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ON THE AUTOMORPHISM OF A CLASS OF GROUPS

M. HASHEMI

Abstract. We exhibit a presentation for automorphism group of a class
of 2-generator metabelian groups.

1. Introduction

Many authors have studied the automorphism groups, of course most of
these are devoted to p-groups. In [3], Jamali presents some non-abelian 2-
groups with abelian automorphism groups. Bidwell and Curran [2] studied
the automorphism group of a split metacyclic p-groups. By a program in [1],
one can calculate the order of small p-groups. In this paper G will denote a
group. G′, Z(G) and Aut(G) will denote the derived subgroup, center and
automorphism group of G.

Let m ≥ 2 be an integer. Consider the group U(m) = {n|1 ≤ n ≤
m, (n,m) = 1}, clearly U(m) is abelian and |U(m)| = φ(m). Furthermore,
there exist c1, c2, . . . , ct ∈ U(m2) such that Um2 = 〈s1〉 × 〈s2〉 × · · · × 〈st〉.

We consider the finitely presented group,

Hm = 〈x, y|xm2

= ym = 1, y−1xy = x1+m〉, m ≥ 2.

In Section 2, we study the groups Hm and show that Hm is an extra-special
group (G′ ' Z(G)). Section 3 is devoted to the characterization of the auto-
morphism group of Hm.

2. Some properties of Hm

First, we state a lemma without proof that establishes some properties of
Hm.

Lemma 2.1. If G is a group and G′ ⊆ Z(G), then the following hold for every
integer k and u, v, w ∈ G :

(i) [uv, w] = [u,w][v, w] and [u, vw] = [u, v][u,w].
(ii) [uk, v] = [u, vk] = [u, v]k.
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(iii) (uv)k = ukvk[v, u]k(k−1)/2.

Proposition 2.2. Let G = Hm. Then Z(G) = G′ ' 〈z|zm = 1〉.
Proof. We first prove that G′ ⊆ Z(G). By the relations of G, we get [x, y] =
x−1xy = x−1x1+m = xm. Then

[[x, y], y] = y−1x−1yxy−1x−1y−1xy2 = (x−1)yx(x−1)yxy2

= x−mx−1−mx(1+m)2 = x−2m−1x1+2m+m2

= xm2

= 1.

Also we have [[x, y], x] = 1 so that G′ ⊆ Z(G) and [x, y]m = 1.
It is sufficient to show that Z(G) ⊆ G′. For every U = us1

1 u
s2
2 . . . usk

k in G,
where ui ∈ {x, y} and s1, s2, . . . , sk are integers, using the relation y−1xy =
x1+m, we may easily prove that U is in the form yrxs, where 0 ≤ r < m and
0 ≤ s ≤ m2. Suppose yrxs ∈ Z(G). Then yrx = xyr and yxs = xsy. Hence

1 = [x, yr] = x−1x(1+m)r

= x−1x(1+rm) = xrm,

1 = [xs, y] = x−s(xs)y = x−sx(1+m)s = xms.

These show that m|r and m|s, and then yrxs = (xm)t = [x, y]t ∈ G′. Therefore
Z(G) = G′. ¤

By the above calculations, we get:

Corollary 2.3. Every element of G = Hm can be written uniquely in the form
yrxs, where 0 ≤ r ≤ m− 1 and 0 ≤ s ≤ m2 − 1. Also |G| = m3.

