ON THE AUTOMORPHISM OF A CLASS OF GROUPS

M. HASHEMI

Abstract

We exhibit a presentation for automorphism group of a class of 2-generator metabelian groups.

1. Introduction

Many authors have studied the automorphism groups, of course most of these are devoted to p-groups. In [3], Jamali presents some non-abelian 2groups with abelian automorphism groups. Bidwell and Curran [2] studied the automorphism group of a split metacyclic p-groups. By a program in [1], one can calculate the order of small p-groups. In this paper G will denote a group. $G^{\prime}, Z(G)$ and $\operatorname{Aut}(G)$ will denote the derived subgroup, center and automorphism group of G.

Let $m \geq 2$ be an integer. Consider the group $U(m)=\{n \mid 1 \leq n \leq$ $m, \quad(n, m)=1\}$, clearly $U(m)$ is abelian and $|U(m)|=\phi(m)$. Furthermore, there exist $c_{1}, c_{2}, \ldots, c_{t} \in U\left(m^{2}\right)$ such that $U_{m^{2}}=\left\langle s_{1}\right\rangle \times\left\langle s_{2}\right\rangle \times \cdots \times\left\langle s_{t}\right\rangle$.

We consider the finitely presented group,

$$
H_{m}=\left\langle x, y \mid x^{m^{2}}=y^{m}=1, y^{-1} x y=x^{1+m}\right\rangle, \quad m \geq 2 .
$$

In Section 2, we study the groups H_{m} and show that H_{m} is an extra-special group $\left(G^{\prime} \simeq Z(G)\right)$. Section 3 is devoted to the characterization of the automorphism group of H_{m}.

2. Some properties of H_{m}

First, we state a lemma without proof that establishes some properties of H_{m}.

Lemma 2.1. If G is a group and $G^{\prime} \subseteq Z(G)$, then the following hold for every integer k and $u, v, w \in G$:
(i) $[u v, w]=[u, w][v, w]$ and $[u, v w]=[u, v][u, w]$.
(ii) $\left[u^{k}, v\right]=\left[u, v^{k}\right]=[u, v]^{k}$.

2000 Mathematics Subject Classification. 20D15, 20E36.
Key words and phrases. Groups, automorphism groups, group presentation.
(iii) $(u v)^{k}=u^{k} v^{k}[v, u]^{k(k-1) / 2}$.

Proposition 2.2. Let $G=H_{m}$. Then $Z(G)=G^{\prime} \simeq\left\langle z \mid z^{m}=1\right\rangle$.
Proof. We first prove that $G^{\prime} \subseteq Z(G)$. By the relations of G, we get $[x, y]=$ $x^{-1} x^{y}=x^{-1} x^{1+m}=x^{m}$. Then

$$
\begin{aligned}
{[[x, y], y] } & =y^{-1} x^{-1} y x y^{-1} x^{-1} y^{-1} x y^{2}=\left(x^{-1}\right)^{y} x\left(x^{-1}\right)^{y} x^{y^{2}} \\
& =x^{-m} x^{-1-m} x^{(1+m)^{2}}=x^{-2 m-1} x^{1+2 m+m^{2}} \\
& =x^{m^{2}}=1 .
\end{aligned}
$$

Also we have $[[x, y], x]=1$ so that $G^{\prime} \subseteq Z(G)$ and $[x, y]^{m}=1$.
It is sufficient to show that $Z(G) \subseteq G^{\prime}$. For every $U=u_{1}^{s_{1}} u_{2}^{s_{2}} \ldots u_{k}^{s_{k}}$ in G, where $u_{i} \in\{x, y\}$ and $s_{1}, s_{2}, \ldots, s_{k}$ are integers, using the relation $y^{-1} x y=$ x^{1+m}, we may easily prove that U is in the form $y^{r} x^{s}$, where $0 \leq r<m$ and $0 \leq s \leq m^{2}$. Suppose $y^{r} x^{s} \in Z(G)$. Then $y^{r} x=x y^{r}$ and $y x^{s}=x^{s} y$. Hence

$$
\begin{gathered}
1=\left[x, y^{r}\right]=x^{-1} x^{(1+m)^{r}}=x^{-1} x^{(1+r m)}=x^{r m} \\
1=\left[x^{s}, y\right]=x^{-s}\left(x^{s}\right)^{y}=x^{-s} x^{(1+m) s}=x^{m s}
\end{gathered}
$$

These show that $m \mid r$ and $m \mid s$, and then $y^{r} x^{s}=\left(x^{m}\right)^{t}=[x, y]^{t} \in G^{\prime}$. Therefore $Z(G)=G^{\prime}$.

By the above calculations, we get:
Corollary 2.3. Every element of $G=H_{m}$ can be written uniquely in the form $y^{r} x^{s}$, where $0 \leq r \leq m-1$ and $0 \leq s \leq m^{2}-1$. Also $|G|=m^{3}$.

Proof. Let $y^{r} x^{s}=1$ then $1=\left[x, y^{r}\right]=[x, y]^{r}=x^{r m}$. Therefore $m\left|r, m^{2}\right| s$ and uniqueness of the presentation follows. This yields that $|G|=m^{3}$.

