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ON D SO THAT =z? — Dy? REPRESENTS m AND —m AND
NOT -1

JOHN P. ROBERTSON

ABSTRACT. For m = 25, 100, p, 2p, 4p, or 2p%, where p is prime, we show
that there is at most one positive nonsquare integer D so that the form
22 — Dy? primitively represents m and —m and does not represent —1. We
give support for a conjecture that for any m > 1 not listed above, there are
infinitely many D so that the form 22 — Dy? primitively represents m and
—m and does not represent —1.

1. INTRODUCTION

It is well known that if F' = 22— Dy? represents m and —1, then F represents
—m [13, p. 14]. It is also well known that there are D and m so that F
represents m and —m, but does not represent —1, for example D = 34, m = 33.

The article [11] shows that for any integer m # 0, £2 there are infinitely
many D so that 2?2 — Dy? primitively represents m, —m, and —1. In this
article we show that for certain integers m there are only finitely many D so
that 22 — Dy? primitively represents m and —m, and does not represent —1.
Based on empirical evidence, I conjecture that for any integer m > 1 that is
not 25, 100, p, 2p, 4p, or 2p?, for p a prime, there are infinitely many D so
that 22 — Dy? primitively represents m and —m and does not represent —1.

Given an integer m, call an integer D > 0, not a square, good if 22 — Dy?
primitively represents m and —m and does not represent —1. For the following
we give proofs or references in the literature:

e For m = 2, 4, 25, or 100 there are no good D.

For m =8, D = 8 is the only good D.

For m = p, 2p, or 4p, for p an odd prime, there are no good D.

For m = 2p?, for p an odd prime, if there is no solution to 2% — 2p?y? =
—1, there is a unique good D, namely D = 2p?; otherwise there are no
good D.
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o If m = p*, 2p%, or 4p®, p is an odd prime, o € Z, o > 1, and D is
good, then p?|D.

In addition, for the odd prime p we prove:

e If p|D and F represents p and —p, then D = p.
e If p|D and F represents 2p and —2p, then D = 2p.
e If p|D and F primitively represents 4p and —4p, then D = p.

The following theorem, used below, is proved as part of [8, Theorem 2.3]
(see also [7, Theorem 3.2] and [3, Lemma 1]). For completeness, we also give
a proof.

Theorem 1. Ifa, b > 0 are odd integers, v, w € N, and av? — bw? = 4 (resp.
—4), then there are integers t, u so that at* — bu®* =1 (resp. —1).

Proof. Either both v and w are even or both are odd. If both are even, then
for t = v/2, u = w/2, t and u are integers and at®> — bu*> = 1 or —1. Now
assume v and w are both odd. Then v? = w? =1 (mod 8). In the line below,
all congruences are modulo 8.

a’—bl=4 = a—-b=4 = ab=b+4b=1+4=75,

so ab =5 (mod 8). Let t = (av® + 3bvw?)/8 and u = (3av?w + bw?)/8. Tt is
straightforward to check that at?> — bu? = 1 or —1. To see that t is an integer,
note that av® + 3bvw? = v(av? + 3bw?) and that

a(av® + 3bw®) = ala+3b) =a* +3ab=1+15=0 (mod 8).

Because ged(a,8) = 1, 8 must divide av? 4+ 3bw?, and so t is an integer. A
similar argument shows that u is an integer. ([l

2. m=2, 4, OR 8

Henceforth, D denotes a positive nonsquare integer and F' denotes the binary
quadratic form 2% — Dy?.  Also, m denotes an integer greater than 1 unless
otherwise specified.

Perron [10, p. 96] proves the next theorem.

Theorem 2. If I' represents 2 and —2 then D = 2 and F represents —1.
Theorem 3. If F' primitively represents 4 and —4 then F represents —1.