Proof. Let yrxs = 1 then 1 = [x, yr] = [x, y]r = xrm. Therefore m|r, m2|s and
uniqueness of the presentation follows. This yields that |G| = m3. ¤
Remark 2.4. For an integer n ≥ 1 and u = yr1xs1 , v = yr2xs2 ∈ Hm, when
we are trying to find the automorphism of Hm we need to concentrate on the
terms uv, unand (uv)n. By the Lemma 2.1 and Proposition 2.2, we get

uv = yr1xs1yr2xs2 = yr1+r2xs1+s2 [x, y]s1r2 = yr1+r2xs1+s2+ms1r2

un = ynr1xns1 [xs1 , yr1 ]n(n−1)/2 = ynr1xns1+mr1s1n(n−1)/2

unvn = yn(r1+r2)xn(s1+s2)+m(r1s1+r2s2)n(n−1)/2[x, y]nr2(ns1+mr1s1n(n−1)/2

= yn(r1+r2)xn(s1+s2)+mn2s1r2+m(r1s1+r2s2)n(n−1)/2

(uv)n = (yr1+r2xs1+s2+ms1r2)n

= yn(r1+r2)xn(s1+s2+ms1r2)[x, y]n(r1+r2)(s1+s2+ms1r2)(n−1)/2

= yn(r1+r2)xn(s1+s2+ms1r2)+(r1+s1)(r2+s2)mn(n−1)/2.

3. A presentation for automorphisms group of Hm

The following proposition is the main result of this section.

Proposition 3.1. Let m ≥ 2 be an integer.
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(i) If m is odd then

Aut(Hm) =
{
fr,s,i|(x)fr,s,i = yrxs, (y)fr, s, i = yxmi,

where 0 ≤ r < m, 0 ≤ i < m and 1 ≤ s < m2, when (m, s) = 1
}
.

(ii) If m
2

is even then

Aut(Hm) =
{
fr,s,i|(x)fr,s,i = yrxs, (y)fr,s,i = yr3xmi,

where 0 ≤ r < m, 0 ≤ i < m, r3 = 1 if r is even and

r3 = 1 +
m

2
if r is odd also 1 ≤ s < m2, when (m, s) = 1

}
.

(iii) If m
2

is odd then

Aut(Hm) =
{
f2r,s,i|(x)f2r,s,i = y2rxs, (y)f2r,s,i = yx

m
2

i,

where 0 ≤ r <
m

2
, 0 ≤ i < 2m and 1 ≤ s < m2, when (m, s) = 1

}
.

Proof. Let f ∈ Aut(Hm) and (x)f = yr1xs1 , (y)f = yr2xs2 . Then for every
u = ykxn ∈ Hm, we get

(u)f = ((y)f)k((x)f)n = (yr2xs2)k(yr1xs1)n

= ykr2+nr1xks2+ns1+mkns2r1+m(r2s2k(k−1)/2+s1r1n(n−1)/2).

Since (xm)f = xms1+ms1r1m(m−1)/2 and |(xm)f | = |xm| = m, we have

(m, s1(1 + r1m(m− 1)/2) = 1,

namely,

(1) (m, s1) = 1 and (m, 1 + r1m(m− 1)/2) = 1.

Also |(y)f | = m, thus xm(s2+
m(m−1)

2
r2s2) = 1 that is

(2) s2 +
m(m− 1)

2
r2s2 ≡ 0 (mod m).

For (m, 1 + m(m−1)
2

) = 1 or 2 so that m|s2 or m
2
|s2.

Since xy = yx1+m, then

(xy)f = (yxm+1)f = yr1+r2xs2+(m+1)s1+m(m+1)s2r1+
ms1r1m(m+1)

2

= (x)f(y)f = yr1+r2xs2+s1+ms1r2 .

Therefore, by the Corollary 2.3, we get

(3) s1 + s2r1 + s1r1
m(m+ 1)

2
≡ s1r2 (mod m).

To prove (i), since m is odd then by (2), we get m|s2. This together with
(1) and (3) gives r2 = 1. As above, we consider

(x)f = yr1xs1 , (y)f = yr2xmi
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where 0 ≤ r1 ≤ m − 1, r2 = 1, 0 ≤ i ≤ m − 1 and 0 ≤ s1 ≤ m2 − 1 when
(m, s1) = 1.

It is sufficient to prove that f , with the above conditions, is an isomorphism.
Let

(ykxn)f = yr2k+r1nxmki+ns1+ms1r1n(n−1)/2 = e.

