LEGENDRIAN WARPED PRODUCT SUBMANIFOLDS IN GENERALIZED SASAKIAN SPACE FORMS

ANDREEA OLTEANU

Abstract

Recently, K. Matsumoto and I. Mihai established a sharp inequality for warped products isometrically immersed in Sasakian space forms. As applications, they obtained obstructions to minimal isometric immersions of warped products into Sasakian space forms. P. Alegre, D.E. Blair and A. Carriazo have introduced the notion of generalized Sasakian space form.

In the present paper, we obtain a sharp inequality for warped products isometrically immersed in generalized Sasakian space forms. Some applications are derived.

1. Introduction

Let $\left(M_{1}, g_{1}\right)$ and $\left(M_{2}, g_{2}\right)$ be two Riemannian manifolds and f a positive differentiable function on M_{1}. The warped product of M_{1} and M_{2} is the Riemannian manifold

$$
M_{1} \times_{f} M_{2}=\left(M_{1} \times M_{2}, g\right),
$$

where $g=g_{1}+f^{2} g_{2}$. The function f is called the warping function (see, for instance, [5]).

It is well-known that the notion of warped products plays some important role in Differential Geometry as well as in Physics. For a recent survey on warped products as Riemannian submanifolds, see [4].

Let $x: M_{1} \times{ }_{f} M_{2} \rightarrow \widetilde{M}(c)$ be an isometric immersion of a warped product $M_{1} \times{ }_{f} M_{2}$ into a Riemannian manifold $\widetilde{M}(c)$ with constant sectional curvature c. We denote by h the second fundamental form of x and by $H_{i}=\frac{1}{n_{i}}$ trace $_{i}$ the partial mean curvatures, where trace $_{i}$ is the trace of h restricted to M_{i} and $n_{i}=\operatorname{dim} M_{i}(i=1,2)$.

The immersion x is said to be mixed totally geodesic if $h(X, Z)=0$, for any vector fields X and Z tangent to M_{1} and M_{2} respectively.

[^0]If $M_{1} \times{ }_{\rho} M_{2}$ is a warped product of two Riemannian manifolds and $\phi_{i}: N_{i} \rightarrow$ $M_{i}, i=1,2$, are isometric immersions from Riemannian manifolds N_{1}, N_{2} into Riemannian manifolds M_{1}, M_{2} respectively. Define a positive function σ on N_{1} by $\sigma=\rho \circ \phi_{1}$. Then the map

$$
\phi: N_{1} \times{ }_{\sigma} N_{2} \rightarrow M_{1} \times{ }_{\rho} M_{2}
$$

given by $\phi\left(x_{1}, x_{2}\right)=\left(\phi_{1}\left(x_{1}\right), \phi_{2}\left(x_{2}\right)\right)$ is an isometric immersion, which is called a warped product immersion [7].

In [6], K. Matsumoto and I. Mihai established the following sharp relationship between the warping function f of a warped product C-totally real isometrically immersed in a Sasakian space form $\widetilde{M}(c)$ and the squared mean curvature $\|H\|^{2}$.

Theorem 1. Let x be a C-totally real isometric immersion of a n-dimensional warped product $M_{1} \times_{f} M_{2}$ into a $(2 m+1)$-dimensional Sasakian space form $\widetilde{M}(c)$. Then:

$$
\begin{equation*}
\frac{\Delta f}{f} \leq \frac{n^{2}}{4 n_{2}}\|H\|^{2}+n_{1} \frac{c+3}{4} \tag{1.1}
\end{equation*}
$$

where $n_{i}=\operatorname{dim} M_{i}, i=1,2$, and Δ is the Laplacian operator of M_{1}. Moreover, the equality case of (1.1) holds if and only if x is a mixed totally geodesic immersion and $n_{1} H_{1}=n_{2} H_{2}$, where $H_{i}, i=1,2$, are the partial mean curvature vectors.

The authors also gave an example of a submanifold satisfying the equality case of (1.1).

2. Preliminaries

In this section, we recall some definitions and basic formulas which we will use later.