Proof. Considerations modulo 16 show that if F' primitively represents 4 and
—4, then D =5 (mod 8) and z and y are odd. The theorem then follows from
Theorem 1. See also [8, Theorem 2.3] and [7, Theorem 3.2]. O

Note that it is not sufficient that F' primitively represent —4. For example,
x? — 8y? primitively represents —4 (22 — 8 - 12 = —4), but does not represent
—1. In fact, if D = 4k* + 4, then 2% — Dy? primitively represents —4 (take
y = 1), but does not represent —1 (because 4|D). Additional such D include
52, 116, 164, 212, 232, 244, 292, 296, . ...
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Theorem 4. If F' primitively represents 8 and —8 then either D = 8 or F
represents —1.

Consider first the case where D is even. Let v2—Dw? = 8 and v2—Dw3 = —8
where ged(vi,w1) = ged(ve, we) = 1. Then 2|v; and 2|vy, so 4|D, (vy/2)* —
(D/4)w} = 2, and (v2/2)* — (D/4)ws = —2. By Theorem 2, D/4 = 2, and
D =38.

Before considering the case where D is odd, we establish two lemmas and
another theorem.

Lemma 1. If the complete quotients for the continued fraction expansion of
VD are denoted (P; +/D)/Q; fori € Z, i > 0, where P, € Z, Q; € N,
Py =0, and Qo =1, then Q; and ;41 cannot both be even.

Proof. Substituting Q;+1a,41 — Piy1 for Pipo in Qipo = Qi — aiy1 (P2 — Piya)
[10, p. 70] gives

Qi = Qis10741 + Qiya — 2Pip1a,11.
If Q11 and Q;1o are even, then (); must be even, and working backwards we
get Qo = 1 is even, a contradiction. O

Lemma 2. For D = 1 (mod 8) and (P, +v/D)/Q; as in Lemma 1, in any
period of the continued fraction expansion of /D, there are at most two i so

Proof. For i > 1, (P; + v/D)/Q; is a reduced quadratic irrational [10, pp. 75
and 83, so

—1 < (P—VD)/Qi <0

and
(1) VD —Q; < P, <+D.

Now assume Q; = 8. As D—P? = Q;Q;_1 = 8Q;_1 [10, p. 69], P, is odd. From
(1), there is at most one P; in each of the residue classes 1, 3, 5, 7 modulo 8.
Let D = 8k+1. For k even, if P, =1 or 7 (mod 8) then Q;_; = (D — P?)/8 is
even, while if P, =3 or 5 (mod 8) then Q);_; is odd. For k odd, if P,=1or 7
(mod 8) then @;_1 is odd, while if P, = 3 or 5 (mod 8) then Q; 1 is even.
Because ();_1 must be odd, there are at most two possible values for P, when
Q; = 8. O

From [9, Theorem 7.24] we have

Theorem 5. If
N €Z, |N| <D,
22 — Dy? primitively represents N,
0 is the length of the period of the continued fraction expansion of /D,
(P, +v/D)/Q; is as in Lemma 1, and
A;/B; are the convergents of the continued fraction expansion of VD,
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then there is an 1 < i < { so that A> | — DB? |, = (-1)"'Q; = N. In
particular, Q; = |N]|.

Now we return to the proof of Theorem 4 for D odd. The odd D < 64 for
which F' represents 8 and —8 are D = 17 and 41, and for both of these F
represents —1. When D is odd, z and y must also both be odd, so 22 = y? =
(mod 8). From

l=2"=Dy*=D (mod 8)
we have that that D =1 (mod 8).
Now assume D > 64 is not a square and D = 1 (mod 8). Let P; and Q;

be as in Lemma 1, and let a; = {(PZ + @)/QZJ be the i-th convergent in

the continued fraction expansion of v/D. Let ¢ be the length of the period of
this continued fraction expansion, so Qy = 1 and Py, = P; and Q;.y = Q; for
1> 1.