Remark 2.4. For an integer $n \geq 1$ and $u=y^{r_{1}} x^{s_{1}}, v=y^{r_{2}} x^{s_{2}} \in H_{m}$, when we are trying to find the automorphism of H_{m} we need to concentrate on the terms $u v, u^{n}$ and $(u v)^{n}$. By the Lemma 2.1 and Proposition 2.2, we get

$$
\begin{aligned}
u v & =y^{r_{1}} x^{s_{1}} y^{r_{2}} x^{s_{2}}=y^{r_{1}+r_{2}} x^{s_{1}+s_{2}}[x, y]^{s_{1} r_{2}}=y^{r_{1}+r_{2}} x^{s_{1}+s_{2}+m s_{1} r_{2}} \\
u^{n} & =y^{n r_{1}} x^{n s_{1}}\left[x^{s_{1}}, y^{r_{1}}\right]^{n(n-1) / 2}=y^{n r_{1}} x^{n s_{1}+m r_{1} s_{1} n(n-1) / 2} \\
u^{n} v^{n} & =y^{n\left(r_{1}+r_{2}\right)} x^{n\left(s_{1}+s_{2}\right)+m\left(r_{1} s_{1}+r_{2} s_{2}\right) n(n-1) / 2}[x, y]^{n r_{2}\left(n s_{1}+m r_{1} s_{1} n(n-1) / 2\right.} \\
& =y^{n\left(r_{1}+r_{2}\right)} x^{n\left(s_{1}+s_{2}\right)+m n^{2} s_{1} r_{2}+m\left(r_{1} s_{1}+r_{2} s_{2}\right) n(n-1) / 2} \\
(u v)^{n} & =\left(y^{r_{1}+r_{2}} x^{s_{1}+s_{2}+m s_{1} r_{2}}\right)^{n} \\
& =y^{n\left(r_{1}+r_{2}\right)} x^{n\left(s_{1}+s_{2}+m s_{1} r_{2}\right)}[x, y]^{n\left(r_{1}+r_{2}\right)\left(s_{1}+s_{2}+m s_{1} r_{2}\right)(n-1) / 2} \\
& =y^{n\left(r_{1}+r_{2}\right)} x^{n\left(s_{1}+s_{2}+m s_{1} r_{2}\right)+\left(r_{1}+s_{1}\right)\left(r_{2}+s_{2}\right) m n(n-1) / 2} .
\end{aligned}
$$

3. A presentation for automorphisms group of H_{m}

The following proposition is the main result of this section.
Proposition 3.1. Let $m \geq 2$ be an integer.
(i) If m is odd then

$$
\begin{aligned}
& \operatorname{Aut}\left(H_{m}\right)=\left\{f_{r, s, i} \mid(x) f_{r, s, i}=y^{r} x^{s},(y) f_{r, s, i}=y x^{m i}\right. \\
& \left.\quad \text { where } 0 \leq r<m, 0 \leq i<m \text { and } 1 \leq s<m^{2} \text {, when }(m, s)=1\right\} .
\end{aligned}
$$

(ii) If $\frac{m}{2}$ is even then

$$
\begin{aligned}
& \operatorname{Aut}\left(H_{m}\right)=\left\{f_{r, s, i} \mid(x) f_{r, s, i}=y^{r} x^{s},(y) f_{r, s, i}=y^{r_{3}} x^{m i},\right. \\
& \text { where } 0 \leq r<m, 0 \leq i<m, r_{3}=1 \text { if } r \text { is even and } \\
& \left.\quad r_{3}=1+\frac{m}{2} \text { if } r \text { is odd also } 1 \leq s<m^{2} \text {, when }(m, s)=1\right\} .
\end{aligned}
$$

(iii) If $\frac{m}{2}$ is odd then

$$
\begin{aligned}
& \operatorname{Aut}\left(H_{m}\right)=\left\{f_{2 r, s, i} \mid(x) f_{2 r, s, i}=y^{2 r} x^{s},(y) f_{2 r, s, i}=y x^{\frac{m}{2} i},\right. \\
& \text { where } \left.0 \leq r<\frac{m}{2}, 0 \leq i<2 m \text { and } 1 \leq s<m^{2} \text {, when }(m, s)=1\right\} .
\end{aligned}
$$

Proof. Let $f \in \operatorname{Aut}\left(H_{m}\right)$ and $(x) f=y^{r_{1}} x^{s_{1}},(y) f=y^{r_{2}} x^{s_{2}}$. Then for every $u=y^{k} x^{n} \in H_{m}$, we get

$$
\begin{aligned}
(u) f & =((y) f)^{k}((x) f)^{n}=\left(y^{r_{2}} x^{s_{2}}\right)^{k}\left(y^{r_{1}} x^{s_{1}}\right)^{n} \\
& =y^{k r_{2}+n r_{1}} x^{k s_{2}+n s_{1}+m k n s_{2} r_{1}+m\left(r_{2} s_{2} k(k-1) / 2+s_{1} r_{1} n(n-1) / 2\right)} .
\end{aligned}
$$

