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ON THE EXISTENCE OF UNIQUE COMMON FIXED
POINTS FOR CERTAIN CLASSES OF WEAKLY

COMPATIBLE MAPS IN NORMED LINEAR SPACE

GBENGA AKINBO AND OLUSEGUN OWOJORI

Abstract. In this work, we obtain some common fixed points and co-
incidence points results for weakly compatible selfmaps A,S and B, T of
a normed linear space, satisfying certain contractive conditions of integral
type. Our results generalize those of Pathak et al [16], Jungck [6] and
others.

1. Introduction and Preliminaries

In 1976, Jungck [6] used commuting mapping concept as a tool to gener-
alize the Banach fixed point theorem. This was followed by variety of ex-
tensions, generalizations and their applications, giving rise to different no-
tions such as weak commutativity (S. Sessa [17]), compatibility, compatibil-
ity of types (A), (B), (C) and (P) (see [1], [3], [14], [15], [16], etc). The
concept of R-weakly commuting pairs, i.e., the pair (f, g) of maps satisfying
d(fgx, gfx) ≤ Rd(fx, gx), x ∈ X, R > 0, where X is a metric space, was
introduced by Pant [14]. In 1998, Jungck and Rhoades [9] defined two maps f
and g of a metric space to be weakly compatible if and only if they commute
at their coincidence points. Since then the study of common fixed points for
contractive-type maps has been centered on this notion of weak compatibility.
For more on the relationship between compatibility and its weaker forms, see
Djoudi and Aliouche [3], P. P. Murthy [12].

Recently, Pathak et al. [16], in 2006, obtained some existence and uniqueness
results for a class of weakly compatible, parametrically ϕ(ε, δ; a)-contraction
mappings in metric space.

Throughout this paper, we shall always refer to R+ as the set of nonnegative
real numbers.
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Definition 1.1 (Pathak et al. [16]). Let A,B, S, T be selfmappings of a met-
ric space (X, d) such that AX ⊆ TX and BX ⊆ SX. Define a function
δ : (0,∞) → (0,∞) such that δ(ε) > ε for all ε > 0. The pair (A,B) is said
to be parametrically ϕ(ε, δ; a)-contraction with respect to the pair (S, T ) if for
some a ∈ (1

2
, 1] and for all x, y ∈ X, the following are satisfied:

(1.1) ad(Ax,By) + (1− a)d(By, Ty) ≤ ϕ(ad(Sx, Ty) + (1− a)d(Ax, Sx))

where ϕ : R+ → R+ is such that

(a) ϕ is continuous;
(b) ϕ(t) < t for all t > 0;
(c) ε ≤ d(By, Ty) < δ(ε) implies ϕ(d(Ax, Sx)) < ε;
(d) ϕ(0) = 0.

Definition 1.2 (Jungck and Rhoades [9]). A pair of mappings (A, S) is called
weakly compatible if they commute at their coincidence points. (A coincidence
point of A and S is any point u satisfying Au = Su.)

The following result was obtained by Pathak et al. [16].

Theorem 1.1 (Pathak et al. [16]). Let S and T be selfmaps of a metric space
(X, d) and the pair (A,B) is parametrically ϕ(ε, δ; a)-contraction with respect
to the mappings (S, T ). Let TX be complete, then there exist u, v, w ∈ X such
that Au = Su = w = Bv = Tv.

Furthermore, if the pair (A, S) and (B, T ) are weakly compatible, then w is
the unique common fixed point of the mappings A,B, S and T .

In proving Theorem 1.1, the following iteration procedure was used.

Definition 1.3. Let A,B, S and T be selfmaps of a metric space X satisfying

(1.2) AX ⊆ TX and BX ⊆ SX.

Then for any x0 ∈ X there exists a point x1 ∈ X such that y0 = Ax0 = Tx1

and for this point x1, we can choose a point x2 ∈ X such that y1 = Bx1 = Sx2

and so on. In general, we can define a sequence {yn} in X such that

(1.3) y2n = Ax2n = Tx2n+1 and y2n+1 = Bx2n+1 = Sx2n+2, n = 0, 1, 2, . . .

This is called (S, T )-iteration on X.

Remark 1.1. Observe that if we choose a = 1, A = B and S = T = I, where I
is the identity mapping, then A reduces to a ϕ-contraction and (1.3) reduces
to the Picard iteration.

If, in addition, we set ϕ(t) = t, A is a nonexpansive mapping and (1.3)
becomes the Krasnoselskij iteration, see [10].

This sequence has been proved to converge to the unique common fixed point
of A,B, S and T by several authors under various conditions (See Jungck [6],
Chugh and Kumar [2], Pathak et al. [15, 16], Babu and Prasad [1], Djoudi and
Aliouche [3]).
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In this paper we do away with condition (c) of Definition 1.1 and employ
the iteration process (1.3).

