SOME PROPERTIES FOR INTEGRAL OPERATORS ON SOME ANALYTIC FUNCTIONS WITH COMPLEX ORDER

DANIEL BREAZ, M. K. AOUF, AND NICOLETA BREAZ

Abstract

In this paper we obtain some properties for two general integral operators on analytic functions with complex order.

1. Introduction

Let $U=\{z \in C:|z|<1\}$ be the unit disk of the complex plane and denote by $\mathcal{H}(U)$, the class of the holomorphic functions in U. Consider A the class of functions of the form:

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}
$$

which are analytic in the open unit disk U. In [7] Wiatrowski introduced the class of convex functions of order $b \in C(b \neq 0)$ defined as follows:
Definition 1. A function $f(z) \in A$ is said to be convex function of order $b,(b \in C-\{0\})$, that is, $f \in C(b)$, if and only if $f^{\prime}(z) \neq 0$ in U and

$$
\begin{equation*}
\boldsymbol{\operatorname { R e }}\left\{1+\frac{1}{b} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>0, \tag{1}
\end{equation*}
$$

for all $z \in U$
In [6] Nasr and Aouf introduced the class $S(1-b), b \neq 0$, complex, of starlike functions of order $1-b$, defined as follows:

Definition 2. A function $f(z) \in A$ is said to be starlike function of order $1-b$ $(b \in C-\{0\})$, that is $f \in S(1-b)$, if and only if $f(z) / z \neq 0$ in U and

$$
\begin{equation*}
\boldsymbol{\operatorname { R e }}\left\{1+\frac{1}{b}\left(\frac{z f^{\prime}(z)}{f(z)}-1\right)\right\}>0 \tag{2}
\end{equation*}
$$

for all $z \in U$.

[^0]In [4] Frasin studied the classes $S_{\alpha}^{*}(b)$ and $C_{\alpha}(b)$, where the classes are defined as follows:

Definition 3. A function $f(z) \in A$ is said to be a starlike of complex order $b,(b \in C-\{0\})$ and type $\alpha,(0 \leq \alpha<1)$, that is $f \in S_{\alpha}^{*}(b)$, if and only if

$$
\begin{equation*}
\boldsymbol{\operatorname { R e }}\left\{1+\frac{1}{b}\left(\frac{z f^{\prime}(z)}{f(z)}-1\right)\right\}>\alpha \tag{3}
\end{equation*}
$$

for all $z \in U$.
Definition 4. A function $f(z) \in \mathcal{A}$ is said to be convex of complex order $b,(b \in C-\{0\})$ and type $\alpha,(0 \leq \alpha<1)$, that is $f \in C_{\alpha}(b)$, if and only if

$$
\begin{equation*}
\boldsymbol{\operatorname { R e }}\left\{1+\frac{1}{b} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\alpha \tag{4}
\end{equation*}
$$

for all $z \in U$.
Remark 1. We note that for $\alpha=0$ we have $C_{0}(b)=C(b)$ and $S_{0}^{*}(b)=$ $S(1-b)$. Also we note that $S_{\alpha}^{*}\left(\cos \lambda e^{-i \lambda}\right)=S_{\alpha}^{\lambda}\left(\| \lambda \left\lvert\,<\frac{\pi}{2}\right., 0 \leq \alpha<1\right)$, the class of λ-spirallike functions of order α, was introduced by Libera [5] and $C_{\alpha}\left(\cos \lambda e^{-i \lambda}\right)=C_{\alpha}^{\lambda}\left(\| \lambda \left\lvert\,<\frac{\pi}{2}\right., 0 \leq \alpha<1\right)$ the class of λ-Roberton function of order α was introduced by Chichra [3].

