvalues
ζt, 1, . . . , 1 of g. We can calculate

λi =
det Wi

det W

and construct matrices Bi as regular representations Bi = R(λi) of λi in
E(ζt)/F (ζt). Let αi,j be the coefficients of the inverse matrix W−1 = [αi,j]i,j.
Then α

σj

i1 = αij and λi = (ζt − 1)αi1 for i 6= 1, and λ1 = 1 + (ζt − 1)α11. So
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λ
σj

i = (ζt−1)α
σj

i1 = (ζt−1)αij for i 6= 1, and λ
σj

1 = (ζt−1)α
σj

11+1 = (ζt−1)α1j+1.
Since any linear relation

k1(λ1 − 1) +
d∑

i=2

kiλi = 0, ki ∈ F (ζt), i = 1, 2, . . . , d

implies the linear relation

k1(λ
σj

1 − 1) +
d∑

i=2

kiλ
σj

i = 0, ki ∈ F (ζt), i = 1, 2, . . . , d

for all σj ∈ Γ, this would also imply det W−1 = 0, which is impossible.
Therefore, λ1 − 1, λ2, . . . , λd generate the field E(ζt) overF (ζt), and so Bi −
Id, B2, . . . , Bd generate F (ζt)-span F (ζt)[B1, . . . , Bd] over F (ζt). Note that Bi

can be expressed as a linear combination of gσi , i = 1, 2, . . . , d with coefficients
in E: Bi =

∑d
j=1 αijg

σj . This can be obtained from the system of matrix
equations

gσj =
d∑

i=1

w
σj

i Bi, j = 1, 2, . . . , d

if we consider Bi as indeterminates. Since G has exponent t, F (ζt) is a splitting
field for G, the group generated by all gσ, σ ∈ Γ. Therefore, the dimension
of E(ζt)-span E(ζt)G = E(ζt) ⊗F (ζt) F (ζt)G over E(ζt) is d, and so F (ζt)-
dimension of F (ζt)-span F (ζt)G is also d.

Let us denote by E ′ the image of E(ζt) under the regular representation of
E(ζt)/F (ζt) over F (ζt). Then A = E(ζt)G = E(ζt) ⊗F (ζt) F (ζt)G, the E(ζt)-
span of G, is the Galois E ′-algebra in the sense of [3], that is, it is an associative
and commutative separable E ′-algebra having a normal basis. We can choose
idempotents

εi =
1

ζt − 1
(gσj − Id), j = 1, 2, . . . , d

as a normal basis of A over E ′ so that εj = ε
σj

1 .
We have F (ζt)G = F (ζt)[< gσ1 , . . . , gσd >] = F (ζt)[(g−Id)

σ1 , . . . , (g−Id)
σd ],

and dimF (ζt) F (ζt)G = d. As the length of the orbit of M = [mij] = (g −
Id) under Γ-operation is d, we can use the coefficients of matrices Mσi , i =
1, 2, . . . , d to construct an element θ =

∑
i,j kijmij, kij ∈ F (ζt), which generates

a normal basis of E(ζt)/F (ζt). Therefore, for any given α ∈ E(ζt) we have
α =

∑
i kiθ

σi for some ki ∈ F (ζt).
Therefore, our choice of eigenvalues implies that F (ζt)(G) = E(ζt).
Now, we can apply the regular representation RF of F (ζt) over F to ma-

trices M = [mij]i,j,mi,j ∈ F (ζt) in the following way: RF (M) = [RF (mij)]i,j.
So, using RF for all components of matrices Bi ∈ Mn(F (ζt)) we can obtain
an abelian subgroup G ⊂ GLn1(E), n1 = [F (ζt) : F ]d of exponent t which is
Γ-stable if we identify the isomorphic Galois groups of the extensions E/F
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and E(ζt)/F (ζt). We have again dimF FG = dimE EG, E is again the Ga-
lois algebra, and F (G) = E. Now, using the natural embedding of G to
GLn(E), n ≥ n1, we complete the proof of Theorem 1 in the case 1).

2) In virtue of 1) we can consider the case when the intersection

F0 = E ∩ F (ζt) 6= F.

We can use the regular representation R of E over F . Let Γ0 = {σ′1, σ′2, . . . , σ′d}
be the set of some extensions of elements Γ = {σ1, σ2, . . . , σd} to E(ζt)/F , and
let w1 = 1, w2, . . . wd be a basis of E over F . So we can use our previous
notation and go through a similar argument as in the part 1) of the proof for

construction of g =
∑d

i=1 Biwi and matrices Bi as the regular representations
R0 of eigenvalues

λi =
det Wi

det W
=

φE(t)∑
j=1

λijζ
j, i = 1, 2, . . . , d,

in the following way: we consider

Bi = R0(λi) =

φE(t)∑
j=1

R(λij)ζ
j,

where R is the regular representation of E over F . We also have

λ
σ′j
1 = α1j + 1, λ

σ′j
i = αij

for j = 2, . . . , d. Now, if we have any linear relation between the rows of the

matrix [αij(ζ
σ′j
t − 1)]i,j, this would imply a linear relation between its columns,

and so the columns of W−1 = [αij] are linearly dependent, and det W−1 = 0
which is a contradiction. So, again we obtain that λ1−1, λ2, . . . , λd are linearly
independent over F , so

dimF FG′ = dimF F [B1 − Id, B2, . . . , Bd] = dimE EG′ = d

for G′ generated by gσ′i , i = 1, 2, . . . , d. As earlier we can consider the element-
wise regular representation RE(Bi) of matrices Bi in the field extension E(ζt)/E.

