
Acta Mathematica Academiae Paedagogicae Nýıregyháziensis
25 (2009), 283–301
www.emis.de/journals

ISSN 1786-0091

SCALING PROBLEMS IN LINEAR-FRACTIONAL
PROGRAMMING

E. BAJALINOV AND A. RÁCZ

Abstract. In this paper we discuss the theoretical backgrounds and imple-
mentation issues of scaling a linear-fractional programming problem (LFP).
We consider an LFP problem in the canonical form and show how to scale
rows and columns of the problem, then if the scaled problem has been
solved, we show how the solution obtained may be un-scaled. We also
overview briefly three scaling rules for calculating scaling factors. Finally,
to illustrate how these rules work we consider a numeric example.

1. Introduction

Let us consider the following canonical LFP problem:

(1) Q(x) =
P (x)

D(x)
→ max

subject to

(2)
n∑

j=1

aijxj = bi, i = 1, 2, . . . , m,

(3) xj ≥ 0, j = 1, 2, . . . , n,

where

P (x) =
n∑

j=1

pjxj + p0, D(x) =
n∑

j=1

djxj + d0,

D(x) > 0, ∀x = (x1, x2, . . . , xn)T ∈ S, S - is a feasible set defined by
constraints (2) and (3).

It is a well-known fact that large linear-programming (LP) models

(4) P (x) =
n∑

j=1

pjxj → max

2000 Mathematics Subject Classification. 90C32.
Key words and phrases. linear-fractional programming, scaling.

283

284 E. BAJALINOV AND A. RÁCZ

subject to constraints (2)-(3); require hundreds of thousands to millions of
floating-point arithmetic calculations to solve. Because of the finite precision
inherent in computer arithmetic, small numerical errors occur in these calcu-
lations. These errors typically have a cumulative effect, that often leads to
a numerically unstable problem and possibly large errors in the ‘solution’ ob-
tained. The same computational problems occur in large-scale LFP problems
too.

To avoid such problems, all well-made industrial LP solvers include spe-
cial sophisticated techniques, that dramatically reduce the cumulative effect
of rounding and often lead to considerable improvement in the solvers’ perfor-
mance.

One of the most easy, relatively effective and widespread techniques of this
type is scaling1. This technique means that those rows and/or columns of
matrix A = ‖aij‖m×n in the original optimization problem, which are poorly
(or badly) scaled, that is have a wide range of entries, must be divided (or
multiplied) with their own scaling factors ρr

i , i = 1, 2, . . . , m and/or ρc
j, j =

1, 2, . . . , n, respectively. In most real-world LP and LFP applications the
model originally is very poorly scaled – for example, with dollar amounts in
millions for some constraints and return figures in percentages for others. This
is why before beginning the simplex or other method the program package
must scale columns, rows, and right-hand sides to a common magnitude.

Such scaling may include or may not the coefficients of the objective func-
tion. In the case of LP problems, scaling matrix A, right-hand-side vector b
and objective function P (x) does not lead to any difficulties because of the lin-
earity of the constraints and the objective function. In the most cases scaling
improves the numerical properties of the problem to be solved so it is justi-
fied to use it. Moreover, sometimes it can dramatically reduce the number of
iterations in simplex method. Most professionally developed LP solvers au-
tomatically use scaling methods to maintain numerical stability and improve
performance.

Normally, you can choose among such options as: ‘No Scaling’, ‘Row Scal-
ing’, ‘Column Scaling’, or ‘Row and Column Scaling’ with or without scaling
the objective function.

In the case of LFP problem (1)-(3), when scaling we should keep in mind
the main difference between LP and LFP problems – the non-linear objective
function Q(x).

In this paper we consider the theoretical backgrounds of such type of tech-
niques that are usually used to make solvers more stable and can help to
improve their performance.

1The pre-solution transformation of the data of a problem that attempts to make the
magnitudes of all the data as close as possible.

SCALING PROBLEMS IN LINEAR-FRACTIONAL PROGRAMMING 285

2. Scaling problems and un-scaling solutions

When scaling LFP problem, we have to distinguish the following cases:

(1) scaling constraints:
• right-hand side vector b = (b1, b2, . . . , bm)T ;
• columns Aj, j = 1, 2, . . . , n; of matrix A;
• rows of matrix A;

(2) scaling objective function:
• only vector p = (p0, p1, p2, . . . , pn) of numerator P (x);
• only vector d = (d0, d1, d2, . . . , dn) of denominator D(x);
• both vectors p and d of objective function Q(x).