Since r2 = 1, Corollary 2.3 implies that

k + nr1 ≡ 0 (mod m)(4)

mki+ ns1 +ms1r1
n(n− 1)

2
≡ 0 (mod m2).(5)

Using the relations (1) and (5), we obtain m|n. It follows that m|k. This

together with (5) yields m2|n+ mr1n(n−1)
2

. Since m is odd, m2|n (for (m, 2) = 1,

m|n) and u = ykxn = e.
Now, let m be even and m

2
= 2t. Then by (2), m|s2. This together with

(3) gives r2 = 1 if r1 is even and r2 = 1 + m
2

if r1 is odd. Consider (x)f =
yr1xs1 , (y)f = yr2xmi, where 0 ≤ r1 ≤ m − 1, r2 = 1(when r1 is even) and
r2 = 1 + m

2
(when, r1 is odd), 0 ≤ i ≤ m − 1 and 0 ≤ s1 ≤ m2 − 1 while

(m, s1) = 1.
In a similar way as for the Case (i), we get

r2k + nr1 ≡ 0 (mod m)(6)

mki+ ns1 +ms1r1
n(n− 1)

2
≡ 0 (mod m2).(7)

Since (m, s1) = 1, the congruence (7) yields that m|n. Also (m, r2) = 1 then

by (6) we have m|k. Combining all these facts, we see that n + mr1
n(n−1)

2
≡

0(mod m2) and hence m2|n or n = m2

2
. If n = m2

2
then we have

m2

2
+
mr1m

2(m2

2
− 1)

4
≡ 0 (mod m2).

This yields that 1 +
mr1(m2

2
−1)

2
≡ 0 (mod 2), which is a contradiction (for,

m
2

= 2t). Then m2|n and u = ykxn = e. This completes the proof of (ii).

Lastly, let m
2

be odd. Then by (2), we get m
2
|s2. Also (m, 1+ r1

m(m−1)
2

) = 1.
Therefore r1 is even and we have r2 = 1 by using relation (3). Consider
(x)f = yr1xs1 and (y)f = yx

m
2

i, where r1 is even , 0 ≤ i ≤ 2m − 1 and
0 ≤ s1 ≤ m2 − 1 when (m, s1) = 1.

Now, we show that f is an automorphism. Similar to Case (i), we have

k + nr1 ≡ 0 (mod m)(8)

m

2
ki+ ns1 +ms1r1

n(n− 1)

2
≡ 0 (mod m2).(9)

By (9), we get m
2
|n. Since r1 is even, by (8) we have m|k. So k = 0. This

together with (9) and (1) yields m2|n so that (iii) is established. ¤
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As a result of this proposition and using φ(m2) = mφ(m) (for every positive
integer m) we get:

Corollary 3.2. For every m ≥ 2, |Aut(Hm)| = m3φ(m) then the order of Hm

divides |Aut(Hm)|.
Before we give the presentation for Aut(Hm) and its proof, we need the

following lemma.

Lemma 3.3. Let m ≥ 2 be an integer. By using the notations of the Propo-
sition 3.1,

(i) if m is odd then Z(Aut(Hm)) = {f0, mt+1, 0| 0 ≤ t < m}
(ii) if m

2
is odd then Z(Aut(Hm)) = {f0, 2mt+1, 0, f0, 2mt+1, m| 0 ≤ t < m}

(iii) if m
2

is even then Z(Aut(Hm)) = {f0, 2mt+1, 0, f0, 2mt+m, m
2
| 0 ≤ t < m}

Proof. (i) Consider T = {f0, mt+1, 0| 0 ≤ t < m}. One can easily check that
T ⊆ Z(Aut(Hm)). Let fr, s, i ∈ Z(Aut(Hm)). Then for every fr1, s1, i1 ∈
Aut(Hm), we have

(x)fr1, s1, i1fr, s, i = (x)fr, s, ifr1, s1, i1

(y)fr1, s1, i1fr, s, i = (y)fr, s, ifr1, s1, i1 .