Since $\left(x^{m}\right) f=x^{m s_{1}+m s_{1} r_{1} m(m-1) / 2}$ and $\left|\left(x^{m}\right) f\right|=\left|x^{m}\right|=m$, we have

$$
\left(m, s_{1}\left(1+r_{1} m(m-1) / 2\right)=1,\right.
$$

namely,

$$
\begin{equation*}
\left(m, s_{1}\right)=1 \text { and }\left(m, 1+r_{1} m(m-1) / 2\right)=1 \tag{1}
\end{equation*}
$$

Also $|(y) f|=m$, thus $x^{m\left(s_{2}+\frac{m(m-1)}{2} r_{2} s_{2}\right)}=1$ that is

$$
\begin{equation*}
s_{2}+\frac{m(m-1)}{2} r_{2} s_{2} \equiv 0 \quad(\bmod m) . \tag{2}
\end{equation*}
$$

For $\left(m, 1+\frac{m(m-1)}{2}\right)=1$ or 2 so that $m \mid s_{2}$ or $\left.\frac{m}{2} \right\rvert\, s_{2}$.
Since $x y=y x^{1+m}$, then

$$
\begin{aligned}
(x y) f & =\left(y x^{m+1}\right) f=y^{r_{1}+r_{2}} x^{s_{2}+(m+1) s_{1}+m(m+1) s_{2} r_{1}+\frac{m s_{1} r_{1} m(m+1)}{2}} \\
& =(x) f(y) f=y^{r_{1}+r_{2}} x^{s_{2}+s_{1}+m s_{1} r_{2}} .
\end{aligned}
$$

Therefore, by the Corollary 2.3, we get

$$
\begin{equation*}
s_{1}+s_{2} r_{1}+s_{1} r_{1} \frac{m(m+1)}{2} \equiv s_{1} r_{2} \quad(\bmod m) \tag{3}
\end{equation*}
$$

To prove (i), since m is odd then by (2), we get $m \mid s_{2}$. This together with (1) and (3) gives $r_{2}=1$. As above, we consider

$$
(x) f=y^{r_{1}} x^{s_{1}}, \quad(y) f=y^{r_{2}} x^{m i}
$$

where $0 \leq r_{1} \leq m-1, r_{2}=1,0 \leq i \leq m-1$ and $0 \leq s_{1} \leq m^{2}-1$ when $\left(m, s_{1}\right)=1$.

It is sufficient to prove that f, with the above conditions, is an isomorphism.
Let

$$
\left(y^{k} x^{n}\right) f=y^{r_{2} k+r_{1} n} x^{m k i+n s_{1}+m s_{1} r_{1} n(n-1) / 2}=e .
$$

Since $r_{2}=1$, Corollary 2.3 implies that

$$
\begin{gather*}
k+n r_{1} \equiv 0 \quad(\bmod m) \tag{4}\\
m k i+n s_{1}+m s_{1} r_{1} \frac{n(n-1)}{2} \equiv 0 \quad\left(\bmod m^{2}\right) . \tag{5}
\end{gather*}
$$

Using the relations (1) and (5), we obtain $m \mid n$. It follows that $m \mid k$. This together with (5) yields $m^{2} \left\lvert\, n+\frac{m r_{1} n(n-1)}{2}\right.$. Since m is odd, $m^{2} \mid n$ (for $(m, 2)=1$, $m \mid n)$ and $u=y^{k} x^{n}=e$.

Now, let m be even and $\frac{m}{2}=2 t$. Then by (2), $m \mid s_{2}$. This together with (3) gives $r_{2}=1$ if r_{1} is even and $r_{2}=1+\frac{m}{2}$ if r_{1} is odd. Consider $(x) f=$ $y^{r_{1}} x^{s_{1}}$, (y) $f=y^{r_{2}} x^{m i}$, where $0 \leq r_{1} \leq m-1, r_{2}=1$ (when r_{1} is even) and $r_{2}=1+\frac{m}{2}$ (when, r_{1} is odd), $0 \leq i \leq m-1$ and $0 \leq s_{1} \leq m^{2}-1$ while $\left(m, s_{1}\right)=1$.

In a similar way as for the Case (i), we get

$$
\begin{gather*}
r_{2} k+n r_{1} \equiv 0 \quad(\bmod m) \tag{6}\\
m k i+n s_{1}+m s_{1} r_{1} \frac{n(n-1)}{2} \equiv 0 \quad\left(\bmod m^{2}\right) . \tag{7}
\end{gather*}
$$

Since $\left(m, s_{1}\right)=1$, the congruence (7) yields that $m \mid n$. Also $\left(m, r_{2}\right)=1$ then by (6) we have $m \mid k$. Combining all these facts, we see that $n+m r_{1} \frac{n(n-1)}{2} \equiv$ $0\left(\bmod m^{2}\right)$ and hence $m^{2} \mid n$ or $n=\frac{m^{2}}{2}$. If $n=\frac{m^{2}}{2}$ then we have

$$
\frac{m^{2}}{2}+\frac{m r_{1} m^{2}\left(\frac{m^{2}}{2}-1\right)}{4} \equiv 0 \quad\left(\bmod m^{2}\right)
$$

This yields that $1+\frac{m r_{1}\left(\frac{m^{2}}{2}-1\right)}{2} \equiv 0(\bmod 2)$, which is a contradiction (for, $\frac{m}{2}=2 t$). Then $m^{2} \mid n$ and $u=y^{k} x^{n}=e$. This completes the proof of (ii).