If 22 — Dy? primitively represents +8, then by Theorem 5, Q; = 8 for some
1 < j < ¢. By palindromic properties of the sequence {Q;}, we also have
that Q,—; = 8 [10, p. 81]. Because at most two (); = 8 in any period of the
continued fraction expansion of /D, there are no 1 < i < ¢ so that Q; = 8
other than ¢ = j and i = ¢ — j. If 22 — Dy? does not represent —1, then ¢ is
even, and (—1)1 = (=1)""""1 so 2% — Dy? represents exactly one of 8 or —8.
This completes the proof of Theorem 4.

As an aside, we note that methodology similar to that used to prove The-
orem 4 can be used to prove Theorems 2 and 3. For D > 5, D odd, there is
exactly one reduced quadratic irrational (P++/D)/2 (namely with P = |v/D]
or P = |v/D] — 1, whichever is odd). For D = 1 (mod 4) there are exactly
two reduced quadratic irrationals (P + /D) /4.

3. m =p, 2p, 4p, OR 2p? FOR p AN ODD PRIME
The following extends [6, Cor. 3.2]. See also [7, 8].

Theorem 6. If v> — Dw? = 6p® and r*> — Ds®> = —6p®, where v,w,r,s €
Z,a € N, p is an odd prime, ged(v,w) = ged(r,s) =1, and 6 = 1, 2, or 4,
then

If a = 1 then x* — Dy? represents —1.

If a > 1 then either x> — Dy? represents —1 or p*|D.

Proof. For any «, ged(w, p) = ged(s, p) = 1 because otherwise p|v or p|r.
If a > 1 and p|D then plv, so p?|v? — §p® = Dw?, and p?|D. For the rest of
the proof we assume that either « =1 or p{ D.
We have
v? = Dw?® (mod p®)andr? = Ds* (mod p®)
SO
(vw™)? =(rs)?=D (mod p*)



ON D SO THAT z? — Dy? REPRESENTS m AND —m AND NOT -1 159

and
vw™ ' = +rs™! (mod p®)

because the equation X? = D (mod p®) has at most two solutions when either
a =1 or ged(D,p) = 1. Choose signs so that

vw ' =rs™t (mod p®).
Then vs = rw (mod p®) and (multiply by v, substitute Dw? for v?, cancel a
w) vr = Dws (mod p®).

If 6 =1, then for = (vr — Dws)/p*, y = (vs — rw)/p®, we have that
22> — Dy? = —1.

If § = 2, then w and s are odd and, by considerations modulo 16, D = 2
(mod 8) and v and r are even, so x = (vr — Dws)/2p®* and y = (vs — rw)/2p®
are both integers, and we have that 2?2 — Dy? = —1.

If § = 4, then v, w, r, s, and D are all odd, and D = 5 (mod 8) (by
considerations modulo 16) so x = (vr — Dws)/4p*, y = (vs —rw)/4p® are both
integers or both half integers and 2?2 — Dy? = —1. If x and y are half-integers,
then for X + YD = (x +y\/5)3, X and Y are integers and X? — DY? = —1
[3, Lemma 1]. O

Corollary 1. If m = 2p* where p is an odd prime, and F represents m and
—m, and does not represent —1, then D = 2p>.

Proof. By Theorem 6, if F' does not represent —1 then p?|D. We then have that
22— (D/p*)y? represents 2 and —2. By Theorem 2, D/p? =2,s0 D = 2p?. 0

Whether F' = 22 — 2p?y? represents —1 depends on p. If p =3 (mod 4) then
F does not represent —1. If p =5 (mod 8) then F' does represent —1 [10, p.
97], [1, p- 39]. If p=1 (mod 8) then F might or might not represent —1. For
example, 22 — 2 - 17%y% does not represent —1, while 2% — 2 - 137%y? represents
—1.

4. m =25 oRr 100

First we establish a lemma that will be useful.

Lemma 3. If F' represents —1 (resp. —4) then either:

There are x,y € Z with 5|y and x* — Dy? = —1 (resp. —4), or
5ly for every x,y € Z so that x> — Dy*> =1 (resp. 4).