A $(2 m+1)$-dimensional Riemannian manifold (\widetilde{M}, g) is said to be an almost contact metric manifold if there exist on \widetilde{M} a $(1,1)$ tensor field ϕ, a vector field ξ (called the structure vector field) and a 1-form η such that $\eta(\xi)=1$, $\phi^{2}(X)=-X+\eta(X) \xi$ and $g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y)$, for any vector fields X, Y on \widetilde{M}. In particular, on an almost contact metric manifold we also have $\phi \xi=0$ and $\eta \circ \phi=0$.

We denote an almost contact metric manifold by $(\widetilde{M}, \phi, \xi, \eta, g)$.

A generalized Sasakian space form is an almost contact metric manifold $(\widetilde{M}, \phi, \xi, \eta, g)$ whose curvature tensor is given by (see [1])

$$
\begin{align*}
\widetilde{R}(X, Y) Z= & f_{1}\{g(Y, Z) X-g(X, Z) Y\} \\
& +f_{2}\{g(X, \phi Z) \phi Y-g(Y, \phi Z) \phi X+2 g(X, \phi Y) \phi Z\} \tag{2.1}\\
& +f_{3}\{\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X+g(X, Z) \eta(Y) \xi \\
& -g(Y, Z) \eta(X) \xi\},
\end{align*}
$$

where f_{1}, f_{2}, f_{3} are differentiable functions on \widetilde{M}. In such a case, we will write $\widetilde{M}\left(f_{1}, f_{2}, f_{3}\right)$.

This kind of manifold appears as a natural generalization of the well-known Sasakian space forms $\widetilde{M}(c)$, which can be obtained as particular cases of generalized Sasakian space forms, by taking $f_{1}=\frac{c+3}{4}$ and $f_{2}=f_{3}=\frac{c-1}{4}$.

For recent surveys on generalized Sasakian space forms see [1], [2].
Let M be a n-dimensional submanifold in a generalized Sasakian space form $\widetilde{M}\left(f_{1}, f_{2}, f_{3}\right)$.

We denote by $K(\pi)$ the sectional curvature of M associated with a plane section $\pi \subset T_{p} M, p \in M$, and ∇ the Riemannian connection of M, respectively. Also, let h be the second fundamental form and R the Riemann curvature tensor of M.

Then the equation of Gauss is given by

$$
\begin{align*}
\widetilde{R}(X, Y, Z, W)= & R(X, Y, Z, W) \tag{2.2}\\
& +g(h(X, W), h(Y, Z))-g(h(X, Z), h(Y, W))
\end{align*}
$$

for any vectors X, Y, Z, W tangent to M.
Let $p \in M$ and $\left\{e_{1}, \ldots, e_{n}, \ldots, e_{2 m+1}\right\}$ an orthonormal basis of the tangent space $T_{p} \widetilde{M}\left(f_{1}, f_{2}, f_{3}\right)$, such that e_{1}, \ldots, e_{n} are tangent to M at p. We denote by H the mean curvature vector, that is

$$
\begin{equation*}
H(p)=\frac{1}{n} \sum_{i=1}^{n} h\left(e_{i}, e_{i}\right) . \tag{2.3}
\end{equation*}
$$

As is known, M is said to be minimal if H vanishes identically.
Also, we set

$$
\begin{equation*}
h_{i j}^{r}=g\left(h\left(e_{i}, e_{j}\right), e_{r}\right), i, j \in\{1, \ldots, n\}, r \in\{n+1, \ldots, 2 m+1\} \tag{2.4}
\end{equation*}
$$

the coefficients of the second fundamental form h with respect to

$$
\left\{e_{1}, \ldots, e_{n}, e_{n+1}, \ldots, e_{2 m+1}\right\}
$$

and

$$
\begin{equation*}
\|h\|^{2}=\sum_{i, j=1}^{n} g\left(h\left(e_{i}, e_{j}\right), h\left(e_{i}, e_{j}\right)\right) . \tag{2.5}
\end{equation*}
$$