In this paper, we consider two integral operators, the first operator is defined as follows:

$$
\begin{equation*}
F_{n}(z)=\int_{0}^{z}\left(\frac{f_{1}(t)}{t}\right)^{\alpha_{1}} \cdots\left(\frac{f_{n}(t)}{t}\right)^{\alpha_{n}} d t\left(\alpha_{i}>0\right) \tag{5}
\end{equation*}
$$

This operator was introduced by Breaz and Breaz [1] and this second operator is defined as follows:

$$
\begin{equation*}
F_{\alpha_{1}, \ldots, \alpha_{n}}(z)=\int_{0}^{z}\left(f_{1}^{\prime}(t)\right)^{\alpha_{1}} \ldots\left(f_{n}^{\prime}(t)\right)^{\alpha_{n}} d t\left(\alpha_{i}>0\right) \tag{6}
\end{equation*}
$$

This operator was introduced by Breaz, Owa and Breaz [2].
In this paper we shall study some properties for functions belonging to the classes $S_{\alpha}^{*}(b)$ and $C_{\alpha}(b)$.

2. Main Results

Theorem 1. Let $\alpha_{i}, i \in\{1, \ldots, n\}$ be real numbers with the properties $\alpha_{i}>0$ for $i \in\{1, \ldots, n\}$, and

$$
\begin{equation*}
0 \leq 1-\sum_{i=1}^{n} \alpha_{i}<1 \tag{7}
\end{equation*}
$$

We suppose that the functions $f_{i} \in S(1-b)$ for $i=\{1, \ldots, n\}$ and $b \in C-\{0\}$.
Then we have the integral operator $F_{n} \in C_{\gamma}(b)$, where $\gamma=1-\sum_{i=1}^{n} \alpha_{i}$.

Proof. We calculate for F_{n} the derivatives of the first and second order. From (5) we obtain:

$$
F_{n}^{\prime}(z)=\left(\frac{f_{1}(z)}{z}\right)^{\alpha_{1}} \cdots\left(\frac{f_{n}(z)}{z}\right)^{\alpha_{n}}
$$

and

$$
F_{n}^{\prime \prime}(z)=\sum_{i=1}^{n} \alpha_{i}\left(\frac{z f_{i}^{\prime}(z)-f_{i}(z)}{z f_{i}(z)}\right) F_{n}^{\prime}(z) .
$$

Then we have

$$
\begin{align*}
& \frac{F_{n}^{\prime \prime}(z)}{F_{n}^{\prime}(z)}=\alpha_{1}\left(\frac{z f_{1}^{\prime}(z)-f_{1}(z)}{z f_{1}(z)}\right)+\cdots+\alpha_{n}\left(\frac{z f_{n}^{\prime}(z)-f_{n}(z)}{z f_{n}(z)}\right), \\
& \frac{F_{n}^{\prime \prime}(z)}{F_{n}^{\prime}(z)}=\alpha_{1}\left(\frac{f_{1}^{\prime}(z)}{f_{1}(z)}-\frac{1}{z}\right)+\cdots+\alpha_{n}\left(\frac{f_{n}^{\prime}(z)}{f_{n}(z)}-\frac{1}{z}\right) . \tag{8}
\end{align*}
$$

Multiply the relation (8) with z we obtain:

$$
\begin{equation*}
\frac{z F_{n}^{\prime \prime}(z)}{F_{n}^{\prime}(z)}=\sum_{i=1}^{n} \alpha_{i}\left(\frac{z f_{i}^{\prime}(z)}{f_{i}(z)}-1\right) \tag{9}
\end{equation*}
$$

Multiply the relation (9) with $\frac{1}{b}$ we obtain:

$$
\begin{equation*}
\frac{1}{b} \frac{z F_{n}^{\prime \prime}(z)}{F_{n}^{\prime}(z)}=\frac{1}{b} \sum_{i=1}^{n} \alpha_{i}\left(\frac{z f_{i}^{\prime}(z)}{f_{i}(z)}-1\right)=\sum_{i=1}^{n} \alpha_{i}\left[1+\frac{1}{b}\left(\frac{z f_{i}^{\prime}(z)}{f_{i}(z)}-1\right)\right]-\sum_{i=1}^{n} \alpha_{i} \tag{10}
\end{equation*}
$$

The relation (10) is equivalent to:

$$
\begin{equation*}
1+\frac{1}{b} \frac{z F_{n}^{\prime \prime}(z)}{F_{n}^{\prime}(z)}=\sum_{i=1}^{n} \alpha_{i}\left[1+\frac{1}{b}\left(\frac{z f_{i}^{\prime}(z)}{f_{i}(z)}-1\right)\right]-\sum_{i=1}^{n} \alpha_{i}+1 \tag{11}
\end{equation*}
$$