Proof. 1f {z1,y1} is the minimal positive integral solution to z? — Dy? = —1
then all positive integral solutions {x,,y,} to 2> — Dy? = 41 are given by

(2) Ty, + yn\/5 = (xl + yl\/ﬁ)na

where n € N, 22 — Dy2 = 1 when n is even, and 22 — Dy? = —1 when n is
odd [9, p. 356].
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By the binomial theorem we have that

vz o
(3) Yn = Z (2i+1)$’f2’1yf”1D’.

An immediate consequence is that if n is even, then z1]y,. Thus, if ;1 = 0
(mod 5) then 5|y for every solution to z? — Dy? = 1.
If z; =1 or 4 (mod 5) then Dy? = 22 +1 =2 (mod 5), and, by (3)

ys = (3z7 + Dyf) =1(3+2) =0 (mod 5).

Hence 23 — Dy3 = —1 and 5|ys.
If z; =2 or 3 (mod 5) then Dy = 22 + 1 =0 (mod 5), and, by (3)

ys = y1 (527 + 1023y D + yiD?) =31 (0+0+0) =0 (mod 5).

Hence 22 — Dy? = —1 and 5|ys.
Similar arguments apply when F' represents —4, but note that (2) is replaced

by
1 vD\"
§(xn+yn\/ D) = <—x1 +gl ) '

O

This lemma can also be proved by applying the theory of linear recurrence
relations to the sequence of solutions to Pell equations [4, 5].
We will use this to show

Theorem 7. If F' primitively represents 25 and —25 (resp. 100 and —100),
then I represents —1.

Proof. First consider the case where F' represents 25 and —25. By Theorem 6
if F' does not represent —1, then 25|D. Therefore, for any primitive solution
to > — Dy? = 25, 5|z and 5 {1 y. Thus, for D; = D/25, 2> — Dyy? = 1 has
solutions so that 5 1 y. Since 22 — Dyy* = —1 has solutions, by Lemma 3 it has
solutions so that 5|y. But then z? — D(y/5)? = —1, so F does represent —1.
Virtually the same argument works when F' represents 100 and —100. [

5. ADDITIONAL RESULTS

The following theorem [12, Theorem 8| is used in the proof of Theorem 9.

Theorem 8. Ifa, b € N, 22 — aby? represents —1, and ax® — by? represents
1or—1,thena=1o0rb=1.

Theorem 9. Let F' primitively represent dp and —op where p is an odd prime,
p|D, and 6 € {1,2,4}. Then

(a) if 6 =1 or 4 then D = p.

(b) if 6 =2 then D = 2p.
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Proof. For any z and y so that x? — Dy? = +dp, we have that p|z, so the form
pr® — (D/p)y? represents § and —¢. Also, by Theorem 6, 2> — Dy? represents
—1.

When § = 1, Theorem 8 tells us that D/p =1, and D = p.

When 6 = 2, D/p is even (as we show below), so for any x and y so that
pz® — (D/p)y* = +2, we have that z is even. It follows that the form 2pz? —
(D/2p)y?* represents 1 and —1, so by Theorem 8, D/2p =1, and D = 2p.

To see that D/p must be even when § = 2, suppose D/p were odd. Then
for any representation of 2 by pz? — (D/p)y?, = and y would have the same
parity. If they were both even, we would have 4|pz* — (D/p)y?, but 4 4 2, so
both must be odd. Then 22 = y*> =1 (mod 8) and p — D/p =2 (mod 8). A
similar argument using the fact that pz? — (D/p)y? represents —2 shows that
p—D/p=—2 (mod 8). Because 2 Z —2 (mod 8), D/p must be even.