Below, we investigate all these possible cases.

2.1. Right-hand side column-vector. Suppose that vector x∗ is an optimal
solution for LFP problem (1)-(3), so

n∑
j=1

Ajx
∗
j = b and x∗ ≥ 0,

and matrix B = (As1 , As2 , . . . , Asm) is its basis.
Let us replace RHS vector b with some other vector b′ = ρ b, where ρ > 0.

Consider the new vector x′ = ρx∗. It is obvious that this vector x′ satisfies
constraints

n∑
j=1

Aj(ρx∗j) = ρ b and x′ = ρx∗ ≥ 0,

so vector x′ is a feasible solution of LFP problem

(5) Q(x) =
P (x)

D(x)
=

n∑
j=1

pjxj + p ′0

n∑
j=1

djxj + d ′0

→ max

subject to

(6)
n∑

j=1

aijxj = ρbi, i = 1, 2, . . . , m;

(7) xj ≥ 0, j = 1, 2, . . . , n.

Now we have to check this vector x′ whether it is an optimal solution of
problem (5)-(7). Since vector x∗ is an optimal solution of the original LFP
problem (1)-(3), we have

(8) ∆j(x
∗) ≥ 0, j = 1, 2, . . . , n,

286 E. BAJALINOV AND A. RÁCZ

where

∆j(x
∗) = D(x∗)∆′

j − P (x∗)∆′′
j , j = 1, 2, . . . , n,

∆′
j =

m∑
i=1

psi
xij − pj, j = 1, 2, . . . , n,

∆′′
j =

m∑
i=1

dsi
xij − dj, j = 1, 2, . . . , n,

coefficient xij are defined from the systems

(9)
m∑

i=1

Asi
xij = Aj, j = 1, 2, . . . , n;

and Aj denotes the column-vectors Aj = (a1j, a2j, . . . , amj)
T , j = 1, 2, . . . , n,

of matrix A = ‖aij‖m×n.
Observe that reduced costs ∆′

j and ∆′′
j do not depend on RHS vector b, so

substitution b → ρ b does not affect values of ∆′
j and ∆′′

j . However, values of
functions P (x) and D(x) depend on RHS vector b, so we have to consider the
new reduced costs ∆j(x

′), where x′ = ρx∗, for LFP problem (5)-(7). We have

∆j(ρx∗) = D(ρx∗) ∆′
j − P (ρx∗) ∆′′

j =

= (
n∑

j=1

dj(ρx∗j) + d ′0) ∆′
j − (

n∑
j=1

pj(ρx∗j) + p ′0) ∆′′
j =

= (
n∑

j=1

dj(ρx∗j) + d ′0 + ρd0 − ρd0) ∆′
j −

−(
n∑

j=1

pj(ρx∗j) + p ′0 + ρp0 − ρp0) ∆′′
j =

= ρD(x∗) ∆′
j + (d ′0 − ρd0) ∆′

j − ρP (x∗) ∆′′
j − (p ′0 − ρp0) ∆′′

j =

= ρ∆j(x
∗) + (d ′0 − ρd0) ∆′

j − (p ′0 − ρp0) ∆′′
j =

= ρ∆j(x
∗)−Gj,(10)

where
Gj = (p ′0 − ρp0) ∆′′

j − (d ′0 − ρd0) ∆′
j .

Formula (10) means that if p ′0 and d ′0 are such that

ρ∆j(x
∗)−Gj ≥ 0, j = 1, 2, . . . , n,

or, in particular, if p ′0 = ρp0 and d ′0 = ρd0, then

∆j(ρx∗)
(10)
= ρ∆j(x

∗)
(8)

≥ 0, ∀j = 1, 2, . . . , n,

and hence, vector x′ is an optimal solution of LFP problem (5)-(7).

SCALING PROBLEMS IN LINEAR-FRACTIONAL PROGRAMMING 287

So, if we substitute RHS vector b with some other vector b ′ = ρb, ρ > 0, we
have simultaneously to replace coefficients p0 and d0 in the original objective
function Q(x) with p ′0 = ρp0 and d ′0 = ρd0, respectively. These two
substitutions will guarantee the equivalence between the original problem (1)-
(3) and the new scaled LFP problem (5)-(7).

It is obvious that if vector x ′ is an optimal solution of the new (scaled) LFP
problem (5)-(7), then vector x∗ = x ′/ρ is an optimal solution of the original
LFP problem (1)-(3).