These yield

i1(1− s) ≡ i(1− s1) (mod m)(10)

r1 + s1r ≡ r + sr1 (mod m)(11)

mr1i+
mrss1(s1 − 1)

2
+
mrss1(s1 − 1)

2
≡ mi1 +

ms1r1s(s− 1)

2
(mod m).

(12)

Substituting, i1 = 1 and s1 = 1 in the congruence (10) gives s = mt+ 1, 0 ≤
t ≤ m. Similarly, we get r = 0 by selecting r1 = 0 and s1 = 2. With using the
above values in (12), we have i = 0. Then fr, s, i = f0, mt+1, 0 ∈ T .

(ii) Let T = {f0, mt+1, 0, f0, mt+1, m| 0 ≤ t ≤ m
2
}. Then one can easily prove

that T ⊆ Z(Aut(Hm)). We now suppose that f2r, s, i ∈ Z(Aut(Hm)). Then
for every f2r1, s1, i1 ∈ Aut(Hm), we get

(x)f2r1, s1, i1f2r, s, i = (x)f2r, s, if2r1, s1, i1

(y)f2r1, s1, i1f2r, s, i = (y)f2r, s, if2r1, s1, i1 .

Hence

(13) 2r + 2sr1 ≡ 2r1 + 2s1r (mod m)

(14) rmi1 +
m2

2
i1(r(2r − 1) +mr1s1s(s− 1)

≡ r1mi+
m2

2
ir1(2r1 − 1) +mrss1(s1 − 1) (mod m2)
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(15)
m

2
i+

m

2
i1s+

m2

2
rsi1(

m

2
i1 − 1)

≡ m

2
i1 +

m

2
is1 +

m2

2
s1r1i(

m

2
i− 1) (mod m2).

We consider the congruence (13) and take r1 = s1 = 1, so 2s ≡ 2 (mod m),
that is s = 1 + m

2
t1. For, (s,m) = 1, t1 is even, so that s = 1 +mt. Again in

(4), replacing s1 by m− 1 and s by 1 +mt, we get 4r ≡ 0(mod m), so 2r ≡ 0
(mod m).

Now, by (15) with i1 = r1 = 0 and s1 = −1, we have mi ≡ 0 (mod m2) so
that i = 0 or i = m. Finally, by (15) when s = mt+ 1, r = 0, i1 = 1 and i = 0
or i = m, we get s = 2mk + 1. Consequently, f2r,s,i = f0,2mk+1,0 or f0,2mk+1,m.
Similarly, if m

2
is even the result follows in a similar way as for the case (ii). ¤

The following corollary is now a consequence of Lemma 3.3.

Corollary 3.4. For every m ≥ 2, |Z(Aut(Hm))| = m.

Let m ≥ 2 be an integer and let Um2 = 〈s1〉 × 〈s2〉 × · · · × 〈st〉. Since
m + 1 ∈ Um2 , there exist unique integers m1, m2,. . . ,mt such that m + 1 =
sm1
1 sm2

2 . . . smt
t . Finally, let ki denote the order of si modulo m2. In other

words, ki is the smallest positive integer such that ski
i ≡ 1 (mod m2).

Consider

A = 〈a1, a2, . . . , at, a, b|am = bm = aki
i = 1,

[[a, b], a] = [[a, b], b] = [[a, b], ai] = [ai, aj] = 1, [a, ai] = asi−1,

[b, ai] = bαi [b, a]βi , [a, b] = am1
1 am2

2 . . . amt
t , 1 ≤ i, j ≤ t 〉;

B = 〈a1, a2, . . . , at, a, b| a2m = b
m
2 = aki

i = 1,

[[a, b], a] = [[a, b], b] = [[a, b], ai] = [ai, aj] = 1, [a, ai] = asi−1,

[b, ai] = bαi [b, a]αi , [a, b] = (am1
1 am2

2 . . . amt
t )

m
2
−1, 1 ≤ i, j ≤ t〉;