Lastly, let $\frac{m}{2}$ be odd. Then by (2), we get $\left.\frac{m}{2} \right\rvert\, s_{2}$. Also $\left(m, 1+r_{1} \frac{m(m-1)}{2}\right)=1$. Therefore r_{1} is even and we have $r_{2}=1$ by using relation (3). Consider (x) $f=y^{r_{1}} x^{s_{1}}$ and (y) $f=y x^{\frac{m}{2} i}$, where r_{1} is even , $0 \leq i \leq 2 m-1$ and $0 \leq s_{1} \leq m^{2}-1$ when $\left(m, s_{1}\right)=1$.

Now, we show that f is an automorphism. Similar to Case (i), we have

$$
\begin{align*}
& k+n r_{1} \equiv 0 \quad(\bmod m) \tag{8}\\
& \frac{m}{2} k i+n s_{1}+m s_{1} r_{1} \frac{n(n-1)}{2} \equiv 0 \quad\left(\bmod m^{2}\right) . \tag{9}
\end{align*}
$$

By (9), we get $\left.\frac{m}{2} \right\rvert\, n$. Since r_{1} is even, by (8) we have $m \mid k$. So $k=0$. This together with (9) and (1) yields $m^{2} \mid n$ so that (iii) is established.

As a result of this proposition and using $\phi\left(m^{2}\right)=m \phi(m)$ (for every positive integer m) we get:

Corollary 3.2. For every $m \geq 2$, $\left|\operatorname{Aut}\left(H_{m}\right)\right|=m^{3} \phi(m)$ then the order of H_{m} divides $\left|\operatorname{Aut}\left(H_{m}\right)\right|$.

Before we give the presentation for $\operatorname{Aut}\left(H_{m}\right)$ and its proof, we need the following lemma.

Lemma 3.3. Let $m \geq 2$ be an integer. By using the notations of the Proposition 3.1,
(i) if m is odd then $Z\left(\operatorname{Aut}\left(H_{m}\right)\right)=\left\{f_{0, m t+1,0} \mid 0 \leq t<m\right\}$
(ii) if $\frac{m}{2}$ is odd then $Z\left(\operatorname{Aut}\left(H_{m}\right)\right)=\left\{f_{0,2 m t+1,0}, f_{0,2 m t+1, m} \mid 0 \leq t<m\right\}$
(iii) if $\frac{m}{2}$ is even then $Z\left(\operatorname{Aut}\left(H_{m}\right)\right)=\left\{f_{0,2 m t+1,0}, \left.f_{0,2 m t+m, \frac{m}{2}} \right\rvert\, 0 \leq t<m\right\}$

Proof. (i) Consider $T=\left\{f_{0, m t+1,0} \mid 0 \leq t<m\right\}$. One can easily check that $T \subseteq Z\left(\operatorname{Aut}\left(H_{m}\right)\right)$. Let $f_{r, s, i} \in Z\left(\operatorname{Aut}\left(H_{m}\right)\right)$. Then for every $f_{r_{1}, s_{1}, i_{1}} \in$ $\operatorname{Aut}\left(H_{m}\right)$, we have

$$
\begin{aligned}
& (x) f_{r_{1}, s_{1}, i_{1}} f_{r, s, i}=(x) f_{r, s, i} f_{r_{1}, s_{1}, i_{1}} \\
& (y) f_{r_{1}, s_{1}, i_{1}} f_{r, s, i}=(y) f_{r, s, i} f_{r_{1}, s_{1}, i_{1}} .
\end{aligned}
$$

These yield

$$
\begin{align*}
i_{1}(1-s) & \equiv i\left(1-s_{1}\right) \quad(\bmod m) \tag{10}\\
r_{1}+s_{1} r & \equiv r+s r_{1} \quad(\bmod m) \tag{11}
\end{align*}
$$

$$
\begin{equation*}
m r_{1} i+\frac{m r s s_{1}\left(s_{1}-1\right)}{2}+\frac{m r s s_{1}\left(s_{1}-1\right)}{2} \equiv m i_{1}+\frac{m s_{1} r_{1} s(s-1)}{2} \quad(\bmod m) \tag{12}
\end{equation*}
$$

Substituting, $i_{1}=1$ and $s_{1}=1$ in the congruence (10) gives $s=m t+1,0 \leq$ $t \leq m$. Similarly, we get $r=0$ by selecting $r_{1}=0$ and $s_{1}=2$. With using the above values in (12), we have $i=0$. Then $f_{r, s, i}=f_{0, m t+1,0} \in T$.
(ii) Let $T=\left\{f_{0, m t+1,0}, f_{0, m t+1, m} \left\lvert\, 0 \leq t \leq \frac{m}{2}\right.\right\}$. Then one can easily prove that $T \subseteq Z\left(\operatorname{Aut}\left(H_{m}\right)\right)$. We now suppose that $f_{2 r, s, i} \in Z\left(\operatorname{Aut}\left(H_{m}\right)\right)$. Then for every $f_{2 r_{1}, s_{1}, i_{1}} \in \operatorname{Aut}\left(H_{m}\right)$, we get

$$
\begin{aligned}
& (x) f_{2 r_{1}, s_{1}, i_{1}} f_{2 r, s, i}=(x) f_{2 r, s, i} f_{2 r_{1}, s_{1}, i_{1}} \\
& (y) f_{2 r_{1}, s_{1}, i_{1}} f_{2 r, s, i}=(y) f_{2 r, s, i} f_{2 r_{1}, s_{1}, i_{1}} .
\end{aligned}
$$