2.2. Left-hand side column-vectors. In this section we consider the scaling
columns Aj, j = 1, 2, . . . , n, of matrix A = ‖aij‖m×n. We suppose that vector
x∗ is an optimal solution for the original LFP problem (1)-(3), so

n∑
j=1

Aj x∗j = b and x∗j ≥ 0, j = 1, 2, . . . , n,

and matrix B = (As1 , As2 , . . . , Asm) is its basis.
Let us replace vector Ar, r ∈ J = {1, 2, . . . , n}, with some other vector

A′
r = ρAr, where ρ > 0. It is obvious that new vector

x′ = (x∗1, x∗2, . . . , x∗r−1,
x∗r
ρ

, x∗r+1, . . . , x∗n)

will satisfy constraints
n∑

j=1

j 6=r

Ajx
∗
j + ρAr

x∗r
ρ

= b,

x′j ≥ 0, j = 1, 2, . . . , n,

and hence vector x′ is a feasible solution of the new scaled LFP problem

(11) Q(x) =
P ′(x)

D′(x)
=

n∑
j=1

j 6=r

pjxj + p′rxr + p0

n∑
j=1

j 6=r

djxj + d′rxr + d0

→ max

subject to

(12)
n∑

j=1

j 6=r

Ajxj + A′
rxr = b,

(13) xj ≥ 0, j = 1, 2, . . . , n.

288 E. BAJALINOV AND A. RÁCZ

Our aim is now to detect whether vector x′ is an optimal solution of the
scaled LFP problem (11)-(13)? Since vector x∗ is an optimal solution of the
original problem (1)-(3), we have that

(14) ∆j(x
∗) = D(x∗)∆′

j − P (x∗)∆′′
j ≥ 0, j = 1, 2, . . . , n.

Here we have to distinguish the following two cases: Ar is a basic vector,
and vector Ar is a non-basic vector.

Let us suppose that Ar is a basic vector, i.e. r ∈ JB = {s1, s2, . . . , sm}. In
this case, keeping in mind that

P ′(x′) =
n∑

j=1

j 6=r

pjx
∗
j + p′r

x∗r
ρ

+ p0 , D′(x′) =
n∑

j=1

j 6=r

djx
∗
j + d′r

x∗r
ρ

+ d0 ,

∆′
j =

m∑
i=1

si 6=r

psi
xij + p′r

xrj

ρ
− pj , ∆′′

j =
m∑

i=1
si 6=r

dsi
xij + d′r

xrj

ρ
− dj .

for the new scaled problem (11)-(13) we have

∆j(x
′) = D′(x′)∆′

j − P ′(x′)∆′′
j =

= (D(x∗)− drx
∗
r + d′r

x∗r
ρ

)(∆′
j − prxrj + p′r

xrj

ρ
)−

− (P (x∗)− prx
∗
r + p′r

x∗r
ρ

)(∆′′
j − drxrj + d′r

xrj

ρ
)(15)

Equality (15) makes it obvious that if p′r = prρ and d′r = drρ, then

∆j(x
′)

(15)
= ∆j(x

∗)
(14)

≥ 0, j = 1, 2, . . . , n.

The latter means that in this case vector x′ is an optimal solution of the scaled
LFP problem (11)-(13). So, if we substitute some basic vector Ar with some
other vector A′

r = ρ Ar, ρ > 0, we simultaneously have to replace coefficients
pr and dr in the original objective function Q(x) with p′r = ρpr and d′r = ρdr,
respectively. These two substitutions will guarantee the equivalence between
the original problem (1)-(3) and the new scaled LFP problem (11)-(13).

It is obvious that if vector x′ is an optimal solution of the new (scaled) LFP
problem (11)-(13), then vector x∗ = (x′1, x′2, . . . , x′r−1, x′rρ, x′r+1, . . . , x′n)
will be an optimal solution of the original LFP problem (1)-(3).

Now, we have to consider the case when substituted vector Ar is a non-basic
vector, i.e. r ∈ JN = J \ JB. As in the previous case, we simultaneously
replace original coefficients pr and dr with ρpr and ρdr, respectively. Since
index r is non-basic and x∗r = 0, it is obvious that

x′ = x∗, P ′(x′) = P (x∗), D′(x′) = D(x∗) and hence Q′(x′) = Q(x∗).