When § = 4, the form pz? — (D/p)y? represents 4 and —4. By considera-
tions modulo 16 we have p(D/p) = D =5 (mod 8), and in particular D/p is
odd. Then by Theorem 1 the form pz? — (D/p)y* represents 1 and —1, so by
Theorem 8, D/p =1, and D = p. O

6. A CONJECTURE

We begin with some theorems needed to prove the main theorem in this
section. Theorem 9 in [4] says, in part

Theorem 10. If {z;,y;} is the sequence of positive solutions to z* — Dy? =1

(where {x1,y1} is the smallest positive solution), q > 3 is a prime, q|D, and
g1, then ¢ty fori < q and qly,.

Theorem 10 in the same paper [4] is

Theorem 11. If q is an odd prime, a, A € N, {x;,y;} is as in Theorem 10, K
is the smallest index i so that ¢*|y;, ¢*||ys, and ged(q, x) = 1, then ¢ ||y, g -

We have as an immediate consequence

Corollary 2. If ¢ > 3 is an odd prime, a € N, {x;,y;} is as in Theorem 10,
q|D, and q 1 y1, then ¢*||ype.

The following theorem provides support for the conjecture below.

Theorem 12. [f

$1,y1,t,u S N,

m e 7,

2?2 — Dy? = m with ged(z1,11) = 1,

2% — Dy? does not represent —1,

t2 — Du? =1,

q > 3 is an odd prime, q|D, and q 1t uzy,
then, for all integers k > 0, 22 — Dg*y? primitively represents m and does not
represent —1.
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Proof. By Corollary 2, for any k there are tj, u; so that
(4) ty — Dg**uil =
and ged(q, ug) = 1.

By hypothesis, the theorem is this true for £ = 0. We assume the theorem
for k and show it for k 4+ 1. Let

(5) ot — D¢yl =m
be a positive primitive solution with ¢ { z1, and define x9, 11, yYan+1 by
(6) Tont1 + Yans1V D@ = (tk + ur/Dg®)™" (21 + 117/ Dg*).
Then
(7) @anp1 + yan\/W
= (1" + 208" /D) (21 + 41/ Dg?*)  (mod g),

and

(8) Tons1 + Yons1V Dg?* = 11 + 2ntgugay + 1)/ D

because ¢|D, t2* = 1 (mod q), and ;"' = #; (mod ¢). From this we have
that

(9) Tont1 = x1  (mod q)

and

(10) Yont1 = 2ntpurry + 1y (mod q).

By hypothesis, ged(2tpurz1, q) = 1, so there is an n so that
(11) 2ntpupr; +y1 =0 (mod q),
and 80 q|yans1. We then have

2
(12) x§n+1 - Dq2k+2 (M) =m

q
with ged(z2n41,¢) =1 (by (9)).
To show that this is a primitive solution, it suffices to show that

ng($2n+17 ?/2n+1) =1

Define t, u by
t+uy/Dg?* = (ty + upy/ D)™
so by (6)
Tont1 + Yont1V D@ = (t +uv/ D@ ) (21 + y1v/ Dg?*)
where
t2 —u’Dg?* = 1.
Then

Tony1 = txy + uy Dg**
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and
Yont1 = uxy + tyr
SO

(13) twony1 — UDQky2n+1
= 1?21 + tuy, Dg** — (tuy, Dg** + vz, Dg*")
= (t* —u’D¢*")x, = 1.
Similarly,

tYon+1 — UTopt1 = Y1-

Hence any common factor of xg,.1 and ys,11 divides both x; and vy, so 2,11
and 19,41 are relatively prime. O

For 1 < m < 15000, m not equal to 25, 100, p, 2p, 4p, 2p?, for p prime, there
is a D < 500000 and ¢|D so that the conditions of the theorem apply for m
and —m.

Based on this, and other empirical evidence, I conjecture that for any integer
m > 1 that is not 25, 100, p, 2p, 4p, or 2p?, for p a prime, there are infinitely
many D so that 22 — Dy? primitively represents m and —m and does not
represent —1.
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