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ON D SO THAT x2 −Dy2 REPRESENTS m AND −m AND
NOT −1

JOHN P. ROBERTSON

Abstract. For m = 25, 100, p, 2p, 4p, or 2p2, where p is prime, we show
that there is at most one positive nonsquare integer D so that the form
x2−Dy2 primitively represents m and −m and does not represent −1. We
give support for a conjecture that for any m > 1 not listed above, there are
infinitely many D so that the form x2 −Dy2 primitively represents m and
−m and does not represent −1.

1. Introduction

It is well known that if F = x2−Dy2 represents m and −1, then F represents
−m [13, p. 14]. It is also well known that there are D and m so that F
represents m and −m, but does not represent −1, for example D = 34, m = 33.

The article [11] shows that for any integer m 6= 0, ±2 there are infinitely
many D so that x2 − Dy2 primitively represents m, −m, and −1. In this
article we show that for certain integers m there are only finitely many D so
that x2 −Dy2 primitively represents m and −m, and does not represent −1.
Based on empirical evidence, I conjecture that for any integer m > 1 that is
not 25, 100, p, 2p, 4p, or 2p2, for p a prime, there are infinitely many D so
that x2 −Dy2 primitively represents m and −m and does not represent −1.

Given an integer m, call an integer D > 0, not a square, good if x2 − Dy2

primitively represents m and −m and does not represent −1. For the following
we give proofs or references in the literature:

• For m = 2, 4, 25, or 100 there are no good D.
• For m = 8, D = 8 is the only good D.
• For m = p, 2p, or 4p, for p an odd prime, there are no good D.
• For m = 2p2, for p an odd prime, if there is no solution to x2−2p2y2 =
−1, there is a unique good D, namely D = 2p2; otherwise there are no
good D.
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• If m = pα, 2pα, or 4pα, p is an odd prime, α ∈ Z, α > 1, and D is
good, then p2|D.

In addition, for the odd prime p we prove:

• If p|D and F represents p and −p, then D = p.
• If p|D and F represents 2p and −2p, then D = 2p.
• If p|D and F primitively represents 4p and −4p, then D = p.

The following theorem, used below, is proved as part of [8, Theorem 2.3]
(see also [7, Theorem 3.2] and [3, Lemma 1]). For completeness, we also give
a proof.

Theorem 1. If a, b > 0 are odd integers, v, w ∈ N, and av2− bw2 = 4 (resp.
−4), then there are integers t, u so that at2 − bu2 = 1 (resp. −1).

Proof. Either both v and w are even or both are odd. If both are even, then
for t = v/2, u = w/2, t and u are integers and at2 − bu2 = 1 or −1. Now
assume v and w are both odd. Then v2 ≡ w2 ≡ 1 (mod 8). In the line below,
all congruences are modulo 8.

av2 − bw2 ≡ 4 =⇒ a− b ≡ 4 =⇒ ab ≡ b2 + 4b ≡ 1 + 4 = 5,

so ab ≡ 5 (mod 8). Let t = (av3 + 3bvw2)/8 and u = (3av2w + bw3)/8. It is
straightforward to check that at2 − bu2 = 1 or −1. To see that t is an integer,
note that av3 + 3bvw2 = v(av2 + 3bw2) and that

a(av2 + 3bw2) ≡ a(a + 3b) ≡ a2 + 3ab ≡ 1 + 15 ≡ 0 (mod 8).

Because gcd(a, 8) = 1, 8 must divide av2 + 3bw2, and so t is an integer. A
similar argument shows that u is an integer. ¤

2. m = 2, 4, or 8

Henceforth, D denotes a positive nonsquare integer and F denotes the binary
quadratic form x2 − Dy2. Also, m denotes an integer greater than 1 unless
otherwise specified.

Perron [10, p. 96] proves the next theorem.

Theorem 2. If F represents 2 and −2 then D = 2 and F represents −1.

Theorem 3. If F primitively represents 4 and −4 then F represents −1.

