ON SUBMANIFOLDS OF CODIMENSION 2 IMMERSED IN A HSU - QUARTERNION MANIFOLD

LOVEJOY S.DAS, RAM NIVAS, AND MOHD. NAZUL ISLAM KHAN

Abstract

Integrability conditions of an almost quaternion manifold were studied by Yano and Ako [12]. Quaternion submanifolds of codimension 2 have been defined and studied by A. Hamoui [8] and others. In this paper, we have defined a Hsu-quaternion manifold and showed that a submanifold of codimension 2 of the Hsu-quaternion manifold admits $\mathrm{Hsu}-(F, U, V$, $u, v, \eta)$-structure.

1. Introduction

A Hsu-quaternion manifold is the manifold $M^{4 n}$ admitting a set of tensor fields $\stackrel{*}{F}, \stackrel{*}{G}, \stackrel{*}{H}$ of type $(1,1)$ satisfying following relations [9].

$$
\begin{equation*}
\stackrel{*}{F^{2}}=a^{r} I_{n}, \quad \stackrel{*}{G^{2}}=b^{r} I_{n} \stackrel{*}{H}^{2}=c^{r} I_{n} ; \quad 0 \leq r \leq n \text { and } c^{r}=a^{r} b^{r} \tag{1.1}
\end{equation*}
$$

I_{n} being identity operator; a, b, c complex numbers and r an integer such that

$$
\begin{equation*}
b^{r} \stackrel{*}{F}=\stackrel{*}{G} \stackrel{*}{H}=\stackrel{*}{H} \stackrel{*}{G} \tag{1.2a}
\end{equation*}
$$

$$
\begin{equation*}
a^{r} \stackrel{*}{G}=\stackrel{*}{H} \stackrel{*}{F}=\stackrel{*}{F} \stackrel{*}{H} \tag{1.2b}
\end{equation*}
$$

$$
\begin{equation*}
\stackrel{*}{H}=\stackrel{*}{F} \stackrel{*}{G}=\stackrel{*}{G} \stackrel{*}{F} \tag{1.2c}
\end{equation*}
$$

Let $M^{4 n-2}$ be the submanifold of codimension 2 of the Hsu-quaternion manifold $M^{4 n}$. Let B represent the differential of immersion $\tau: M^{4 n-2} \rightarrow M^{4 n}$. Suppose further that C and D are mutually orthogonal unit normals to $M^{4 n}$. Let $\stackrel{*}{F} B X$, the transformation of $B X$ by $\stackrel{*}{F}$, be expressed as

$$
\begin{equation*}
\stackrel{*}{F} B X=B F X+u(X) C+v(X) D \tag{1.3}
\end{equation*}
$$

[^0]where X is an arbitrary vector field, $u, v 1$-forms and F is tensor field of type $(1,1)$ on $M^{4 n-2}$

Corresponding to the $(1,1)$ tensor fields $\stackrel{*}{F}, \stackrel{*}{G}, \stackrel{*}{H}$ we introduce the vector fields $U, U^{\prime}, U^{\prime \prime}, V, V^{\prime}, V^{\prime \prime}, 1$ - forms $u, u^{\prime}, u^{\prime \prime}, v, v^{\prime}, v^{\prime \prime}$ and a function η such that

$$
\begin{align*}
& \stackrel{*}{F} C=-B U+\eta D \tag{1.4a}\\
& \stackrel{*}{F} D=-B V-\eta D \tag{1.4b}
\end{align*}
$$

similarly for the tensor fields $\stackrel{*}{G}$ and $\stackrel{*}{H}$ we can write transformation as follows

$$
\begin{gather*}
\stackrel{*}{G} B X=B G X+u^{\prime}(X) C+v^{\prime}(X) D \tag{1.5a}\\
\stackrel{*}{G} C=-B U^{\prime}+\eta D \tag{1.5b}
\end{gather*}
$$

$$
\begin{equation*}
\stackrel{*}{G} D=-B V^{\prime}-\eta C \tag{1.5c}
\end{equation*}
$$

and

$$
\begin{equation*}
\stackrel{*}{H} B X=B H X+u^{\prime \prime}(X) C+v^{\prime \prime}(X) D \tag{1.6a}
\end{equation*}
$$

$$
\begin{equation*}
\stackrel{*}{H} C=-B U^{\prime \prime}+\eta D \tag{1.6b}
\end{equation*}
$$

$$
\begin{equation*}
\stackrel{*}{H} D=-B V^{\prime \prime}-\eta C . \tag{1.6c}
\end{equation*}
$$