By equalising the real parts of the above inequality we obtain:

$$
\begin{equation*}
\boldsymbol{\operatorname { R e }}\left\{1+\frac{1}{b} \frac{z F_{n}^{\prime \prime}(z)}{F_{n}^{\prime}(z)}\right\}=\sum_{i=1}^{n} \alpha_{i} \operatorname{Re}\left[1+\frac{1}{b}\left(\frac{z f_{i}^{\prime}(z)}{f_{i}(z)}-1\right)\right]-\sum_{i=1}^{n} \alpha_{i}+1 \tag{12}
\end{equation*}
$$

Since $f_{i} \in S(1-b)$ for $i=\{1, \ldots, n\}$, we apply in the above relation the inequality (2) and obtain:

$$
\begin{equation*}
\boldsymbol{\operatorname { R e }}\left\{1+\frac{1}{b} \frac{z F_{n}^{\prime \prime}(z)}{F_{n}^{\prime}(z)}\right\}>1-\sum_{i=1}^{n} \alpha_{i} \tag{13}
\end{equation*}
$$

Because $0 \leq 1-\sum_{i=1}^{n} \alpha_{i}<1$, we have that $F_{n} \in C_{\gamma}(b)$, where $\gamma=1-\sum_{i=1}^{n} \alpha_{i}$.
Corollary 1. Let $\alpha_{1}>0$. If $0 \leq 1-\alpha_{1}<1$ and the function $f_{1} \in S(1-b)$, then the integral operator $F_{1} \in \mathcal{C}_{\rho}(b)$, where $\rho=1-\alpha_{1}$.
Proof. Putting $n=1$ in Theorem 1 we obtain the result.

Putting $b=\cos \lambda e^{-i \lambda}\left(\left.|\lambda|<\frac{\pi}{2} \right\rvert\,\right)$ in Theorem 1, we obtain the following corollary:
Corollary 2. Let the functions $f_{i} \in S^{\lambda}\left(\left.|\lambda|<\frac{\pi}{2} \right\rvert\,\right)$, for all $i \in\{1,2, \ldots, n\}$. Then the integral operator $F_{n} \in C^{\lambda}(\gamma)$, where $\gamma=1-\sum_{i=1}^{n} \alpha_{i}, \alpha_{i}>0$ and $0 \leq 1-\sum_{i=1}^{n} \alpha_{i}<1$.

Theorem 2. Let the functions $f_{i} \in C(b)$, and $b \in C-\{0\}$, for all $i \in$ $\{1, \ldots, n\}$. Then the integral operator $F_{\alpha_{1}, \ldots, \alpha_{n}} \in C_{\eta}(b)$, where $\eta=1-\sum_{i=1}^{n} \alpha_{i}$ and $0 \leq 1-\sum_{i=1}^{n} \alpha_{i}<1$.

Proof. From (6), we have

$$
\begin{equation*}
\frac{F_{\alpha_{1}, \ldots, \alpha_{n}}^{\prime \prime}(z)}{F_{\alpha_{1}, \ldots, \alpha_{n}}^{\prime}(z)}=\alpha_{1} \frac{f_{1}^{\prime \prime}(z)}{f_{1}^{\prime}(z)}+\cdots+\alpha_{n} \frac{f_{n}^{\prime \prime}(z)}{f_{n}^{\prime}(z)} \tag{14}
\end{equation*}
$$

We multiply both sides of (14) with $\frac{z}{b}$, we obtain that

$$
\begin{equation*}
\frac{1}{b} \frac{z F_{\alpha_{1}, \ldots, \alpha_{n}}^{\prime \prime}(z)}{F_{\alpha_{1}, \ldots, \alpha_{n}}^{\prime}(z)}=\alpha_{1} \frac{1}{b} \frac{z f_{1}^{\prime \prime}(z)}{f_{1}^{\prime}(z)}+\cdots+\alpha_{n} \frac{1}{b} \frac{z f_{n}^{\prime \prime}(z)}{f_{n}^{\prime}(z)} \tag{15}
\end{equation*}
$$