Proof. Considerations modulo 16 show that if F primitively represents 4 and
−4, then D ≡ 5 (mod 8) and x and y are odd. The theorem then follows from
Theorem 1. See also [8, Theorem 2.3] and [7, Theorem 3.2]. ¤

Note that it is not sufficient that F primitively represent −4. For example,
x2 − 8y2 primitively represents −4 (22 − 8 · 12 = −4), but does not represent
−1. In fact, if D = 4k2 + 4, then x2 − Dy2 primitively represents −4 (take
y = 1), but does not represent −1 (because 4|D). Additional such D include
52, 116, 164, 212, 232, 244, 292, 296, . . . .
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Theorem 4. If F primitively represents 8 and −8 then either D = 8 or F
represents −1.

Consider first the case where D is even. Let v2
1−Dw2

1 = 8 and v2
2−Dw2

2 = −8
where gcd(v1, w1) = gcd(v2, w2) = 1. Then 2|v1 and 2|v2, so 4|D, (v1/2)2 −
(D/4)w2

1 = 2, and (v2/2)2 − (D/4)w2
2 = −2. By Theorem 2, D/4 = 2, and

D = 8.
Before considering the case where D is odd, we establish two lemmas and

another theorem.

Lemma 1. If the complete quotients for the continued fraction expansion of√
D are denoted (Pi +

√
D)/Qi for i ∈ Z, i ≥ 0, where Pi ∈ Z, Qi ∈ N,

P0 = 0, and Q0 = 1, then Qi and Qi+1 cannot both be even.

Proof. Substituting Qi+1ai+1 − Pi+1 for Pi+2 in Qi+2 = Qi − ai+1(Pi+2 − Pi+1)
[10, p. 70] gives

Qi = Qi+1a
2
i+1 + Qi+2 − 2Pi+1ai+1.

If Qi+1 and Qi+2 are even, then Qi must be even, and working backwards we
get Q0 = 1 is even, a contradiction. ¤

Lemma 2. For D ≡ 1 (mod 8) and (Pi +
√

D)/Qi as in Lemma 1, in any

period of the continued fraction expansion of
√

D, there are at most two i so
that Qi = 8.

Proof. For i ≥ 1, (Pi +
√

D)/Qi is a reduced quadratic irrational [10, pp. 75
and 83], so

−1 < (Pi −
√

D)/Qi < 0

and

(1)
√

D −Qi < Pi <
√

D.

Now assume Qi = 8. As D−P 2
i = QiQi−1 = 8Qi−1 [10, p. 69], Pi is odd. From

(1), there is at most one Pi in each of the residue classes 1, 3, 5, 7 modulo 8.
Let D = 8k +1. For k even, if Pi ≡ 1 or 7 (mod 8) then Qi−1 = (D−P 2

i )/8 is
even, while if Pi ≡ 3 or 5 (mod 8) then Qi−1 is odd. For k odd, if Pi ≡ 1 or 7
(mod 8) then Qi−1 is odd, while if Pi ≡ 3 or 5 (mod 8) then Qi−1 is even.
Because Qi−1 must be odd, there are at most two possible values for Pi when
Qi = 8. ¤

From [9, Theorem 7.24] we have

Theorem 5. If

N ∈ Z, |N | < √
D,

x2 −Dy2 primitively represents N ,
` is the length of the period of the continued fraction expansion of

√
D,

(Pi +
√

D)/Qi is as in Lemma 1, and

Ai/Bi are the convergents of the continued fraction expansion of
√

D,
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then there is an 1 ≤ i ≤ ` so that A2
i−1 − DB2

i−1 = (−1)i−1Qi = N . In
particular, Qi = |N |.

Now we return to the proof of Theorem 4 for D odd. The odd D < 64 for
which F represents 8 and −8 are D = 17 and 41, and for both of these F
represents −1. When D is odd, x and y must also both be odd, so x2 ≡ y2 ≡ 1
(mod 8). From

1 ≡ x2 ≡ Dy2 ≡ D (mod 8)

we have that that D ≡ 1 (mod 8).
Now assume D > 64 is not a square and D ≡ 1 (mod 8). Let Pi and Qi

be as in Lemma 1, and let ai =
⌊
(Pi +

√
D)/Qi

⌋
be the i-th convergent in

the continued fraction expansion of
√

D. Let ` be the length of the period of
this continued fraction expansion, so Q` = 1 and Pi+` = Pi and Qi+` = Qi for
i ≥ 1.