A manifold $V m$ will be called to possess a $\operatorname{Hsu}-(F, U, V, u, v, \eta)-$ structure if there exists a tensor field F of type (1,1), two vector fields U, V two 1 - forms u, v and a function η satisfying

$$
\begin{equation*}
F^{2}=a^{r} I_{n}+u \otimes U+v \otimes V \tag{1.7a}
\end{equation*}
$$

$$
\begin{equation*}
u \circ F=\eta v \tag{1.7b}
\end{equation*}
$$

$$
\begin{equation*}
v \circ F=-\eta u \tag{1.7c}
\end{equation*}
$$

$$
\begin{equation*}
F(U)=-\eta v \tag{1.7d}
\end{equation*}
$$

$$
\begin{equation*}
F(V)=\eta U \tag{1.7e}
\end{equation*}
$$

A manifold $V m$ will be called to possess $\mathrm{Hsu}-\left(F, G, H, U, U^{\prime}, U^{\prime \prime}, V, V^{\prime}\right.$, $\left.V^{\prime \prime}, u, u^{\prime}, u^{\prime \prime}, v, v^{\prime}, v^{\prime \prime}, \eta\right)$ - structure if there exists tensor fields F, G, H each
of type $(1,1)$, vector fields $U, U^{\prime}, U^{\prime \prime}, V, V^{\prime}, V^{\prime \prime} ; 1$ - form $u, u^{\prime}, u^{\prime \prime}, v, v^{\prime}, v^{\prime \prime}$ and a function η satisfying

$$
\begin{equation*}
G H=b^{r} F-u^{\prime \prime} \otimes U^{\prime}-v^{\prime \prime} \otimes V^{\prime} \tag{1.8a}
\end{equation*}
$$

$$
u^{\prime} \circ H=b^{r} u-\eta v^{\prime \prime}
$$

$$
v^{\prime} \circ H=b^{r} v-\eta u^{\prime \prime}
$$

$$
b^{r} U=G U^{\prime \prime}+\eta V^{\prime}
$$

$$
u^{\prime} \circ U^{\prime \prime}=-\eta^{2}
$$

$$
v^{\prime} \circ V^{\prime \prime}=\eta^{2}
$$

$$
v^{\prime} \circ U^{\prime \prime}=-b^{r} \eta
$$

$$
\begin{gather*}
G V^{\prime \prime}=b^{r} V+\eta U^{\prime} \tag{1.8h}\\
u^{\prime} \circ V^{\prime \prime}=b^{r} \eta \tag{1.8i}
\end{gather*}
$$

2. Submanifolds of Hsu-quaternion manifold

In this section, we shall prove some theorems on the submanifolds $M^{4 n-2}$ of codimension 2 of Hsu-quaternion manifold $M^{4 n}$.

Theorem 1. The submanifold $M^{4 n-2}$ of codimension 2 of Hsu-quaternion manifold $M^{4 n}$ admits a Hsu-(F,U,V,u,v, $\left.\eta\right)$-structure.

Proof. Applying $\stackrel{*}{F}$ to (1.3) and (1.4a), (1.4b) and making use of (1.1) we obtain

$$
a^{r} B X=B F^{2} X+u(F X) C+v(F X) D+u(X) F C+v(X) F D
$$

using (1.4a), (1.4b) and equating of tangential and normal vector fields, we get

$$
\begin{equation*}
F^{2} X=a^{r} X+u(X) U+v(X) V \tag{2.1a}
\end{equation*}
$$

$$
\begin{equation*}
u(F X)=\eta v(X) \tag{2.1b}
\end{equation*}
$$

$$
\begin{equation*}
v(F X)=-\eta u(X) \tag{2.1c}
\end{equation*}
$$

Since C, D are mutually independent. Again operation of $\stackrel{*}{F}$ on (1.4a) and using (1.1) yields

$$
a^{r} C=-\{B F U+u(U) C+v(U) D\}+\eta\{-B V-\eta C\}
$$

Equating of tangential and normal fields gives

$$
\begin{equation*}
F(U)=-\eta V \tag{2.2a}
\end{equation*}
$$

$$
\begin{equation*}
u(U)=-\left(a^{r} I_{n}+\eta^{2}\right) \tag{2.2b}
\end{equation*}
$$

$$
\begin{equation*}
v(U)=0 \tag{2.2c}
\end{equation*}
$$

similarly applying $\stackrel{*}{F}$ to (1.4b) and equating tangential and normal vector fields, we obtain

$$
\begin{gather*}
F(V)=\eta U \tag{2.3a}\\
v(V)=-\left(a^{r} I_{n}+\eta^{2}\right) \\
u(V)=0
\end{gather*}
$$