Let M be a Riemannian n-manifold and $\left\{e_{1}, \ldots, e_{n}\right\}$ be an orthonormal basis of M. For a differentiable function f on M, the Laplacian Δf of f is defined by

$$
\begin{equation*}
\Delta f=\sum_{j=1}^{n}\left\{\left(\nabla_{e_{j}} e_{j}\right) f-e_{j} e_{j} f\right\} \tag{2.6}
\end{equation*}
$$

We recall the following result of Chen for later use.
Lemma 2 ([3]). Let $n \geq 2$ and $a_{1}, a_{2}, \ldots, a_{n}, b$ real numbers such that

$$
\left(\sum_{i=1}^{n} a_{i}\right)^{2}=(n-1)\left(\sum_{i=1}^{n} a_{i}^{2}+b\right) .
$$

Then $2 a_{1} a_{2} \geq b$, with equality holding if and only if

$$
a_{1}+a_{2}=a_{3}=\ldots=a_{n} .
$$

3. Legendrian warped product submanifolds

K. Matsumoto and I. Mihai established a sharp relationship between the warping function f of a warped product C-totally real isometrically immersed in a Sasakian space form $\widetilde{M}(c)$ and the squared mean curvature $\|H\|^{2}$ (see [6]). We prove a similar inequality for Legendrian warped product submanifolds of a generalized Sasakian space form.

In this section, we investigate Legendrian warped product submanifolds in a generalized Sasakian space form $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$.

A submanifold M normal to ξ in a generalized Sasakian space form $\widetilde{M}\left(f_{1}, f_{2}, f_{3}\right)$ is said to be an anti-invariant submanifold if ϕ maps any tangent space of M into the normal space, that is $\phi\left(T_{p} M\right) \subset T_{p}^{\perp} M$, for every $p \in M$.

If the dimension of an anti-invariant submanifold M is maximum, then M is called a Legendrian submanifold.

If the dimension of the ambient space $\widetilde{M}\left(f_{1}, f_{2}, f_{3}\right)$ is $2 n+1$, then any Legendrian submanifold is n-dimensional.

Theorem 3. Let x be a Legendrian isometric immersion of a n-dimensional warped product $M_{1} \times_{f} M_{2}$ into a $(2 n+1)$-dimensional generalized Sasakian space form $\widetilde{M}\left(f_{1}, f_{2}, f_{3}\right)$. Then:

$$
\begin{equation*}
\frac{\Delta f}{f} \leq \frac{n^{2}}{4 n_{2}}\|H\|^{2}+n_{1} f_{1}, \tag{3.1}
\end{equation*}
$$

where $n_{i}=\operatorname{dim} M_{i}, i=1,2$, and Δ is the Laplacian operator of M_{1}. Moreover, the equality case of (3.1) holds if and only if x is a mixed totally geodesic immersion and $n_{1} H_{1}=n_{2} H_{2}$, where $H_{i}, i=1,2$, are the partial mean curvature vectors.

Proof. Let $M_{1} \times_{f} M_{2}$ be a Legendrian warped product submanifold into a generalized Sasakian space form $\widetilde{M}\left(f_{1}, f_{2}, f_{3}\right)$.

Since $M_{1} \times_{f} M_{2}$ is a warped product, from the formula of the Riemannian connection ∇ it follows that

$$
\begin{equation*}
\nabla_{X} Z=\nabla_{Z} X=\frac{1}{f}(X f) Z \tag{3.2}
\end{equation*}
$$

for any vector fields X, Z tangent to M_{1}, M_{2}, respectively.
Then, if X and Z are unit vector fields, the sectional curvature $K(X \wedge Z)$ of the plane section spanned by X and Z is given by

$$
\begin{equation*}
K(X \wedge Z)=g\left(\nabla_{Z} \nabla_{X} X-\nabla_{X} \nabla_{Z} X, Z\right)=\frac{1}{f}\left\{\left(\nabla_{X} X\right) f-X^{2} f\right\} . \tag{3.2}
\end{equation*}
$$

We choose a local orthonormal frame $\left\{e_{1}, \ldots, e_{n_{1}}, e_{n_{1}+1}, \ldots, e_{n}\right\}$ such that e_{1}, \ldots, e_{n} are tangent to $M_{1}, e_{n+1}, \ldots, e_{2 n+1}$ are tangent to M_{2}, e_{n+1} is parallel to the mean curvature vector H and $e_{2 n+1}=\xi$.