2. Main Results

We now present our main results in this paper.

Theorem 2.1. Let A,B, S and T be selfmaps of a normed linear space X with
AX ⊆ TX and BX ⊆ SX satisfying the following condition.
(2.1)
h ‖Ax−By‖p +(1−h) ‖By − Ty‖p ≤ ϕ(h ‖Sx− Ty‖p +(1−h) ‖Ax− Sx‖p),

where, p > 0, h ∈ (1
2
, 1] and ϕ : R+ → R+ is such that:

(a) ϕ is continuous;
(b) ϕ(t) < t for all t > 0;

Let SX or TX be a complete subspace of X and the pairs (A, S) and (B, T )
be weakly compatible, then A,B, S and T have a unique common fixed point.

We shall require the following Lemmas in the proof of Theorem 2.1. Our
method of proof is almost the same as that of Pathak et al. [10].

Lemma 2.1. Let the mappings A,B, S and T be as in Theorem 2.1. Then the
(S, T )-iteration defined on X is a Cauchy sequence.

Proof. Since AX ⊆ TX and BX ⊆ SX, we can define the (S, T )-iteration on
x0 ∈ X as in (1.3). Therefore, choosing k = 2n, q = 2m − 1, k and q are of
different parities, and we have

h ‖Ax2n −Bx2m−1‖p + (1− h) ‖Bx2m−1 − Tx2m−1‖p

= h ‖y2n+1 − y2m‖p + (1− h) ‖y2m − y2m−1‖p

= h ‖yk+1 − yq+1‖p + (1− h) ‖yq+1 − yq‖p

and

h ‖Sx2n − Tx2m−1‖p + (1− h) ‖Sx2n − Ax2n‖p

= h ‖y2n − y2m−1‖p + (1− h) ‖y2n − y2n+1‖p

= h ‖yk − yq‖p + (1− h) ‖yk − yq+1‖p

Hence, from (2.1),

(2.2) h ‖yk+1 − yq+1‖p + (1− h) ‖yq+1 − yq‖p

≤ ϕ(h ‖yk − yq‖p + (1− h) ‖yk − yq+1‖p)

Now, let x0 be an arbitrary point in X. Then from (2.2) and (2.1)(b),
choosing k = 2n, q = 2m− 1,

h ‖y2n+1 − y2n‖p + (1− h) ‖y2n − y2n−1‖p

≤ ϕ(h ‖y2n − y2n−1‖p + (1− h) ‖y2n − y2n+1‖p)
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< h ‖y2n − y2m−1‖p + (1− h) ‖y2n − y2n+1‖p

That is,

(2h− 1) ‖y2n+1 − y2n‖p < (2h− 1) ‖y2n − y2n−1‖p

Since h ∈ (1
2
, 1], we have

‖y2n+1 − y2n‖p < ‖y2n − y2n−1‖p .

Similarly for p = 2n+ 1 and q = 2n, we have

‖y2n+2 − y2n+1‖p < ‖y2n+1 − y2n‖p .

Since p > 0, then {‖yn − yn+1‖}∞n=0 is a decreasing sequence which converges
to its greatest lower bound, say, t ≥ 0.

Suppose t > 0, from (2.1), for x = x2n, y = x2n−1, we obtain

h ‖Ax2n −Bx2n−1‖p + (1− h) ‖Bx2n−1 − Tx2n−1‖p

≤ ϕ(h ‖Sx2n − Tx2n−1‖p + (1− h) ‖Ax2n − Sx2n‖p)

That is,

h ‖y2n − y2n−1‖p + (1− h) ‖y2n−1 − y2n−2‖p

≤ ϕ(h ‖y2n − y2n−2‖p + (1− h) ‖y2n − y2n−1‖p)

Letting n→∞,we have tp ≤ ϕ(tp) < tp. This is a contradiction. Therefore
t = 0. Hence,

(2.3) lim
n→∞

‖yn − yn+1‖ = 0.

We now show that the sequence {yn} defined by (1.3) is Cauchy. By virtue of
(2.3) it suffices to show that the subsequence {y2n} of {yn} is Cauchy. Suppose
not. Then there exist ε > 0 such that ‖y2ni

− y2mi
‖ → ε, as i → ∞. Also, as

in Djoudi and Nisse [4],

(2.4) ‖y2ni+1 − y2mi
‖ , ‖y2ni

− y2mi−1‖ → ε, as i→∞.

Therefore,

h ‖Ax2ni
−Bx2mi−1‖p + (1− h) ‖Bx2mi−1 − Tx2mi−1‖p

≤ ϕ(h ‖Sx2ni
− Tx2mi−1‖p + (1− h) ‖Ax2ni

− Sx2ni
‖p)

so that

h ‖y2ni+1 − y2mi
‖p + (1− h) ‖y2mi

− y2mi−1‖p

≤ ϕ(h ‖y2ni
− y2mi−1‖p + (1− h) ‖y2ni+1 − y2ni

‖p).