C = 〈a1, a2, . . . , at, a, b, c|R〉,
where

R = {am, b
m
2 , aki

i , c
−2b1+m

4 ,

[ai, aj], [b, c], [[b, a], a], [[b, a], b], [[b, a], ai], [ai, a]a
si−1, [a, b][c, a]2,

[ai, b](b[b, a])
αi , [a−1, c−1]([c, a])1+m

2 , caic
−1[a, c](

m
2
−1)

si−1

2 a−1
i b

si−1

2 ,

c−1a−1
i cb

si−1

2 ai[c, a]
(m

2
−1)

si−1

2 , [a, c]am1
1 am2

2 . . . amt
t , 1 ≤ i, j ≤ t},

αi = ski−1
i − 1 and βi =

s
ki
i αi

2
.

With these notations, we state the main result of this paper.

Proposition 3.5. Let m ≥ 2 be an integer. With the notations of Proposition
3.1,
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(i) if m is odd then Aut(Hm) ' A,
(ii) if m

2
is odd then Aut(Hm) ' B,

(iii) if m
2

is even then Aut(Hm) ' C.

Proof. (i) For simplicity, we write f011 = f0, 1, 1, f110 = f1, 1, 0 and fsi
=

f0, si, 0, (1 ≤ i ≤ t). Then for every k ≥ 0,

(x)fk
011 = x, (y)fk

011 = yxkm

(x)fk
110 = ykx, (y)fk

110 = y

(x)fk
si

= xsi
k

, (y)fk
si

= y.

Consequently |f011| = |f110| = m, |fsi
| = ki and

∏t
i=1 |fsi

| = mφ(m). Also
we can show that,

[f011, fsi
] = f si−1

011 , [f110, fsi
] = fαi

110f
βi
m+1, [fsi

, fsj
] = 1, [f110, f011] = fm+1

and

fm+1 = fm1
s1
fm2

s2
. . . fmt

st
,

where αi = ski−1
i − 1 and βi =

s
ki
i αi

2
.

Consider, T = {(∏t
i=1 f

li
si
)f i1

110f
i2
011|0 ≤ i1, i2 < m, 0 ≤ li < ki}, so that

|T | = m3φ(m). Since T ⊆ Aut(Hm),

Aut(Hm) = 〈fs1 , fs2 , . . . , fst , f110, f011〉.
Now, by [4, Proposition 4.2], there is an epimorphism ψ : A → Aut(Hm)

such that ψ(a) = f110, ψ(b) = f011 and ψ(ai) = fsi
, 1 ≤ i ≤ t. It remains to

prove that ψ is one-to-one, and for this, consider the subset

L = {(
t∏

i=1

ali
i )ai1bi2|0 ≤ i1, i2 < m, 0 ≤ li < ki},

of A. By using the relations of A, for every w ∈ A, we get Lw ⊆ L then A = L.
Suppose that ψ((

∏t
i=1 a

li
i )ai1bi2) = e then (

∏t
i=1 f

li
si
)f i1

110f
i2
011 = 1 that is

(x)(
t∏

i=1

f li
si
)f i1

110f
i2
011 = x(16)

(y)(
t∏

i=1

f li
si
)f i1

110f
i2
011 = y.(17)

By (2), yxmi2 = y. So that Corollary 2.3, yields m|i2 i.e. i2 = 0. Again, with
using (1) and Corollary 2.3 we get

i1s
l1
1 s

l2
2 . . . s

lt
t ≡ 0 (mod m)(18)

sl1
1 s

l2
2 . . . s

lt
t +mi1s

l1
1 s

l2
2 . . . s

lt
t (
sl1
1 s

l2
2 . . . s

lt
t − 1

2
) ≡ 1 (mod m2).(19)
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Since (si,m) = 1, by (18), we conclude that m|i1. This together with (19)
gives

sl1
1 s

l2
2 . . . s

lt
t ≡ 1 (mod m2).