Then, using (3.2), we get

$$
\begin{equation*}
\frac{\Delta f}{f}=\sum_{j=1}^{n_{1}} K\left(e_{j} \wedge e_{s}\right) \tag{3.3}
\end{equation*}
$$

for each $s \in\left\{n_{1}+1, \ldots, 2 n\right\}$.
From the equation of Gauss, we have

$$
\begin{equation*}
n^{2}\|H\|^{2}=2 \tau+\|h\|^{2}-n(n-1) f_{1}, \tag{3.4}
\end{equation*}
$$

where τ denotes the scalar curvature of $M_{1} \times_{f} M_{2}$, that is,

$$
\tau=\sum_{1 \leq i<j \leq n} K\left(e_{i} \wedge e_{j}\right) .
$$

We set

$$
\begin{equation*}
\delta=2 \tau-n(n-1) f_{1}-\frac{n^{2}}{2}\|H\|^{2} . \tag{3.5}
\end{equation*}
$$

Then, (3.4) can be written as

$$
\begin{equation*}
n^{2}\|H\|^{2}=2\left(\delta+\|h\|^{2}\right) . \tag{3.6}
\end{equation*}
$$

With respect to the above orthonormal frame, (3.6) takes the following form:

$$
\left(\sum_{i=1}^{n} h_{i i}^{n+1}\right)^{2}=2\left[\delta+\sum_{i=1}^{n}\left(h_{i i}^{n+1}\right)^{2}+\sum_{i \neq j}\left(h_{i j}^{n+1}\right)^{2}+\sum_{r=n+2}^{2 n} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2}\right] .
$$

If we put $a_{1}=h_{11}^{n+1}, a_{2}=\sum_{i=2}^{n_{1}} h_{i i}^{n+1}$ and $a_{3}=\sum_{t=n_{1}+1}^{n} h_{t t}^{n+1}$, the above equation becomes

$$
\begin{aligned}
\left(\sum_{i=1}^{3} a_{i}\right)^{2}=2\left[\delta+\sum_{i=1}^{3} a_{i}^{2}+\right. & \sum_{1 \leq i \neq j \leq n}\left(h_{i j}^{n+1}\right)^{2}+\sum_{r=n+2}^{2 n} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2} \\
& \left.-\sum_{2 \leq j \neq k \leq n_{1}} h_{j j}^{n+1} h_{k k}^{n+1}-\sum_{n_{1}+1 \leq s \neq t \leq n} h_{s s}^{n+1} h_{t t}^{n+1}\right] .
\end{aligned}
$$

Thus a_{1}, a_{2}, a_{3} satisfy the Lemma of Chen (for $n=3$), i.e.,

$$
\left(\sum_{i=1}^{3} a_{i}\right)^{2}=2\left(b+\sum_{i=1}^{3} a_{i}^{2}\right),
$$

with

$$
\begin{aligned}
b=\delta+\sum_{1 \leq i \neq j \leq n}\left(h_{i j}^{n+1}\right)^{2}+\sum_{r=n+2}^{2 n} & \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2} \\
& -\sum_{2 \leq j \neq k \leq n_{1}} h_{j j}^{n+1} h_{k k}^{n+1}-\sum_{n_{1}+1 \leq s \neq t \leq n} h_{s s}^{n+1} h_{t t}^{n+1} .
\end{aligned}
$$