Letting i→∞, by (2.3) and (2.4),

hεp ≤ ϕ(hεp) < hεp,

which is also a contradiction. Therefore, {yn} is Cauchy. ¤
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Lemma 2.2. Let ϕ : R+ −→ R+ be a continuous function satisfying ϕ(t) < t
for all t > 0. Then, ϕ(0) = 0. Hence, ϕ(t) ≤ t for all t ≥ 0.

We are now in a convenient position to prove Theorem 2.1.

Proof of Theorem 2.1. Since the subsequence {y2n} of {yn} which is in SX is
Cauchy, and SX is complete, then {y2n} converges to a point x∗ = Su ∈ SX
for some u ∈ X.

If we substitute x = u, y = x2n−1 into (2.1),

h ‖Au−Bx2n−1‖p + (1− h) ‖Bx2n−1 − Tx2n−1‖p

≤ ϕ(h ‖Su− Tx2n−1‖p + (1− h) ‖Au− Su‖p)

or,

h ‖Au− y2n‖p + (1− h) ‖y2n − y2n−1‖p

≤ ϕ(h ‖x∗ − y2n−1‖p + (1− h) ‖Au− x∗‖p)

Letting n→∞,

h ‖Au− x∗‖p + (1− h) ‖x∗ − x∗‖p ≤ ϕ(h ‖x∗ − x∗‖p + (1− h) ‖Au− x∗‖p)

or,
h ‖Au− x∗‖p ≤ ϕ((1− h) ‖Au− x∗‖p) ≤ (1− h) ‖Au− x∗‖p ,

by Lemma 2.2. This yields

(2h− 1) ‖Au− x∗‖p ≤ 0.

But since h ∈ (1/2, 1], ‖Au− x∗‖p = 0. Hence, Au = x∗ = Su.
Since AX ⊆ TX, there exists some v ∈ X such that Au = Tv, so that

x∗ = Su = Au = Tv. If we now put x = u, y = v into (2.1), we obtain

h ‖Au−Bv‖p +(1−h) ‖Bv − Tv‖p ≤ ϕ(h ‖Su− Tv‖p +(1−h) ‖Au− Su‖p),

yielding

h ‖x∗ −Bv‖p + (1− h) ‖Bv − x∗‖p ≤ ϕ(h ‖x∗ − x∗‖p + (1− h) ‖x∗ − x∗‖p).

That is,
‖x∗ −Bv‖p = 0.

Hence,

(2.5) Su = Au = x∗ = Bv = Tv.

Since the pair (A, S) is weakly compatible, that is, they commute at their
coincidence point u, then

(2.6) AAu = ASu = SAu.

Now, substituting x = Au, y = v into (2.1), by (2.5) and (2.6) we obtain

h ‖AAu− x∗‖p ≤ ϕ(h ‖AAu− x∗‖p) ≤ h ‖AAu− x∗‖p

Thus, AAu = x∗ = Au, that is, Au = u. This, together with the first equality
in (2.6), yields Su = u. Therefore, u ∈ X is a common fixed point of A and S.
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Considering that B and T are also weakly compatible, by a similar process
it is easy to see that v ∈ X is a common fixed point of B and T , using (2.1)
and (2.5).

It is obvious that u = v. Indeed, putting x = u, y = v back in (2.1),
we see that h ‖u− v‖p ≤ ϕ(h ‖u− v‖p), that is ‖u− v‖ = 0. Consequently,
u = v = x∗ is a common fixed point of A,B, S and T .

Finally for uniqueness, let if possible, x′ be another common fixed point of
A,B, S and T such that x∗ 6= x′. Then ‖x∗ − x′‖ > 0, and

‖x∗ − x′‖p
= h ‖x∗ − x′‖p

+ (1− h) ‖x∗ − x′‖p

= h ‖Ax∗ −Bx′‖p
+ (1− h) ‖Bx∗ − Tx′‖p

≤ ϕ(h ‖Sx∗ − Tx′‖p
+ (1− h) ‖Ax∗ − Sx′‖p

)

= ϕ(h ‖x∗ − x′‖p
+ (1− h) ‖x∗ − x′‖p

)

= ϕ(‖x∗ − x′‖p
)

< ‖x∗ − x′‖p
.

This is a contradiction. Hence, x∗ is the unique common fixed point of A,B, S
and T . This completes the proof. ¤

Theorem 2.1. is a special case of Theorem 2.2. below. For the latter reduces
to the former when ψ(t) = 1.