If x2 −Dy2 primitively represents ±8, then by Theorem 5, Qj = 8 for some
1 ≤ j ≤ `. By palindromic properties of the sequence {Qi}, we also have
that Q`−j = 8 [10, p. 81]. Because at most two Qi = 8 in any period of the

continued fraction expansion of
√

D, there are no 1 ≤ i ≤ ` so that Qi = 8
other than i = j and i = ` − j. If x2 −Dy2 does not represent −1, then ` is
even, and (−1)i−1 = (−1)`−i−1, so x2−Dy2 represents exactly one of 8 or −8.
This completes the proof of Theorem 4.

As an aside, we note that methodology similar to that used to prove The-
orem 4 can be used to prove Theorems 2 and 3. For D ≥ 5, D odd, there is
exactly one reduced quadratic irrational (P +

√
D)/2 (namely with P = b√Dc

or P = b√Dc − 1, whichever is odd). For D ≡ 1 (mod 4) there are exactly

two reduced quadratic irrationals (P +
√

D)/4.

3. m = p, 2p, 4p, or 2p2 for p an odd prime

The following extends [6, Cor. 3.2]. See also [7, 8].

Theorem 6. If v2 − Dw2 = δpα and r2 − Ds2 = −δpα, where v, w, r, s ∈
Z, α ∈ N, p is an odd prime, gcd(v, w) = gcd(r, s) = 1, and δ = 1, 2, or 4,
then

If α = 1 then x2 −Dy2 represents −1.
If α > 1 then either x2 −Dy2 represents −1 or p2|D.

Proof. For any α, gcd(w, p) = gcd(s, p) = 1 because otherwise p|v or p|r.
If α > 1 and p|D then p|v, so p2|v2 − δpα = Dw2, and p2|D. For the rest of

the proof we assume that either α = 1 or p - D.
We have

v2 ≡ Dw2 (mod pα)andr2 ≡ Ds2 (mod pα)

so

(vw−1)2 ≡ (rs−1)2 ≡ D (mod pα)
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and

vw−1 ≡ ±rs−1 (mod pα)

because the equation X2 ≡ D (mod pα) has at most two solutions when either
α = 1 or gcd(D, p) = 1. Choose signs so that

vw−1 ≡ rs−1 (mod pα).

Then vs ≡ rw (mod pα) and (multiply by v, substitute Dw2 for v2, cancel a
w) vr ≡ Dws (mod pα).

If δ = 1, then for x = (vr − Dws)/pα, y = (vs − rw)/pα, we have that
x2 −Dy2 = −1.

If δ = 2, then w and s are odd and, by considerations modulo 16, D ≡ 2
(mod 8) and v and r are even, so x = (vr−Dws)/2pα and y = (vs− rw)/2pα

are both integers, and we have that x2 −Dy2 = −1.
If δ = 4, then v, w, r, s, and D are all odd, and D ≡ 5 (mod 8) (by

considerations modulo 16) so x = (vr−Dws)/4pα, y = (vs−rw)/4pα are both
integers or both half integers and x2−Dy2 = −1. If x and y are half-integers,
then for X +Y

√
D = (x+ y

√
D)3, X and Y are integers and X2−DY 2 = −1

[3, Lemma 1]. ¤

Corollary 1. If m = 2p2 where p is an odd prime, and F represents m and
−m, and does not represent −1, then D = 2p2.

Proof. By Theorem 6, if F does not represent −1 then p2|D. We then have that
x2− (D/p2)y2 represents 2 and −2. By Theorem 2, D/p2 = 2, so D = 2p2. ¤

Whether F = x2−2p2y2 represents −1 depends on p. If p ≡ 3 (mod 4) then
F does not represent −1. If p ≡ 5 (mod 8) then F does represent −1 [10, p.
97], [1, p. 39]. If p ≡ 1 (mod 8) then F might or might not represent −1. For
example, x2 − 2 · 172y2 does not represent −1, while x2 − 2 · 1372y2 represents
−1.

4. m = 25 or 100

First we establish a lemma that will be useful.

Lemma 3. If F represents −1 (resp. −4) then either:

There are x, y ∈ Z with 5|y and x2 −Dy2 = −1 (resp. −4), or
5|y for every x, y ∈ Z so that x2 −Dy2 = 1 (resp. 4).