Hence

$$
\begin{align*}
& 2 r+2 s r_{1} \equiv 2 r_{1}+2 s_{1} r \quad(\bmod m) \tag{13}\\
& r m i_{1}+\frac{m^{2}}{2} i_{1}\left(r(2 r-1)+m r_{1} s_{1} s(s-1)\right. \tag{14}\\
& \equiv r_{1} m i+\frac{m^{2}}{2} i r_{1}\left(2 r_{1}-1\right)+m r s s_{1}\left(s_{1}-1\right) \quad\left(\bmod m^{2}\right)
\end{align*}
$$

$$
\begin{align*}
\frac{m}{2} i+\frac{m}{2} i_{1} s+\frac{m^{2}}{2} r s i_{1}(& \left.\frac{m}{2} i_{1}-1\right) \tag{15}\\
& \equiv \frac{m}{2} i_{1}+\frac{m}{2} i s_{1}+\frac{m^{2}}{2} s_{1} r_{1} i\left(\frac{m}{2} i-1\right) \quad\left(\bmod m^{2}\right)
\end{align*}
$$

We consider the congruence (13) and take $r_{1}=s_{1}=1$, so $2 s \equiv 2(\bmod m)$, that is $s=1+\frac{m}{2} t_{1}$. For, $(s, m)=1, t_{1}$ is even, so that $s=1+m t$. Again in (4), replacing s_{1} by $m-1$ and s by $1+m t$, we get $4 r \equiv 0(\bmod m)$, so $2 r \equiv 0$ $(\bmod m)$.

Now, by (15) with $i_{1}=r_{1}=0$ and $s_{1}=-1$, we have $m i \equiv 0\left(\bmod m^{2}\right)$ so that $i=0$ or $i=m$. Finally, by (15) when $s=m t+1, r=0, i_{1}=1$ and $i=0$ or $i=m$, we get $s=2 m k+1$. Consequently, $f_{2 r, s, i}=f_{0,2 m k+1,0}$ or $f_{0,2 m k+1, m}$. Similarly, if $\frac{m}{2}$ is even the result follows in a similar way as for the case (ii).

The following corollary is now a consequence of Lemma 3.3.
Corollary 3.4. For every $m \geq 2,\left|Z\left(\operatorname{Aut}\left(H_{m}\right)\right)\right|=m$.
Let $m \geq 2$ be an integer and let $U_{m^{2}}=\left\langle s_{1}\right\rangle \times\left\langle s_{2}\right\rangle \times \cdots \times\left\langle s_{t}\right\rangle$. Since $m+1 \in U_{m^{2}}$, there exist unique integers $m_{1}, m_{2}, \ldots, m_{t}$ such that $m+1=$ $s_{1}^{m_{1}} s_{2}^{m_{2}} \ldots s_{t}^{m_{t}}$. Finally, let k_{i} denote the order of s_{i} modulo m^{2}. In other words, k_{i} is the smallest positive integer such that $s_{i}^{k_{i}} \equiv 1\left(\bmod m^{2}\right)$.

Consider

$$
\begin{aligned}
& A=\left\langle a_{1}, a_{2}, \ldots, a_{t}, a, b\right| a^{m}=b^{m}=a_{i}^{k_{i}}=1, \\
& {[[a, b], a]=[[a, b], b]=\left[[a, b], a_{i}\right]=\left[a_{i}, a_{j}\right]=1,\left[a, a_{i}\right]=a^{s_{i}-1},} \\
& \left.\quad\left[b, a_{i}\right]=b^{\alpha_{i}}[b, a]^{\beta_{i}},[a, b]=a_{1}^{m_{1}} a_{2}^{m_{2}} \ldots a_{t}^{m_{t}}, \quad 1 \leq i, j \leq t\right\rangle ; \\
& B=\left\langle a_{1}, a_{2}, \ldots, a_{t}, a, b\right| a^{2 m}=b^{\frac{m}{2}}=a_{i}^{k_{i}}=1, \\
& \quad[[a, b], a]=[[a, b], b]=\left[[a, b], a_{i}\right]=\left[a_{i}, a_{j}\right]=1,\left[a, a_{i}\right]=a^{s_{i}-1}, \\
& \left.\quad\left[b, a_{i}\right]=b^{\alpha_{i}}[b, a]^{\alpha_{i}},[a, b]=\left(a_{1}^{m_{1}} a_{2}^{m_{2}} \ldots a_{t}^{m_{t}}\right)^{\frac{m}{2}-1}, \quad 1 \leq i, j \leq t\right\rangle ; \\
& \quad C=\left\langle a_{1}, a_{2}, \ldots, a_{t}, a, b, c \mid R\right\rangle,
\end{aligned}
$$