So replacement Ar → ρAr, r ∈ JN , affects only values of ∆′
r, ∆′′

r , and
∆r(x

′). Indeed, if in the original LFP problem (1)-(3) for non-basic vector Ar

SCALING PROBLEMS IN LINEAR-FRACTIONAL PROGRAMMING 289

we had (see (9)), that
m∑

i=1

Asi
xir = Ar, r ∈ JN ,

then after replacement Ar → A′
r, where A′

r = ρAr, we obtain the following
representation of the new vector A′

r in the same basis B:
m∑

i=1

Asi
(ρxir) = ρAr, r ∈ JN .

If when replacing Ar → ρAr, we simultaneously substitute pr → p′r, where
p′r = ρpr, and dr → d′r, where d′r = ρdr, then for new ∆̃′

r, ∆̃′′
r , and ∆̃r(x

′)
we have

∆̃′
r =

m∑
i=1

psi
(ρxir)− (ρpr) = ρ∆′

r,

∆̃′′
r =

m∑
i=1

dsi
(ρxir)− (ρdr) = ρ∆′′

r .

Thus,

∆̃r(x
′) = D(x∗)∆̃′

r−P (x∗)∆̃′′
r = D(x∗)(ρ∆′

r)−P (x∗)(ρ∆′′
r) = ρ∆r(x

∗)
(14)

≥ 0.

The latter means that in this case vector x∗ is an optimal solution of the scaled
LFP problem (11)-(13).

So, if we substitute some non-basic vector Ar with some other vector A′
r =

ρ Ar, ρ > 0, we have simultaneously to replace coefficients pr and dr in the
original objective function Q(x) with p′r = ρpr and d′r = ρdr, respectively.
These two substitutions will guarantee the equivalence between the original
problem (1)-(3) and the new scaled LFP problem (11)-(13). Moreover, it will
guarantee that x∗r = x′r = 0.

2.3. Rows of constraints. Let us replace row-vector ar = (ar1, ar2, . . . , arn)
of matrix A = ||aij||m×n in LFP problem (1)-(3) with some other row-vector
a′r = ρar. In this case we have to distinguish the following two cases:

(1) simultaneously with replacement ar → ρai we substitute the r-th ele-
ment of RHS vector b, that is br → b′r = ρbr.

(2) we do not modify any element in RHS column-vector, so scaling must
be performed only in matrix A.

In the case (1) instead of original constraint in the r-th row
n∑

j=1

arjxj = br, we have
n∑

j=1

(ρarj)xj = (ρbr).

It is well-known that such scaling does not affect the structure of feasible set
S. So the new scaled problem is absolutely equivalent with the original one.

290 E. BAJALINOV AND A. RÁCZ

In case (2) we do not modify RHS vector b. Such scaling leads to unpre-
dictable deformations in feasible set S, so we cannot provide any guarantee
that the optimal basis of the scaled problem will be the same as in the original
one. So, the only negotiable method of scaling rows in matrix A is the following
ãr → ã′r where ãr = (ar1, ar2, . . . , arn, br) and ã′r = (ρar1, ρar2, . . . , ρarn, ρbr).

Obviously, the optimal solution x′ of the scaled LFP problem is absolutely
identical with the optimal solution x∗ of the original LFP problem. So we need
not any ‘un-scaling’ in this case.

Note that in the simplex method, when performing θ-ratio test, the elements
of the pivotal column take part in the calculations. Hence, the choice of pivotal
row depends on the row scaling. Since a bad choice of pivots can lead to large
errors in the computed solution, it means that a proper row scaling is very
important.

2.4. Objective function.

2.4.1. Numerator P (x). Let us replace vector p = (p0, p1, . . . , pn) in the nu-
merator P (x) with some other vector p′ = (p′0, p

′
1, . . . , p

′
n), where p′j = ρpj, j =

0, 1, 2, . . . , n.
It is clear that this replacement does not affect either the optimal value of

denominator D(x) or the values of reduced costs ∆′′
j , j = 1, 2, . . . , n, but it

changes the optimal values of functions P (x) and Q(x) and affects the values
of reduced costs ∆′

j and ∆j(x), j = 1, 2, . . . , n.