Also 〈sj〉
⋂∏

i6=j〈si〉 = {1} then for every i where 1 ≤ i ≤ t, we have

sli
i ≡ 1 (mod m2) that is ki| li. Combining all these facts, we see that

(
∏t

i=1 a
li
i )ai1bi2 = e.

(ii) Let m
2

be odd. To calculate the Aut(Hm), take f011 = f0, 1, 1, f210 =
f2, 1, 0 and fsi

= f0, si, 0, (1 ≤ i ≤ t) then for every k ≥ 0, by using induction
method on k, we get

(x)fk
011 = x, (y)fk

011 = yxkm/2

(x)fk
210 = y2kx, (y)fk

210 = y

(x)fk
si

= xsi
k

, (y)fk
si

= y.

Therefore, |f011| = 2m, |f210| = m
2
, |fsi

| = ki and
∏t

i=1 |fsi
| = mφ(m). Also

we have,

[f011, fsi
] = f si−1

011 , [f210, fsi
] = fαi

210f
αi
m+1, [fsi

, fsj
] = 1, [f011, f210] = f

m
2
−1

m+1

and
fm+1 = fm1

s1
fm2

s2
. . . fmt

st
,

where αi = ski−1
i − 1.

Consider the subset

T = {(
t∏

i=1

f li
si
)f i1

110f
i2
210| 1 ≤ i1 < 2m, 0 ≤ i2 <

m

2
, 0 ≤ li < ki},

so that |T | = m3φ(m) and

Aut(Hm) = 〈fs1 , fs2 , . . . , fst , f110, f210〉.
Now, let (

∏t
i=1 f

li
si
)f i1

011f
i2
210 = 1 then by Corollary 2.3 we get

2i2s
l1
1 s

l2
2 . . . s

lt
t ≡ 0 (mod m)

sl1
1 s

l2
2 . . . s

lt
t + 2mi2s

l1
1 s

l2
2 . . . s

lt
t (

2i2s
l1
1 s

l2
2 . . . s

lt
t − 1

2
) ≡ 1 mod m2

mi1
2

≡ 0 mod m2.

So that 2m|i1, m
2
|i2, ki| li and the result follows in a similar way as for the

case (i).
To prove (iii), let m

4
be odd. We consider f011, f110, f210 and fsi

then for
every k ≥ 0

(x)fk
011 = x, (y)fk

011 = yxkm

(x)fk
110 = yk+[ k

2
]m

2 x, (y)fk
110 = y1+ km

2

(x)fk
210 = y2kx, (y)fk

210 = y.
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Hence |f011| = m, |f110| = |f210| = m
2
, and |fsi

| = ki. Combining all these
facts, we see that

[f011, fsi
] = f si−1

011 , [f210, fsi
] = fαi

210f
αi
m+1,

[fsi
, fsj

] = 1, [f210, f011] = f2m+1,

[[f210, f011], f011] = [[f210, f011], f210] = [[f210, f011], fsi
] = 1

and fm+1 = fm1
s1
fm2

s2
. . . fmt

st
, where αi = ski−1

i − 1.
Take N = 〈fs1 , fs2 , . . . , fst , f011, f210|R1〉, where

R1 = {fm
011, f

m
2

210, f
ki
si
, [fsi

, f011]f
si−1
011 , [fsi

, f210]f
αi
210f

αi
m+1, [fsi

, fsj
],

[f011, f210]f2m+1, [[f210, f011], f011], [[f210, f011], f210], [[f210, f011], fsi
]}.

Then by the above relations we get

N = {(
t∏

i=1

f li
si
)f i1

110f
i2
210|1 ≤ i1 < m, 0 ≤ i2 <

m

2
, 0 ≤ li < ki}.

Hence |N | = m3φ(m)
2

, therefore (Aut(Hm) : N) = 2 and

Aut(Hm)

N
= 〈Nf110|(Nf110)

2 = N〉.
Then the assertion may be obtained by [5, 2.2.4].

We note that, for this case, if m
4

is even then |f110| = m. By the above
consideration, the assertion is established. ¤
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