where

$$
\begin{aligned}
& R=\left\{a^{m}, b^{\frac{m}{2}}, a_{i}^{k_{i}}, c^{-2} b^{1+\frac{m}{4}},\right. \\
& \quad\left[a_{i}, a_{j}\right],[b, c],[[b, a], a],[[b, a], b],\left[[b, a], a_{i}\right],\left[a_{i}, a\right] a^{s_{i}-1},[a, b][c, a]^{2}, \\
& \\
& \quad\left[a_{i}, b\right](b[b, a])^{\alpha_{i}},\left[a^{-1}, c^{-1}\right]([c, a])^{1+\frac{m}{2}}, c a_{i} c^{-1}[a, c]^{\left(\frac{m}{2}-1\right) \frac{s_{i}-1}{2}} a_{i}^{-1} b^{\frac{s_{i}-1}{2}}, \\
& \\
& \left.\quad c^{-1} a_{i}^{-1} c b^{\frac{s_{i}-1}{2}} a_{i}[c, a]^{\left[\frac{m}{2}-1\right)^{\frac{s_{i}-1}{2}}},[a, c] a_{1}^{m_{1}} a_{2}^{m_{2}} \ldots a_{t}^{m_{t}}, 1 \leq i, j \leq t\right\},
\end{aligned}
$$

$\alpha_{i}=s_{i}^{k_{i}-1}-1$ and $\beta_{i}=\frac{s_{i}^{k_{i}} \alpha_{i}}{2}$.
With these notations, we state the main result of this paper.
Proposition 3.5. Let $m \geq 2$ be an integer. With the notations of Proposition 3.1,
(i) if m is odd then $\operatorname{Aut}\left(H_{m}\right) \simeq A$,
(ii) if $\frac{m}{2}$ is odd then $\operatorname{Aut}\left(H_{m}\right) \simeq B$,
(iii) if $\frac{2}{2}$ is even then $\operatorname{Aut}\left(H_{m}\right) \simeq C$.

Proof. (i) For simplicity, we write $f_{011}=f_{0,1,1}, f_{110}=f_{1,1,0}$ and $f_{s_{i}}=$ $f_{0, s_{i}, 0},(1 \leq i \leq t)$. Then for every $k \geq 0$,

$$
\begin{gathered}
(x) f_{011}^{k}=x,(y) f_{011}^{k}=y x^{k m} \\
(x) f_{110}^{k}=y^{k} x, \quad(y) f_{110}^{k}=y \\
(x) f_{s_{i}}^{k}=x^{s_{i}^{k}}, \quad(y) f_{s_{i}}^{k}=y .
\end{gathered}
$$

Consequently $\left|f_{011}\right|=\left|f_{110}\right|=m,\left|f_{s_{i}}\right|=k_{i}$ and $\prod_{i=1}^{t}\left|f_{s_{i}}\right|=m \phi(m)$. Also we can show that,

$$
\left[f_{011}, f_{s_{i}}\right]=f_{011}^{s_{i}-1},\left[f_{110}, f_{s_{i}}\right]=f_{110}^{\alpha_{i}} f_{m+1}^{\beta_{i}},\left[f_{s_{i}}, f_{s_{j}}\right]=1,\left[f_{110}, f_{011}\right]=f_{m+1}
$$

and

$$
f_{m+1}=f_{s_{1}}^{m_{1}} f_{s_{2}}^{m_{2}} \ldots f_{s_{t}}^{m_{t}},
$$

where $\alpha_{i}=s_{i}^{k_{i}-1}-1$ and $\beta_{i}=\frac{s_{i}^{k_{i} \alpha_{i}}}{2}$.
Consider, $T=\left\{\left(\prod_{i=1}^{t} f_{s_{i}}^{l_{i}}\right) f_{110}^{i_{1}} f_{011}^{i_{2}} \mid 0 \leq i_{1}, i_{2}<m, 0 \leq l_{i}<k_{i}\right\}$, so that $|T|=m^{3} \phi(m)$. Since $T \subseteq \operatorname{Aut}\left(H_{m}\right)$,

$$
\operatorname{Aut}\left(H_{m}\right)=\left\langle f_{s_{1}}, f_{s_{2}}, \ldots, f_{s_{t}}, f_{110}, f_{011}\right\rangle
$$

Now, by [4, Proposition 4.2], there is an epimorphism $\psi: A \rightarrow \operatorname{Aut}\left(H_{m}\right)$ such that $\psi(a)=f_{110}, \psi(b)=f_{011}$ and $\psi\left(a_{i}\right)=f_{s_{i}}, 1 \leq i \leq t$. It remains to prove that ψ is one-to-one, and for this, consider the subset

$$
L=\left\{\left(\prod_{i=1}^{t} a_{i}^{l_{i}}\right) a^{i_{1}} b^{i_{2}} \mid 0 \leq i_{1}, i_{2}<m, 0 \leq l_{i}<k_{i}\right\}
$$

of A. By using the relations of A, for every $w \in A$, we get $L w \subseteq L$ then $A=L$. Suppose that $\psi\left(\left(\prod_{i=1}^{t} a_{i}^{l_{i}}\right) a^{i_{1}} b^{i_{2}}\right)=e$ then $\left(\prod_{i=1}^{t} f_{s_{i}}^{l_{i}}\right) f_{110}^{i_{1}} f_{011}^{i_{2}}=1$ that is

$$
\begin{align*}
& (x)\left(\prod_{i=1}^{t} f_{s_{i}}^{l_{i}}\right) f_{110}^{i_{1}} f_{011}^{i_{2}}=x \tag{16}\\
& (y)\left(\prod_{i=1}^{t} f_{s_{i}}^{l_{i}}\right) f_{110}^{i_{1}} f_{011}^{i_{2}}=y . \tag{17}
\end{align*}
$$