So, for the new values ∆̃′
j, P ′(x∗), Q′(x∗), and ∆̃j(x

∗), j = 1, 2, . . . , n,
we have:

∆̃′
j =

m∑
i=1

p′si
xij − p′j =

m∑
i=1

(ρ psi
)xij − (ρ pj) = ρ ∆′

j, j = 1, 2, . . . , n,

P ′(x∗) =
n∑

j=1

p′jx
∗
j + p′0 =

n∑
j=1

(ρ pj)x
∗
j + (ρ p0) = ρ P (x∗),

Q′(x∗) = P ′(x∗)/D(x∗) = ρ P (x∗)/D(x∗) = ρ Q(x∗),

and hence,

∆̃j(x
∗) = D(x∗)∆̃′

j − P ′(x∗)∆′′
j =

= D(x∗)(ρ ∆′
j)− (ρ P (x∗))∆′′

j = ρ ∆j(x
∗), j = 1, 2, . . . , n.

Since ρ > 0 and ∆j(x
∗) ≥ 0, j = 1, 2, . . . , n, the latter means that

∆̃j(x
∗) = ρ ∆j(x

∗)
(14)

≥ 0, j = 1, 2, . . . , n.

Finally, we have to note that replacement p → ρp does not lead to any changes
in the optimal basis or in optimal solution x∗. So, if we have solved the scaled
LFP problem, in order to ‘un-scale’ the optimal solution obtained we have to

SCALING PROBLEMS IN LINEAR-FRACTIONAL PROGRAMMING 291

use the following formula Q(x∗) =
1

ρ
Q′(x∗), because the optimal solution x′

of the scaled problem is exactly the same as optimal solution x∗ of the original
problem.

2.4.2. Denominator D(x). Let us replace vector d = (d0, d1, . . . , dn) in the
denominator D(x) with another vector d′ = (d′0, d

′
1, . . . , d

′
n), where d′j =

ρdj, j = 0, 1, . . . , n.
It is obvious that such replacement leads to some changes in the optimal val-

ues of denominator D(x), objective function Q(x) and values ∆′′
j , ∆j(x), j =

1, 2, . . . , n; but does not affect the optimal value of numerator P (x) or the
values of reduced costs ∆′

j, j = 1, 2, . . . , n.

So for new values ∆̃′′
j , D′(x∗), Q′(x∗), and ∆̃j(x

∗), j = 1, 2, . . . , n, we
have

∆̃′′
j =

m∑
i=1

d′si
xij − d′j =

m∑
i=1

(ρ dsi
)xij − (ρ dj) = ρ ∆′′

j , j = 1, 2, . . . , n,

D′(x∗) =
n∑

j=1

d′jx
∗
j + d′0 =

n∑
j=1

(ρ dj)x
∗
j + (ρ d0) = ρ D(x∗),

Q′(x∗) = P (x∗)/D′(x∗) = P (x∗)/(ρ D(x∗)) = Q(x∗)/ρ,

and hence,

∆̃j(x
∗) = D′(x∗)∆′

j − P (x∗)∆̃′′
j =

= (ρ D(x∗))∆′
j − P (x∗)(ρ ∆′′

j) = ρ ∆j(x
∗), j = 1, 2, . . . , n.

Thus, we obtain

∆̃j(x
∗) = ρ ∆j(x

∗)
(14)

≥ 0, j = 1, 2, . . . , n.

Finally, we have to note that replacement d → ρd does not lead to any changes
in optimal basis B or in optimal solution x∗. So once we have solved the scaled
LFP problem, in order to ‘un-scale’ the optimal solution obtained we have to
use the following formula Q(x∗) = ρ Q′(x∗), because the optimal solution x′

of the scaled problem is exactly the same as optimal solution x∗ of the original
problem.

3. Scaling factors and implementations issues

In this section we briefly overview three rules for calculating scaling factors
ρ. The first two techniques have been implemented in several commercial and
freely usable LP codes, and bring a compromise between provided stability and
computational efficiency. For more information on scaling rules with detailed
theoretical backgrounds see, for instance [2], [3], [4], [5], etc.

292 E. BAJALINOV AND A. RÁCZ

Consider a matrix A = ||aij||m×n and an RHS vector b = (b1, b2, . . . , bm)T .
A measure of ill-scaling of the system Ax = b is

σ(A) = max
i,j∈J+

(|aij|) / min
i,j∈J+

(|aij|),

where J+ = {i, j | aij 6= 0}. The larger is the magnitude between the largest
and the smallest absolute values of non-zero entries aij, the worse scaled is the
system.

We will say that given matrix A is poorly scaled or badly scaled, if
σ(A) >= 1E + 5.

The aim of scaling is to make measure σ(A) as small as possible. To reach
this aim we can scale columns and rows as many times as we need.