The theorem follows by the virtue of equations (2.1), (2.2) and (2.3).
Corollary 1. The submanifold $M^{4 n-2}$ of codimension 2 of Hsu-quaternion manifold $M^{4 n}$ also admits similar structures with respect of tensor field $\stackrel{*}{G}$ and $\stackrel{*}{H}$.

Theorem 2. An orientable submanifold of codimension 2 of almost Hsuquaternion manifold admits a F, G, H 3-structure expressed as

$$
\left(F, G, H, U, U^{\prime}, U^{\prime \prime}, V, V^{\prime}, V^{\prime \prime}, u, u^{\prime}, u^{\prime \prime}, v, v^{\prime}, v^{\prime \prime}, \eta\right)
$$

Proof. Operating (1.2a) with $\stackrel{*}{F}$ both sides, we get

$$
b^{r} \stackrel{*}{F} B X=\stackrel{*}{G} \stackrel{*}{H} B X
$$

which in view of (1.3) and (2.1a) yields

$$
\begin{gathered}
B G H X+u^{\prime}(H X) C+v^{\prime}(X H) D+u^{\prime}(X)\left(-B U^{\prime}+\eta D\right)+v^{\prime \prime}(X)\left(-B V^{\prime}-\eta C\right) \\
=b^{r}\{B F X+u(X) C+v(X) D\}
\end{gathered}
$$

Equating of tangential and normal tensor fields gives

$$
\begin{equation*}
G H X=b^{r} F X-u^{\prime \prime}(X) U^{\prime}-v^{\prime \prime}(X) V^{\prime} \tag{2.4a}
\end{equation*}
$$

$$
\begin{equation*}
u^{\prime}(H X)=b^{r} u(X)-\eta v^{\prime \prime}(X) \tag{2.4b}
\end{equation*}
$$

$$
\begin{equation*}
v^{\prime}(H X)=b^{r} v(X)-\eta u^{\prime \prime}(X) \tag{2.4c}
\end{equation*}
$$

Also,

$$
b^{r} \stackrel{*}{F} C=\stackrel{*}{G} \stackrel{*}{H} C
$$

which in view of (1.4a) and (1.6) becomes

$$
b^{r}(-B U+\eta D)=G\left(-B U^{\prime \prime}+\eta D\right)
$$

Making use of and on(1.5a) equating of tangential and normal vector fields, we get

$$
\begin{equation*}
b^{r} U=G U^{\prime \prime}+\eta V \tag{2.5a}
\end{equation*}
$$

$$
\begin{gather*}
u^{\prime}\left(U^{\prime \prime}\right)=-\eta^{2} \tag{2.5b}\\
v^{\prime}\left(U^{\prime \prime}\right)=-b^{r} \eta \tag{2.5c}
\end{gather*}
$$

and the equation $\stackrel{*}{G} \stackrel{*}{H} D=b^{r} \stackrel{*}{F} D$, yields in a similar manner the following results

$$
\begin{equation*}
G V^{\prime \prime}=b^{r} V+\eta U^{\prime} \tag{2.6a}
\end{equation*}
$$

$$
\begin{equation*}
u^{\prime}\left(V^{\prime \prime}\right)=\eta b^{r} \tag{2.6b}
\end{equation*}
$$

$$
\begin{equation*}
v^{\prime}\left(V^{\prime \prime}\right)=\eta^{2} \tag{2.6c}
\end{equation*}
$$

thus we have

$$
\begin{equation*}
G H=b^{r} F-u^{\prime \prime}(X) U^{\prime}-v^{\prime \prime}(X) V^{\prime} \tag{2.7a}
\end{equation*}
$$

$$
\begin{equation*}
v^{\prime} o H=b^{r} v-\eta u^{\prime \prime} \tag{2.7b}
\end{equation*}
$$

$$
\begin{equation*}
u^{\prime} o H=b^{r} u-\eta v^{\prime \prime} \tag{2.7c}
\end{equation*}
$$