From the relation (15) we obtain that:

$$
\begin{equation*}
\boldsymbol{\operatorname { R e }}\left(\frac{1}{b} \frac{z F_{\alpha_{1}, \ldots, \alpha_{n}}^{\prime \prime}(z)}{F_{\alpha_{1}, \ldots, \alpha_{n}}^{\prime}(z)}+1\right)=\sum_{i=1}^{n} \alpha_{i} \boldsymbol{\operatorname { R e }}\left(1+\frac{1}{b} \frac{z f_{i}^{\prime \prime}(z)}{f_{i}^{\prime}(z)}\right)-\sum_{i=1}^{n} \alpha_{i}+1 \tag{16}
\end{equation*}
$$

Since $f_{i} \in C(b)$, we have

$$
\begin{equation*}
\operatorname{Re}\left(\frac{1}{b} \frac{z F_{\alpha_{1}, \ldots, \alpha_{n}}^{\prime \prime}(z)}{F_{\alpha_{1}, \ldots, \alpha_{n}}^{\prime}(z)}+1\right)>1-\sum_{i=1}^{n} \alpha_{i} . \tag{17}
\end{equation*}
$$

Since $0 \leq 1-\sum_{i=1}^{n} \alpha_{i}<1$, the relation (17) implies that the integral operator $F_{\alpha_{1}, \ldots, \alpha_{n}} \in C_{\eta}(b)$, where $\eta=1-\sum_{i=1}^{n} \alpha_{i}$.

Corollary 3. Let the function $f_{1} \in C(b)$. Then the integral operator $F_{\alpha_{1}} \in$ $\mathcal{C}_{\sigma}(b)$, where $\sigma=1-\alpha_{1}$ and $0 \leq 1-\alpha_{1}<1$.
Proof. Putting $n=1$ in Theorem 2, we obtain the result.
Remark 2. Putting $b=\cos \lambda e^{-i \lambda}\left(\left.|\lambda|<\frac{\pi}{2} \right\rvert\,\right)$ in Theorem 2, we have the following corollary:

Corollary 4. Let the functions $f_{i} \in C^{\lambda}\left(\left.|\lambda|<\frac{\pi}{2} \right\rvert\,\right)$, for all $i \in\{1,2, \ldots, n\}$. Then the integral operator $F_{\alpha_{1}, \ldots, \alpha_{n}} \in C^{\lambda}(\eta)$, where $\eta=1-\sum_{i=1}^{n} \alpha_{i}$ and $0 \leq$ $1-\sum_{i=1}^{n} \alpha_{i}<1$.

References

[1] D. Breaz and N. Breaz. Two integral operators. Studia Universitatis Babeş-Bolyai, 3:1321, 2002.
[2] D. Breaz, S. Owa, and N. Breaz. A new integral univalent operator. Acta Univ. Apulensis Math. Inform., (16):11-16, 2008.
[3] P. N. Chichra. Regular functions $f(z)$ for which $z f^{\prime}(z)$ is α-spiral-like. Proc. Amer. Math. Soc., 49:151-160, 1975.
[4] B. A. Frasin. Family of analytic functions of complex order. Acta Math. Acad. Paedagog. Nyházi. (N.S.), 22(2):179-191 (electronic), 2006.
[5] R. J. Libera. Univalent α-spiral functions. Canad. J. Math., 19:449-456, 1967.
[6] M. A. Nasr and M. K. Aouf. Starlike function of complex order. J. Natur. Sci. Math., 25(1):1-12, 1985.
[7] P. Wiatrowski. The coefficients of a certain family of holomorphic functions. Zeszyty Nauk. Uniw. Łódz. Nauki Mat. Przyrod. Ser. II, (39 Mat.):75-85, 1971.

Received July 27, 2007.

Department of Mathematics,
"1 Decembrie 1918" University, Alba Iulia,
Romania
E-mail address: dbreaz@uab.ro
Department of Mathematics, Faculty of Science,
Mansoura University,
Mansoura 35516, Egypt
E-mail address: mkaouf127@yahoo.com
Department of Mathematics,
"1 Decembrie 1918" University, Alba Iulia,

Romania

E-mail address: nbreaz@uab.ro

[^0]: 2000 Mathematics Subject Classification. 30C45.
 Key words and phrases. Integral operator, olomorphic functions, starlike functions, convex functions, complex order.