Proof. If {x1, y1} is the minimal positive integral solution to x2 − Dy2 = −1
then all positive integral solutions {xn, yn} to x2 −Dy2 = ±1 are given by

(2) xn + yn

√
D = (x1 + y1

√
D)n,

where n ∈ N, x2
n − Dy2

n = 1 when n is even, and x2
n − Dy2

n = −1 when n is
odd [9, p. 356].
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By the binomial theorem we have that

(3) yn =

b(n−1)/2c∑
i=0

(
n

2i + 1

)
xn−2i−1

1 y2i+1
1 Di.

An immediate consequence is that if n is even, then x1|yn. Thus, if x1 ≡ 0
(mod 5) then 5|y for every solution to x2 −Dy2 = 1.

If x1 ≡ 1 or 4 (mod 5) then Dy2
1 = x2

1 + 1 ≡ 2 (mod 5), and, by (3)

y3 = y1(3x
2
1 + Dy2

1) ≡ y1(3 + 2) ≡ 0 (mod 5).

Hence x2
3 −Dy2

3 = −1 and 5|y3.
If x1 ≡ 2 or 3 (mod 5) then Dy2

1 = x2
1 + 1 ≡ 0 (mod 5), and, by (3)

y5 = y1(5x
4
1 + 10x2

1y
2
1D + y4

1D
2) ≡ y1(0 + 0 + 0) ≡ 0 (mod 5).

Hence x2
5 −Dy2

5 = −1 and 5|y5.
Similar arguments apply when F represents −4, but note that (2) is replaced

by

1

2
(xn + yn

√
D) =

(
x1 + y1

√
D

2

)n

.

¤

This lemma can also be proved by applying the theory of linear recurrence
relations to the sequence of solutions to Pell equations [4, 5].

We will use this to show

Theorem 7. If F primitively represents 25 and −25 (resp. 100 and −100),
then F represents −1.

Proof. First consider the case where F represents 25 and −25. By Theorem 6
if F does not represent −1, then 25|D. Therefore, for any primitive solution
to x2 − Dy2 = 25, 5|x and 5 - y. Thus, for D1 = D/25, x2 − D1y

2 = 1 has
solutions so that 5 - y. Since x2−D1y

2 = −1 has solutions, by Lemma 3 it has
solutions so that 5|y. But then x2 −D(y/5)2 = −1, so F does represent −1.

Virtually the same argument works when F represents 100 and −100. ¤

5. Additional results

The following theorem [12, Theorem 8] is used in the proof of Theorem 9.

Theorem 8. If a, b ∈ N, x2 − aby2 represents −1, and ax2 − by2 represents
1 or −1, then a = 1 or b = 1.

Theorem 9. Let F primitively represent δp and −δp where p is an odd prime,
p|D, and δ ∈ {1, 2, 4}. Then

(a) if δ = 1 or 4 then D = p.
(b) if δ = 2 then D = 2p.
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Proof. For any x and y so that x2−Dy2 = ±δp, we have that p|x, so the form
px2 − (D/p)y2 represents δ and −δ. Also, by Theorem 6, x2 −Dy2 represents
−1.

When δ = 1, Theorem 8 tells us that D/p = 1, and D = p.
When δ = 2, D/p is even (as we show below), so for any x and y so that

px2 − (D/p)y2 = ±2, we have that x is even. It follows that the form 2px2 −
(D/2p)y2 represents 1 and −1, so by Theorem 8, D/2p = 1, and D = 2p.

To see that D/p must be even when δ = 2, suppose D/p were odd. Then
for any representation of 2 by px2 − (D/p)y2, x and y would have the same
parity. If they were both even, we would have 4|px2 − (D/p)y2, but 4 - 2, so
both must be odd. Then x2 ≡ y2 ≡ 1 (mod 8) and p −D/p ≡ 2 (mod 8). A
similar argument using the fact that px2 − (D/p)y2 represents −2 shows that
p−D/p ≡ −2 (mod 8). Because 2 6≡ −2 (mod 8), D/p must be even.