$$
\begin{equation*}
G U^{\prime \prime}=b^{r} V+\eta V^{\prime} \tag{2.7d}
\end{equation*}
$$

$$
\begin{equation*}
G V^{\prime \prime}=b^{r} V+\eta U^{\prime} \tag{2.7e}
\end{equation*}
$$

$$
\begin{equation*}
u^{\prime} \circ U^{\prime \prime}=-\eta^{2} \tag{2.7f}
\end{equation*}
$$

$$
\begin{equation*}
v^{\prime} \circ V^{\prime \prime}=\eta^{2} \tag{2.7~g}
\end{equation*}
$$

$$
\begin{equation*}
v^{\prime} \circ U^{\prime \prime}=-\eta b^{r} \tag{2.7h}
\end{equation*}
$$

similarly, we obtain the rest of the relations

$$
\begin{equation*}
H F=a^{r} G-u \otimes U^{\prime \prime}-u \otimes V^{\prime \prime} \tag{2.8a}
\end{equation*}
$$

$$
\begin{equation*}
F G=H-u^{\prime} \otimes U-v^{\prime} \otimes V \tag{2.8b}
\end{equation*}
$$

Further more we have

$$
\stackrel{*}{G} \stackrel{*}{H} B X=\stackrel{*}{H} \stackrel{*}{G} B X
$$

$$
\begin{align*}
& B G H X+u^{\prime}(H X) C+v^{\prime}(H X) D+u^{\prime \prime}(X)\left(-B U^{\prime}+\eta D\right)+v^{\prime \prime}(X)\left(-B V^{\prime}-\eta C\right) \tag{2.9a}\\
& =B H G X+u^{\prime \prime}(G X) C+v^{\prime \prime}(G X) D+u^{\prime}(X)(-B U+\eta D)+v(X)\left(-B V^{\prime \prime}-\eta C\right)
\end{align*}
$$

Equating of tangential and normal vector fields gives
(2.10a) $\quad(G H-H G) X=u^{\prime \prime}(X) U^{\prime}+v^{\prime \prime}(X) V^{\prime}-u^{\prime}(X) U^{\prime \prime}-v^{\prime}(X) V^{\prime \prime}$

$$
\begin{equation*}
u^{\prime}(H X)-u^{\prime \prime}(G X)=\eta v^{\prime \prime}(X)-\eta v^{\prime}(X) \tag{2.10b}
\end{equation*}
$$

$$
\begin{equation*}
v^{\prime}(H X)-v^{\prime \prime}(G X)=\eta u^{\prime}(X)-\eta u^{\prime \prime}(X) \tag{2.10c}
\end{equation*}
$$

Again

$$
\begin{gathered}
\stackrel{*}{G} \stackrel{*}{H} C=\stackrel{*}{H} \stackrel{*}{G} C \text { and } \\
\stackrel{*}{G} \stackrel{*}{H} D=\stackrel{*}{H} \stackrel{*}{G} D
\end{gathered}
$$

which yields in a similar manner

$$
\begin{equation*}
G U^{\prime \prime}+\eta V^{\prime}-H U^{\prime}-\eta V^{\prime \prime}=0 \tag{2.11a}
\end{equation*}
$$

$$
\begin{align*}
& u^{\prime}\left(U^{\prime \prime}\right)=u^{\prime \prime}\left(U^{\prime}\right) \tag{2.11b}\\
& v^{\prime}\left(U^{\prime \prime}\right)=v^{\prime \prime}\left(U^{\prime}\right)
\end{align*}
$$

and

$$
\begin{equation*}
G V^{\prime \prime \prime}+\eta U^{\prime}-H V^{\prime}-\eta U^{\prime \prime}=0 \tag{2.12a}
\end{equation*}
$$

$$
\begin{equation*}
u^{\prime}\left(V^{\prime \prime}\right)=u^{\prime \prime}\left(V^{\prime}\right) \tag{2.12b}
\end{equation*}
$$

$$
\begin{equation*}
v^{\prime}\left(V^{\prime \prime}\right)=v^{\prime \prime}\left(V^{\prime}\right) \tag{2.12c}
\end{equation*}
$$