3.1. Geometric rule. In accordance with this rule we define the following
column-vector ρr of scaling factors for rows

(16) ρr = (ρr
1, ρ

r
2, . . . , ρ

r
m)T ,

where

ρr
i = (

∏

j∈J+
i

aij)
1/Kr

i , i = 1, 2, . . . , m;

J+
i = {j : aij 6= 0}, i = 1, 2, . . . , m, is a row related set of indices j of non-zero

entries aij in row i, and Kr
i denotes the number of non-zero entries aij in row i.

Analogically, to scale columns, we use the following factors organized in a
row-vector ρc

(17) ρc = (ρc
1, ρ

c
2, . . . , ρ

c
n),

where

ρc
j = (

∏

i∈I+
j

aij)
1/Kc

j , j = 1, 2, . . . , n;

I+
j = {i : aij 6= 0}, j = 1, 2, . . . , n, is a column related set of indices i of non-

zero entries aij in column j, and Kc
j denotes the number of non-zero entries

aij in column j.

3.2. Mean rule. As an alternative to the scaling factors calculated in accor-
dance with Geometric rule, we can define the following column-vector ρr of
scaling factors for rows

(18) ρr = (ρr
1, ρ

r
2, . . . , ρ

r
m)T ,

where

ρr
i =

√
r′i r′′i , i = 1, 2, . . . , m;

and

r′i = max
j: aij 6=0

|aij|, r′′i = min
j: aij 6=0

|aij|, i = 1, 2, . . . ,m.

SCALING PROBLEMS IN LINEAR-FRACTIONAL PROGRAMMING 293

Analogically to row scaling factors, for columns we have to define the fol-
lowing row-vector ρc of scaling factors

(19) ρc = (ρc
1, ρ

c
2, . . . , ρ

c
n),

where

ρc
j =

√
c′j c′′j , j = 1, 2, . . . , n;

and
c′j = max

i: aij 6=0
|aij|, c′′j = min

i: aij 6=0
|aij|, j = 1, 2, . . . , n.

3.3. Max/Min-rule. As an alternative to the previous two scaling rules, we
consider the following method for calculating scaling factors. First, we define
the smallest ai0j0 and the largest ai1j1 absolute values for non-zero entries in
the matrix and then calculate the following four scaling factors:

ρ′c – for the column j0 containing the minimal value,
ρ′′c – for the column j1 containing the maximal value,

ρ′r – for the row i0 containing the minimal value,
ρ′′r – for the row i1 containing the maximal value,

using the following formulas:

ρ′c =
max

i
|aij0|+ ai1j1

2×max
i
|aij0|

, ρ′′c =

min
i: aij 6=0

|aij1|+ ai0j0

2× min
i: aij 6=0

|aij1|
,

ρ′r =
max

j
|ai0j|+ ai1j1

2×max
j
|ai0j| , ρ′′r =

min
j: aij 6=0

|ai1j|+ ai0j0

2× min
j: aij 6=0

|ai1j| .

It is obvious that when applying such scaling factors the ‘distance’ between
the largest and the smallest absolute values in the matrix decreases.

3.4. Implementation Issues. To scale an LFP problem we have to calculate
and then to store scaling factors for rows, columns and the objective function
(separately for numerator and denominator). One of the possible ways to store
factors is to expand the matrix of the problem as follows

Ã =




ρr
1 a11 a12 . . . a1n b1

ρr
2 a21 a22 . . . a2n b2
...

...
... . . .

...
...

ρr
m am1 am2 . . . amn bn

ρr
m+1 p1 p2 . . . pn p0

ρr
m+2 d1 d2 . . . dn d0

ρc
1 ρc

2 . . . ρc
n ρc

n+1




.

Before closing this section, we just note that instead of precisely calculated
values of scaling factors ρ several linear programming codes usually use the

294 E. BAJALINOV AND A. RÁCZ

nearest powers of two as a ‘binary approximation’ of these values. The reason
is that for computers based on the binary system, it may dramatically improve
performance of scaling since in this case the relatively expensive operation of
multiplication may be implemented as very fast shifting of data to the left or
right, depending on the power of 2 used for such ‘approximation’.

4. Numeric example

In the previous section we considered three rules for calculating scaling fac-
tors2. All three rules are suitable to be used for automatic scaling in program-
ming packages and allow relatively easy achievement of a well-scaled problem.