Theorem 2.2. Let A,B, S and T be selfmaps of a normed linear space X such
that

AX ⊆ TX, BX ⊆ SX,

and

(2.7) h

(∫ ‖Ax−By‖

0

ψ(t)dt

)p

+ (1− h)

(∫ ‖By−Ty‖

0

ψ(t)dt

)p

≤ ϕ[h

(∫ ‖Sx−Ty‖

0

ψ(t)dt

)p

+ (1− h)

(∫ ‖Ax−Sx‖

0

ψ(t)dt

)p

],

where p > 0, h ∈ (1
2
, 1],ϕ is as in Theorem 2.1.1 and ψ : R+ → R+ is a

Lebesgue integrable mapping which is summable nonnegative and such that

(2.8)

∫ ε

0

ψ(t)dt > 0 for each ε > 0.

Suppose that one of SX and TX is complete and the pairs (A, S) and (B, T )
are weakly compatible. Then A,B, S and T have a unique common fixed point
in X.

We first state the following useful lemma before proving Theorem 2.2.

Lemma 2.3. Let A,B, S and T be selfmaps of a normed linear space X sat-
isfying (2.7) for all x, y in X, where 0 < h ≤ 1, p ≥ 1 and ψ satisfies (2.8).
Then, the sequence {yn} defined by (1.3) is Cauchy in X.
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Proof of Theorem 2.2. By Lemma 2.3. the subsequence

{y2n−1} = {Tx2n−1} ⊆ TX

is a Cauchy sequence. Since TX is complete, it converges to a point z = Tu for
some u ∈ X. Hence, subsequences {Ax2n−2}, {Bx2n−1}, {Sx2n} also converge
to z.

If Bu 6= z, using (2.7), we get

h

(∫ ‖Ax2n−Bu‖

0

ψ(t)dt

)p

+ (1− h)

(∫ ‖Bu−Tu‖

0

ψ(t)dt

)p

≤ ϕ[h

(∫ ‖Sx2n−Tu‖

0

ψ(t)dt

)p

+ (1− h)

(∫ ‖Ax2n−Sx2n‖

0

ψ(t)dt

)p

].

Letting n→∞, we have
(∫ ‖z−Bu‖

0

ψ(t)dt

)p

≤ ϕ(0) = 0,

which contradicts (2.8).
Therefore ∫ ‖z−Bu‖

0

ψ(t)dt = 0,

and (2.8) implies that z = Bu = Tu. Since BX ⊆ SX, there exists v ∈ X
such that z = Bu = Sv. If z 6= Av, using (2.7) we have

h

(∫ ‖Av−Bu‖

0

ψ(t)dt

)p

+ (1− h)

(∫ ‖Bu−Tu‖

0

ψ(t)dt

)p

≤ ϕ[h

(∫ ‖Sv−Tu‖

0

ψ(t)dt

)p

+ (1− h)

(∫ ‖Av−Sv‖

0

ψ(t)dt

)p

],

that is,

h

(∫ ‖Av−z‖

0

ψ(t)dt

)p

≤ ϕ

[
(1− h)

(∫ ‖Av−z‖

0

ψ(t)dt

)p]

≤ (1− h)

(∫ ‖Av−z‖

0

ψ(t)dt

)p

,

which implies that

(2h− 1)

(∫ ‖Av−z‖

0

ψ(t)dt

)p

< 0.

This is also a contradiction. Therefore, Tu = Bu = z = Av = Sv.
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Since the pair (B, T ) is weakly compatible, we have Bz = BTu = TBu =
Tz, and putting x = v, y = z into (2.7), we obtain

h

(∫ ‖z−Bz‖

0

ψ(t)dt

)p

≤ ϕ

(
h

(∫ ‖z−Bz‖

0

ψ(t)dt

)p)
,

yielding z = Bz = Tz.
Similarly, we can show that z = Az = Sz from the weak compatibility of

(A, S) and (2.7).
Hence, z is a common fixed point of A,B, S and T .
The uniqueness of z follows from (2.7). ¤

Corollary 2.1. Let A and S be selfmaps of a normed linear space X satisfying
AX ⊆ SX and

h

(∫ ‖Ax−Ay‖

0

ψ(t)dt

)p

+ (1− h)

(∫ ‖Ay−Sy‖

0

ψ(t)dt

)p

≤ ϕ[h

(∫ ‖Sx−Sy‖

0

ψ(t)dt

)p

+ (1− h)

(∫ ‖Ax−Sx‖

0

ψ(t)dt

)p

],

for all x, y in X, 0 < h ≤ 1, p ≥ 1 and ψ satisfies (2.8). Suppose SX
is complete and (A, S) is weakly compatible. Then, A and S have a unique
common fixed point in X.

Proof. Put B = A and T = S in Theorem 2.2. ¤
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