We can also prove that

$$
\begin{equation*}
H F-F H=u \otimes U^{\prime \prime}+v \otimes V^{\prime \prime}-u^{\prime \prime} \otimes U-v^{\prime \prime} \otimes V \tag{2.13a}
\end{equation*}
$$

$$
\begin{equation*}
u^{\prime \prime} \circ F-u \circ H=\eta v-\eta v^{\prime \prime} \tag{2.13b}
\end{equation*}
$$

$$
\begin{equation*}
v^{\prime \prime} \circ F-v \circ H=\eta u^{\prime \prime}-\eta u \tag{2.13c}
\end{equation*}
$$

$$
\begin{equation*}
H U-F U^{\prime \prime}+\eta V^{\prime \prime}-\eta V=0 \tag{2.13d}
\end{equation*}
$$

$$
\begin{equation*}
u^{\prime}(U)=u\left(U^{\prime \prime}\right) \tag{2.13e}
\end{equation*}
$$

$$
\begin{equation*}
v(U)=v\left(U^{\prime \prime}\right) \tag{2.13f}
\end{equation*}
$$

$$
\begin{equation*}
H V-F V^{\prime \prime}+\eta U-\eta U^{\prime \prime}=0 \tag{2.13g}
\end{equation*}
$$

$$
\begin{align*}
u^{\prime \prime}(V) & =u(V) \tag{2.13h}\\
v^{\prime \prime}(V) & =v\left(V^{\prime \prime}\right)
\end{align*}
$$

the theorem is proved by virtue of equation (2.4) to (2.13)

References

[1] L. S. Das. Complete lift of a structure satisfying $F^{K}-(-)^{K+1} F=0$. Internat. J. Math. Math. Sci., 15(4):803-808, 1992.
[2] L. S. Das. Fiberings on almost r-contact manifolds. Publ. Math. Debrecen, 43(1-2):161167, 1993.
[3] L. S. Das. Invariant submanifolds of the manifold with $\phi\left(k,-(-)^{k+1}\right)$-structure. Tensor (N.S.), 64(2):189-196, 2003.
[4] L. S. Das. On CR-structures and F-structure satisfying $F^{K}+(-)^{K+1} F=0$. Rocky Mountain J. Math., 36(3):885-892, 2006.
[5] L. S. Das and R. Nivas. On differentiable manifold with $\left[F_{1}, F_{2}\right](K+1,1)$-structure. Tensor (N.S.), 65(1):29-35, 2004.
[6] L. S. Das and R. Nivas. Harmonic morphism on almost r-contact metric manifolds. Algebras Groups Geom., 22(1):61-68, 2005.
[7] L. S. Das and R. Nivas. On certain structures defined on the tangent bundle. Rocky Mountain J. Math., 36(6):1857-1866, 2006.
[8] A. Hamoui. On quaternion submanifold of co-dimension 2. Journal of the Tensor Society of India, Lucknow, 1 and 2:51-58, 1984.
[9] R. S. Mishra. Structures on a differentiable manifold and their applications. Chandrama Prakashan, Allahabad, 1984.
[10] H. Nakagawa. f-structures induced on submanifolds in spaces, almost Hermitian or Kaehlerian. Kōdai Math. Sem. Rep., 18:161-183, 1966.
[11] J. Vanžura. Almost r-contact structures. Ann. Scuola Norm. Sup. Pisa (3), 26:97-115, 1972.
[12] K. Yano and M. Ako. Integrability conditions for almost quaternion structures. Hokkaido Math. J., 1:63-86, 1972.
[13] K. Yano and S. Ishihara. Invariant submanifolds of an almost contact manifold. Kōdai Math. Sem. Rep., 21:350-364, 1969.
[14] K. Yano and M. Okumura. On (F, g, u, v, λ)-structures. Kōdai Math. Sem. Rep., 22:401-423, 1970.
[15] K. Yano and M. Okumura. Invariant hypersurfaces of a manifold with (f, g, u, v, λ) structure. Kōdai Math. Sem. Rep., 23:290-304, 1971.

Received August 28, 2007.

Department of Mathematics,
Kent State University, Tuscarawas,
New Philadelphia, OH 44663, USA.
E-mail address: ldas@kent.edu
Department of Mathematics,
Lucknow University,
Lucknow - 226007, India.
E-mail address: rnivas@sify.com
Department of Applied Sciences,
Azad Institute of Engineering and Technology, Natkur, Post - Chandrawal,,
Bangla Bazar Road, Lucknow-226002, India.
E-mail address: nazrul73@rediffmail.com

[^0]: 2000 Mathematics Subject Classification. 53C15, 53C40.
 Key words and phrases. Submanifolds, Hsu quaternion manifold, integrability conditions, tensor fields.