So we obtain g0 =
∑d

i=1 RE(Bi)wi, and we can take the group G generated
by all gσi

0 , i = 1, 2, . . . , d. Since [E(ζt) : F ] = [E(ζt) : E][E : F ] = φE(t)d,
the order n = φE(t)d coincides with the one required in the formulation of
Theorem 1. In this way we can construct a Γ-stable group G that satisfies the
conditions of Theorem 2. ¤

As a corollary of Theorem 2 we have

Theorem 3. Let E/F be a given normal extension of algebraic number fields
with the Galois group Γ, [E : F ] = d, and let G ⊂ GLn(E) be a finite abelian
Γ-stable subgroup of exponent t such that E = F (G) and n is the minimum
possible. Then n = dφE(t) and G is irreducible under conjugation in GLn(F ).
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Moreover, if G has the minimum possible order, then G is a group of type
(t, t, . . . , t) and order tm for some positive integer m ≤ d.

In the case of quadratic extensions we can give an obvious example.

Example. Let d = 2, t = 2. Pick E = Q(
√

a) and g =

∣∣∣∣
0 1

a−1 0

∣∣∣∣
√

a for any

a ∈ F which is not a square in F . Then Γ is a group of order 2 and G =
{I2,−I2, g,−g} is a Γ-stable abelian group of exponent 2.

Proof of Theorem 3. We can use the proof of Theorem 2.
Let G ⊂ GLn(E) be a group given in the formulation of Proposition 1,

and let n be minimal possible. Then we have the following decomposition of
E-span A = EG:

A = ε1A + ε2A + · · ·+ εkA

for some primitive idempotents ε1, . . . , εk of A. εi are conjugate under the
operation of the Galois group Γ = {σ1, . . . , σd}. For if the sum of ε

σj

i , j =
1, 2, . . . , d is not In then In = e1 + e2 for e1 = εσ1

1 + · · ·+ εσd
1 and e2 = In − e1,

and e1, e2 are fixed by Γ and so e1, e2 are conjugate in GLn(F ) to a diagonal
form. Since either of 2 components eiG has rank smaller than n, there is a
group satisfying the conditions of Proposition 1 of smaller than n degree.

Therefore, εi = εσi
1 , k = d and the idempotents ε1, . . . , εd form a normal

basis of A. But the rank of a matrix εi is not smaller than φE(t). Indeed,
εiG contains an element εig, for some g ∈ G of order t such that (εig)t = εi,
but (εig)k 6= εi for k < t. We can find g ∈ G in the following way. Since
In = ε1 + · · ·+ εk for any h ∈ G of order t there is εj such that (εjh)t = εj, but
(εjh)k 6= εj for k < t, and the same property holds true for εjh with any σ ∈ Γ.

Then using the property of normal basis εk = εσk
1 we can take g = hσ−1

j σi .
So, the irreducible component εiG determines a faithful irreducible represen-

tation of a cyclic group generated by g. But if T : C → GLr(E) is a faithful
irreducible representation of a cyclic group C generated by an element g of
order t, its degree r is equal to φE(t). It follows that the rank of matrices εi is
φE(t). So the dimension of A over E is φE(t)d.

If G is generated by gγ, γ ∈ Γ and its order is minimal, Γ-stability implies
that g has d conjugates under Γ-operation, and so G an abelian group of type
(t, . . . , t) and order tm for some positive integer m ≤ d. ¤

In the case of unramified extensions the following theorem for integral rep-
resentations in a similar situation is proven in [9]:

Theorem. Let d > 1, t > 1 be given rational integers, and let E/F be an
unramified extension of degree d.
1)If n ≥ φE(t)d, there is a finite abelian Γ- stable subgroup G ⊂ GLn(O′

E) of
exponent t such that E = F (G).
2)If n ≥ φE(t)dh and h is the exponent of the class group of F , there is a finite
abelian Γ-stable subgroup G ⊂ GLn(OE) of exponent t such that E = F (G).
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3)If n ≥ φE(t)d and h is relatively prime to n, then G given in 1) is conjugate
in GLn(F ) to a subgroup of GLn(OE).
4)If d is odd, then G given in 1) is conjugate in GLn(F ) to a subgroup of
GLn(OE).

In all cases above G can be constructed as a group generated by matrices
gγ, γ ∈ Γ for some g ∈ GLn(E).
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