By (2), $y x^{m i_{2}}=y$. So that Corollary 2.3, yields $m \mid i_{2}$ i.e. $i_{2}=0$. Again, with using (1) and Corollary 2.3 we get

$$
\begin{gather*}
i_{1} s_{1}^{l_{1}} s_{2}^{l_{2}} \ldots s_{t}^{l_{t}} \equiv 0 \quad(\bmod m) \tag{18}\\
s_{1}^{l_{1}} s_{2}^{l_{2}} \ldots s_{t}^{l_{t}}+m i_{1} s_{1}^{l_{1}} s_{2}^{l_{2}} \ldots s_{t}^{l_{t}}\left(\frac{s_{1}^{l_{1}} s_{2}^{l_{2}} \ldots s_{t}^{l_{t}}-1}{2}\right) \equiv 1 \quad\left(\bmod m^{2}\right) . \tag{19}
\end{gather*}
$$

Since $\left(s_{i}, m\right)=1$, by (18), we conclude that $m \mid i_{1}$. This together with (19) gives

$$
s_{1}^{l_{1}} s_{2}^{l_{2}} \ldots s_{t}^{l_{t}} \equiv 1 \quad\left(\bmod m^{2}\right)
$$

Also $\left\langle s_{j}\right\rangle \bigcap \prod_{i \neq j}\left\langle s_{i}\right\rangle=\{1\}$ then for every i where $1 \leq i \leq t$, we have $s_{i}^{l_{i}} \equiv 1\left(\bmod m^{2}\right)$ that is $k_{i} \mid l_{i}$. Combining all these facts, we see that $\left(\prod_{i=1}^{t} a_{i}^{l_{i}}\right) a^{i_{1}} b^{i_{2}}=e$.
(ii) Let $\frac{m}{2}$ be odd. To calculate the $\operatorname{Aut}\left(H_{m}\right)$, take $f_{011}=f_{0,1,1}, f_{210}=$ $f_{2,1,0}$ and $f_{s_{i}}=f_{0, s_{i}, 0},(1 \leq i \leq t)$ then for every $k \geq 0$, by using induction method on k, we get

$$
\begin{gathered}
(x) f_{011}^{k}=x,(y) f_{011}^{k}=y x^{k m / 2} \\
(x) f_{210}^{k}=y^{2 k} x,(y) f_{210}^{k}=y \\
(x) f_{s_{i}}^{k}=x^{s_{i}{ }^{k}},(y) f_{s_{i}}^{k}=y .
\end{gathered}
$$

Therefore, $\left|f_{011}\right|=2 m,\left|f_{210}\right|=\frac{m}{2},\left|f_{s_{i}}\right|=k_{i}$ and $\prod_{i=1}^{t}\left|f_{s_{i}}\right|=m \phi(m)$. Also we have,

$$
\left[f_{011}, f_{s_{i}}\right]=f_{011}^{s_{i}-1},\left[f_{210}, f_{s_{i}}\right]=f_{210}^{\alpha_{i}} f_{m+1}^{\alpha_{i}},\left[f_{s_{i}}, f_{s_{j}}\right]=1,\left[f_{011}, f_{210}\right]=f_{m+1}^{\frac{m}{2}-1}
$$

and

$$
f_{m+1}=f_{s_{1}}^{m_{1}} f_{s_{2}}^{m_{2}} \ldots f_{s_{t}}^{m_{t}}
$$

where $\alpha_{i}=s_{i}^{k_{i}-1}-1$.
Consider the subset

$$
T=\left\{\left(\prod_{i=1}^{t} f_{s_{i}}^{l_{i}}\right) f_{110}^{i_{1}} f_{210}^{i_{2}} \mid 1 \leq i_{1}<2 m, 0 \leq i_{2}<\frac{m}{2}, 0 \leq l_{i}<k_{i}\right\}
$$

so that $|T|=m^{3} \phi(m)$ and

$$
\operatorname{Aut}\left(H_{m}\right)=\left\langle f_{s_{1}}, f_{s_{2}}, \ldots, f_{s_{t}}, f_{110}, f_{210}\right\rangle
$$

Now, let $\left(\prod_{i=1}^{t} f_{s_{i}}^{l_{i}}\right) f_{011}^{i_{1}} f_{210}^{i_{2}}=1$ then by Corollary 2.3 we get

$$
\begin{gathered}
2 i_{2} s_{1}^{l_{1}} s_{2}^{l_{2}} \ldots s_{t}^{l_{t}} \equiv 0 \quad(\bmod m) \\
s_{1}^{l_{1}} s_{2}^{l_{2}} \ldots s_{t}^{l_{t}}+2 m i_{2} s_{1}^{l_{1}} s_{2}^{l_{2}} \ldots s_{t}^{l_{t}}\left(\frac{2 i_{2} s_{1}^{l_{1}} s_{2}^{l_{2}} \ldots s_{t}^{l_{t}}-1}{2}\right) \equiv 1 \bmod m^{2} \\
\frac{m i_{1}}{2} \equiv 0 \quad \bmod m^{2} .
\end{gathered}
$$

So that $2 m\left|i_{1}, \frac{m}{2}\right| i_{2}, k_{i} \mid l_{i}$ and the result follows in a similar way as for the case (i).