Then $2 a_{1} a_{2} \geq b$, with equality holding if and only if $a_{1}+a_{2}=a_{3}$.
In the case under consideration, this means

$$
\begin{align*}
\sum_{1 \leq j<k \leq n_{1}} h_{j j}^{n+1} h_{k k}^{n+1}+ & \sum_{n_{1}+1 \leq s<t \leq n} h_{s s}^{n+1} h_{t t}^{n+1} \tag{3.7}\\
& \geq \frac{\delta}{2}+\sum_{1 \leq \alpha<\beta \leq n}\left(h_{\alpha \beta}^{n+1}\right)^{2}+\frac{1}{2} \sum_{r=n+2}^{2 n} \sum_{\alpha, \beta=1}^{n}\left(h_{\alpha \beta}^{r}\right)^{2} .
\end{align*}
$$

Equality holds if and only if

$$
\begin{equation*}
\sum_{i=1}^{n_{1}} h_{i i}^{n+1}=\sum_{t=n_{1}+1}^{n} h_{t t}^{n+1} . \tag{3.8}
\end{equation*}
$$

Using again the Gauss equation, we have

$$
\begin{align*}
n_{2} \frac{\Delta f}{f}= & \tau-\sum_{1 \leq j<k \leq n_{1}} K\left(e_{j} \wedge e_{k}\right)-\sum_{n_{1}+1 \leq s<t \leq n} K\left(e_{s} \wedge e_{t}\right) \\
= & \tau-\frac{n_{1}\left(n_{1}-1\right) f_{1}}{2}-\sum_{r=n+1}^{2 n} \sum_{1 \leq j<k \leq n_{1}}\left(h_{j j}^{r} h_{k k}^{r}-\left(h_{j k}^{r}\right)^{2}\right) \tag{3.9}\\
& -\frac{n_{2}\left(n_{2}-1\right) f_{1}}{2}-\sum_{r=n+1}^{2 n} \sum_{n_{1}+1 \leq s<t \leq n}\left(h_{s s}^{r} h_{t t}^{r}-\left(h_{s t}^{r}\right)^{2}\right) .
\end{align*}
$$

Combining (3.7) and (3.9) and taking account of (3.3), we obtain

$$
\begin{aligned}
n_{2} \frac{\Delta f}{f} \leq & \tau-\frac{n(n-1) f_{1}}{2}+n_{1} n_{2} f_{1}-\frac{\delta}{2} \\
& -\sum_{\substack{1 \leq j \leq n_{1} \\
n_{1}+1 \leq t \leq n}}\left(h_{j t}^{n+1}\right)^{2}-\frac{1}{2} \sum_{r=n+2}^{2 n} \sum_{\alpha, \beta=1}^{n}\left(h_{\alpha \beta}^{r}\right)^{2} \\
& +\sum_{r=n+2}^{2 n} \sum_{1 \leq j<k \leq n_{1}}\left(\left(h_{j k}^{r}\right)^{2}-h_{j j}^{r} h_{k k}^{r}\right) \\
& +\sum_{r=n+2}^{2 n} \sum_{n-1 \leq s<t \leq n}\left(\left(h_{s t}^{r}\right)^{2}-h_{s s}^{r} h_{t t}^{r}\right) \\
= & \tau-\frac{n(n-1) f_{1}}{2}+n_{1} n_{2} f_{1}-\frac{\delta}{2}-\sum_{r=n+1}^{2 n} \sum_{j=1}^{n_{1}} \sum_{t=n_{1}+1}^{n}\left(h_{j t}^{r}\right)^{2} \\
& -\frac{1}{2} \sum_{r=n+2}^{2 n}\left(\sum_{j=1}^{n_{1}} h_{j j}^{r}\right)^{2}-\frac{1}{2} \sum_{r=n+2}^{2 n}\left(\sum_{t=n_{1}+1}^{n} h_{t t}^{r}\right)^{2} \\
\leq & \tau-\frac{n(n-1) f_{1}}{2}+n_{1} n_{2} f_{1}-\frac{\delta}{2}=\frac{n^{2}}{4}\|H\|^{2}+n_{1} n_{2} f_{1},
\end{aligned}
$$

which implies the inequality (3.1).
We see that the equality sign of (3.10) holds if and only if

$$
\begin{equation*}
h_{j t}^{r}=0,1 \leq j \leq n_{1}, n_{1}+1 \leq t \leq n, n+1 \leq r \leq 2 n, \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{n_{1}} h_{i i}^{r}=\sum_{t=n_{1}+1}^{n} h_{t t}^{r}=0, n+2 \leq r \leq 2 n \tag{3.12}
\end{equation*}
$$