To illustrate how these scaling factors work, we consider the following rect-
angular matrix of order 7× 5

(20) A =




0.0005 3.000 0.340 234.000 34.000
2.0000 4.000 345.000 1234.000 234.000

30000.0000 5.000 4565643.000 34.000 234.000
9.0000 6.000 0.001 567.000 4.000

567.0000 7.000 234.000 24.000 234.000
56.0000 8.000 345.000 0.001 3.000

45000.0000 9.000 4.000 3.000 123.000




.

This matrix may be said to be badly scaled since

max
i,j∈J+

(|aij|) = a33 = 4565643.000 = 4.565643E + 06,

min
i,j∈J+

(|aij|) = a11 = 0.0005 = 5.000000E − 04;

and

σ(A) =

max
i,j∈J+

(|aij|)
min

i,j∈J+

(|aij|) =
4.565643E + 06

5.00E − 04
= 9.13E + 09,

i.e. the magnitude between the largest and the smallest absolute values of
non-zero entries aij is of order 10 (σ(A) = 9.13E + 09 ≈ 1.0E + 10).

2The first two rules have been implemented in the linear programming codes developed
at Edinburgh University, Department of Mathematics and Statistics, Scotland. Mean-rule
is used in the package developed by J.Gondzio for sparse and dense large-scale linear pro-
gramming; the package implements some special algorithm of the method of interior point.
Geometric-rule is implemented in the package of J.A.J.Hall for very sparse large-scale linear
programming problems; the package is based on the revised simplex method. Max/Min-rule
has been tested in the linear and linear-fractional parallel package PGULF developed by
E.Bajalinov during his research visit at Edinburgh Parallel Computing Centre, Edinburgh
University, Scotland.

SCALING PROBLEMS IN LINEAR-FRACTIONAL PROGRAMMING 295

4.1. Mean rule. First, we apply successively Mean rule factors for rows and
columns to scale matrix A. The results of scaling are as follows.

Original matrix: In accordance with rule (18), vector ρr of row scaling
factors for original matrix A is

ρr = (0.3421, 49.6790, 4777.8881, 0.7530, 63.0000, 0.5874, 367.4235)T .

Perform row scaling.
After 1st scaling of rows: For modified matrix we calculate measure

σ(A) of ill-scaling:

max
i,j∈J+

(|aij|) = 9.56E + 02; min
i,j∈J+

(|aij|) = 1.05E − 03;

σ(A) =
9.56E + 02

1.05E − 03
= 9.13E + 05.

We use rule (19) to calculate vector ρc of column scaling factors:

ρc = (0.4231, 0.1194, 1.1265, 1.1322, 2.2064).

Perform column scaling.
After 1st scaling of columns: For the modified matrix we calculate

measure σ(A) of ill-scaling:

max
i,j∈J+

(|aij|) = 8.48E + 02; min
i,j∈J+

(|aij|) = 1.18E − 03;

σ(A) =
8.48E + 02

1.18E − 03
= 7.20E + 05.

Vector ρr of row scaling factors:

ρr = (1.4448, 1.4448, 2.3090, 0.8854, 2.6752, 0.8854, 1.4448)T .

Perform row scaling.
After 2nd scaling of rows: For the modified matrix we calculate mea-

sure σ(A) of ill-scaling:

max
i,j∈J+

(|aij|) = 7.51E + 02; min
i,j∈J+

(|aij|) = 1.33E − 03;

σ(A) =
7.51E + 02

1.33E − 03
= 5.64E + 05.

Vector ρc of column scaling factors:

ρc = (0.7801, 0.6994, 0.8854, 1.1294, 0.5475).

Perform column scaling.
After 2nd scaling of columns: For the modified matrix we calculate

measure σ(A) of ill-scaling:

max
i,j∈J+

(|aij|) = 6.65E + 02; min
i,j∈J+

(|aij|) = 1.50E − 03;

σ(A) =
6.65E + 02

1.50E − 03
= 4.42E + 05.

296 E. BAJALINOV AND A. RÁCZ

Vector ρr of row scaling factors:

ρr = (1.0654, 1.0654, 1.0000, 1.0000, 1.0654, 1.0000, 1.0654)T .

Perform row scaling.
After 3rd scaling of rows: For the modified matrix we calculate mea-

sure σ(A) of ill-scaling:

max
i,j∈J+

(|aij|) = 6.65E + 02; min
i,j∈J+

(|aij|) = 1.50E − 03;

σ(A) =
6.65E + 02

1.50E − 03
= 4.42E + 05.

Vector ρc of column scaling factors:

ρc = (0.9688, 1.0000, 1.0000, 1.0000, 0.9688).