When δ = 4, the form px2 − (D/p)y2 represents 4 and −4. By considera-
tions modulo 16 we have p(D/p) = D ≡ 5 (mod 8), and in particular D/p is
odd. Then by Theorem 1 the form px2 − (D/p)y2 represents 1 and −1, so by
Theorem 8, D/p = 1, and D = p. ¤

6. A conjecture

We begin with some theorems needed to prove the main theorem in this
section. Theorem 9 in [4] says, in part

Theorem 10. If {xi, yi} is the sequence of positive solutions to x2 −Dy2 = 1
(where {x1, y1} is the smallest positive solution), q > 3 is a prime, q|D, and
q - y1, then q - yi for i < q and q‖yq.

Theorem 10 in the same paper [4] is

Theorem 11. If q is an odd prime, α, λ ∈ N, {xi, yi} is as in Theorem 10, κ
is the smallest index i so that qα|yi, qα‖yκ, and gcd(q, χ) = 1, then qα+λ‖yχκqλ.

We have as an immediate consequence

Corollary 2. If q > 3 is an odd prime, α ∈ N, {xi, yi} is as in Theorem 10,
q|D, and q - y1, then qα‖ypα.

The following theorem provides support for the conjecture below.

Theorem 12. If

x1, y1, t, u ∈ N,
m ∈ Z,
x2

1 −Dy2
1 = m with gcd(x1, y1) = 1,

x2 −Dy2 does not represent −1,
t2 −Du2 = 1,
q > 3 is an odd prime, q|D, and q - ux1,

then, for all integers k ≥ 0, x2−Dq2ky2 primitively represents m and does not
represent −1.
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Proof. By Corollary 2, for any k there are tk, uk so that

(4) t2k −Dq2ku2
k = 1

and gcd(q, uk) = 1.
By hypothesis, the theorem is this true for k = 0. We assume the theorem

for k and show it for k + 1. Let

(5) x2
1 −Dq2ky2

1 = m

be a positive primitive solution with q - x1, and define x2n+1, y2n+1 by

(6) x2n+1 + y2n+1

√
Dq2k = (tk + uk

√
Dq2k)2n(x1 + y1

√
Dq2k).

Then

(7) x2n+1 + y2n+1

√
Dq2k

≡ (t2n
k + 2nt2n−1

k uk

√
Dq2k)(x1 + y1

√
Dq2k) (mod q),

and

(8) x2n+1 + y2n+1

√
Dq2k ≡ x1 + (2ntkukx1 + y1)

√
Dq2k

because q|D, t2n
k ≡ 1 (mod q), and t2n−1

k ≡ tk (mod q). From this we have
that

(9) x2n+1 ≡ x1 (mod q)

and

(10) y2n+1 ≡ 2ntkukx1 + y1 (mod q).

By hypothesis, gcd(2tkukx1, q) = 1, so there is an n so that

(11) 2ntkukx1 + y1 ≡ 0 (mod q),

and so q|y2n+1. We then have

(12) x2
2n+1 −Dq2k+2

(
y2n+1

q

)2

= m

with gcd(x2n+1, q) = 1 (by (9)).
To show that this is a primitive solution, it suffices to show that

gcd(x2n+1, y2n+1) = 1.

Define t, u by

t + u
√

Dq2k = (tk + uk

√
Dq2k)2n

so by (6)

x2n+1 + y2n+1

√
Dq2k = (t + u

√
Dq2k)(x1 + y1

√
Dq2k)

where
t2 − u2Dq2k = 1.

Then
x2n+1 = tx1 + uy1Dq2k
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and

y2n+1 = ux1 + ty1

so

(13) tx2n+1 − uD2ky2n+1

= t2x1 + tuy1Dq2k − (tuy1Dq2k + u2x1Dq2k)

= (t2 − u2Dq2k)x1 = x1.

Similarly,

ty2n+1 − ux2n+1 = y1.

Hence any common factor of x2n+1 and y2n+1 divides both x1 and y1, so x2n+1

and y2n+1 are relatively prime. ¤
For 1 < m ≤ 15000, m not equal to 25, 100, p, 2p, 4p, 2p2, for p prime, there

is a D < 500000 and q|D so that the conditions of the theorem apply for m
and −m.

Based on this, and other empirical evidence, I conjecture that for any integer
m > 1 that is not 25, 100, p, 2p, 4p, or 2p2, for p a prime, there are infinitely
many D so that x2 − Dy2 primitively represents m and −m and does not
represent −1.
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