Obviously (3.12) is equivalent to the mixed totally geodesicness of the warped product $M_{1} \times_{f} M_{2}$ and (3.9) and (3.13) implies $n_{1} H_{1}=n_{2} H_{2}$.

The converse statement is straightforward.
Remark 4. The inequality (3.1) does not depend on the functions f_{2} and f_{3} of the generalized Sasakian space form $\widetilde{M}\left(f_{1}, f_{2}, f_{3}\right)$.

If we consider a submanifold tangent to ξ, then the corresponding inequality will depend on f_{2} and f_{3} too.

As applications, we derive certain obstructions to the existence of minimal Legendrian warped product submanifolds in generalized Sasakian space forms.

Let $x: M_{1} \times_{f} M_{2} \rightarrow \widetilde{M}\left(f_{1}, f_{2}, f_{3}\right)$ be a Legendrian minimal isometric immersion. Then the above theorem implies:

$$
\frac{\Delta f}{f} \leq n_{1} f_{1}
$$

Thus, if $f_{1}<0, f$ cannot be a harmonic function or an eigenfunction of Laplacian with positive eigenvalue.

Corollary 5. If f is a harmonic function, then $M_{1} \times_{f} M_{2}$ admits no minimal Legendrian immersion into a generalized Sasakian space form $\widetilde{M}\left(f_{1}, f_{2}, f_{3}\right)$ with $f_{1}<0$.
Proof. Let f be a harmonic function on M_{1} and $x: M_{1} \times_{f} M_{2} \rightarrow \widetilde{M}\left(f_{1}, f_{2}, f_{3}\right)$ be a Legendrian minimal immersion. Then, the inequality (3.1) becomes $f_{1} \geq$ 0.

Corollary 6. If f is an eigenfunction of Laplacian on M_{1} with the corresponding eigenvalue $\lambda>0$, then $M_{1} \times_{f} M_{2}$ admits no minimal Legendrian immersion in a generalized Sasakian space form $\widetilde{M}\left(f_{1}, f_{2}, f_{3}\right)$ with $f_{1} \leq 0$.

References

[1] P. Alegre, D. E. Blair, and A. Carriazo. Generalized Sasakian-space-forms. Israel J. Math., 141:157-183, 2004.
[2] P. Alegre and A. Carriazo. Generalized Sasakian-space-forms II. Preprint.
[3] B.-Y. Chen. Some pinching and classification theorems for minimal submanifolds. Arch. Math. (Basel), 60(6):568-578, 1993.
[4] B.-Y. Chen. Geometry of warped products as Riemannian submanifolds and related problems. Soochow J. Math., 28(2):125-156, 2002.
[5] B.-Y. Chen. On isometric minimal immersions from warped products into real space forms. Proc. Edinb. Math. Soc. (2), 45(3):579-587, 2002.
[6] K. Matsumoto and I. Mihai. Warped product submanifolds in Sasakian space forms. SUT J. Math., 38(2):135-144, 2002.
[7] B. O'Neill. Semi-Riemannian geometry, volume 103 of Pure and Applied Mathematics. Academic Press Inc., New York, 1983. With applications to relativity.

Received November 29, 2008.

Faculty of Mathematics and Computer Science, University of Bucharest,
Str. Academiei 14,
011014 Bucharest, Romania
E-mail address: andreea_d_olteanu@yahoo.com

[^0]: 2000 Mathematics Subject Classification. Primary 53C40; Secondary: 53C25.
 Key words and phrases. Warped product, Laplacian, mean curvature, Legendrian submanifold, generalized Sasakian space form.