To prove (iii), let $\frac{m}{4}$ be odd. We consider $f_{011}, f_{110}, f_{210}$ and $f_{s_{i}}$ then for every $k \geq 0$

$$
\begin{gathered}
(x) f_{011}^{k}=x, \quad(y) f_{011}^{k}=y x^{k m} \\
(x) f_{110}^{k}=y^{k+\left[\frac{k}{2}\right] \frac{m}{2}} x, \quad(y) f_{110}^{k}=y^{1+\frac{k m}{2}} \\
(x) f_{210}^{k}=y^{2 k} x, \quad(y) f_{210}^{k}=y .
\end{gathered}
$$

Hence $\left|f_{011}\right|=m,\left|f_{110}\right|=\left|f_{210}\right|=\frac{m}{2}$, and $\left|f_{s_{i}}\right|=k_{i}$. Combining all these facts, we see that

$$
\begin{gathered}
{\left[f_{011}, f_{s_{i}}\right]=f_{011}^{s_{i}-1},\left[f_{210}, f_{s_{i}}\right]=f_{210}^{\alpha_{i}} f_{m+1}^{\alpha_{i}},} \\
{\left[f_{s_{i}}, f_{s_{j}}\right]=1,\left[f_{210}, f_{011}\right]=f_{2 m+1},} \\
{\left[\left[f_{210}, f_{011}\right], f_{011}\right]=\left[\left[f_{210}, f_{011}\right], f_{210}\right]=\left[\left[f_{210}, f_{011}\right], f_{s_{i}}\right]=1}
\end{gathered}
$$

and $f_{m+1}=f_{s_{1}}^{m_{1}} f_{s_{2}}^{m_{2}} \ldots f_{s_{t}}^{m_{t}}$, where $\alpha_{i}=s_{i}^{k_{i}-1}-1$.
Take $N=\left\langle f_{s_{1}}, f_{s_{2}}, \ldots, f_{s_{t}}, f_{011}, f_{210} \mid R_{1}\right\rangle$, where

$$
\begin{aligned}
& R_{1}=\left\{f_{011}^{m}, f_{21}^{\frac{m}{2}}, f_{s_{i}}^{k_{i}},\left[f_{s_{i}}, f_{011}\right] f_{011}^{s_{i}-1},\left[f_{s_{i}}, f_{210}\right] f_{210}^{\alpha_{i}} f_{m+1}^{\alpha_{i}},\left[f_{s_{i}}, f_{s_{j}}\right]\right. \\
& \left.\quad\left[f_{011}, f_{210}\right] f_{2 m+1},\left[\left[f_{210}, f_{011}\right], f_{011}\right],\left[\left[f_{210}, f_{011}\right], f_{210}\right],\left[\left[f_{210}, f_{011}\right], f_{s_{i}}\right]\right\}
\end{aligned}
$$

Then by the above relations we get

$$
N=\left\{\left(\prod_{i=1}^{t} f_{s_{i}}^{l_{i}}\right) f_{110}^{i_{1}} f_{210}^{i_{2}} \mid 1 \leq i_{1}<m, 0 \leq i_{2}<\frac{m}{2}, 0 \leq l_{i}<k_{i}\right\} .
$$

Hence $|N|=\frac{m^{3} \phi(m)}{2}$, therefore $\left(\operatorname{Aut}\left(H_{m}\right): N\right)=2$ and

$$
\frac{\operatorname{Aut}\left(H_{m}\right)}{N}=\left\langle N f_{110} \mid\left(N f_{110}\right)^{2}=N\right\rangle
$$

Then the assertion may be obtained by [5, 2.2.4].
We note that, for this case, if $\frac{m}{4}$ is even then $\left|f_{110}\right|=m$. By the above consideration, the assertion is established.

References

[1] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.4.12. http://www.gap-system.org.
[2] J. N. S. Bidwell and M. J. Curran. The automorphism group of a split metacyclic p-group. Arch. Math. (Basel), 87(6):488-497, 2006.
[3] A.-R. Jamali. Some new non-abelian 2-groups with abelian automorphism groups. J. Group Theory, 5(1):53-57, 2002.
[4] D. L. Johnson. Presentations of groups, volume 15 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, second edition, 1997.
[5] D. J. S. Robinson. A course in the theory of groups, volume 80 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1982.

Received August 3, 2008.

Department of Mathematics,
Faculty of Science,
University of Guilan,
P. O. Box 451 Rasht, Iran

E-mail address: m_hashemi@guilan.ac.ir