After performing multiple successive scaling operations for rows and columns,
we obtain scaling factors both for rows and columns with values close to 1.
Hence, there is no reason to continue this process, since the further improve-
ment of ill-scaling measure σ(A) for matrix A becomes more and more expen-
sive.

So, starting from the original matrix A with σ(A) = 9.13E +09 we obtained
its scaled modification with σ(A) = 4.42E + 05. As we can see, the improve-
ment of magnitude achieved is of order 5 = 10− 5.

4.2. Geometric rule. Now, let us apply Geometric rule factors to scale the
same matrix A given in (20). We have the following results.

Original matrix:: In accordance with rule (16) we calculate vector ρr

of row scaling factors

ρr = (1.3233, 60.2959, 1403.6460, 2.6158, 87.7940, 3.4138, 56.9257)T .

Perform row scaling.
After 1st scaling of rows: For the modified matrix we calculate mea-

sure σ(A) of ill-scaling:

max
i,j∈J+

(|aij|) = 3.25E + 03; min
i,j∈J+

(|aij|) = 2.93E − 04;

σ(A) =
3.25E + 03

2.93E − 04
= 1.11E + 07.

Row-vector ρc of column scaling factors calculated in accordance with
rule (17)

ρc = (1.8606, 0.2321, 1.6591, 0.6973, 2.0014).

Perform column scaling.

SCALING PROBLEMS IN LINEAR-FRACTIONAL PROGRAMMING 297

After 1st scaling of columns: For the modified matrix we calculate
measure σ(A) of ill-scaling:

max
i,j∈J+

(|aij|) = 1.96E + 03; min
i,j∈J+

(|aij|) = 2.03E − 04;

σ(A) =
1.96E + 03

2.03E − 04
= 9.65E + 06.

Column-vector ρr of row scaling factors will be

ρr = (1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000)T .

Moreover, rule (17) used to calculate new row-vector ρc of column scal-
ing factors gives

ρc = (1.0000, 1.0000, 1.0000, 1.0000, 1.0000).

After performing two successive scaling operations for rows and columns, we
obtain scaling factors both for rows and columns with values exactly equal to
1. Hence, there is no reason to continue this process, since the further improve-
ment of ill-scaling measure σ(A) for matrix A using this rule is impossible.

So, starting from the original matrix A with σ(A) = 9.13E + 09 we ob-
tained its scaled modification with σ(A) = 9.65E + 06. As we can see, the
improvement of magnitude achieved is of order 4 = 10− 6.

4.3. Max/Min-factors. Finally, let us apply Max/min-factors to scale the
same matrix A given in (20).

First, we define the smallest entry a11 = 0.0005 and the largest entry a33 =
4565643.000, then in the row 1 (that contains the smallest entry) we find the
largest entry a14 = 234.00 and calculate factor ρ′r for row 1 as follows

ρ′r =
max

j
|a1j|+ a33

2×max
j
|a1j| =

234.00 + 4565643.000

2× 234.00
= 9756.1475.

Using the factor obtained we scale row 1 and obtain the following

Row 1 = 4.8781 29268.4414 3317.0901 2282938.5 331709.000

Now, the smallest non-zero entry of the matrix is a43 = 0.001, so

σ(A) =

max
i,j∈J+

(|aij|)
min

i,j∈J+

(|aij|) =
4.565643E + 06

1.00E − 03
= 4.565643E + 09,

Note, that in the scaled matrix the smallest entry a43 = 0.001 is in the same
column 3 as the largest entry a33 = 4565643.00, so there is no reason for scaling
this column since in this case the value for scaling factors ρ′c and ρ′′c will be
exactly 1. Indeed,

298 E. BAJALINOV AND A. RÁCZ

ρ′c =
max

i
|ai3|+ a33

2×max
i
|ai3| =

a33 + a33

2× a33

= 1,

and

ρ′′c =
min

i: ai3 6=0
|ai3|+ a43

2× min
i: ai3 6=0

|ai3| =
a43 + a43

2× a43

= 1.

This is why in the next scaling operation we have to scale a row. Arbitrarily,
we choose the row of the largest entry and calculate the following factor

ρ′′r =

min
j: a3j 6=0

|a3j|+ a43

2× min
j: a3j 6=0

|a3j| =
a32 + a43

2× a32

=
5.00 + 0.001

2× 5.00
= 0.5001

Performing the scaling we obtain

Row 3 = 15003.0000 2.5005 2283278.0643 17.0034 117.0234

and new value for the measure of ill-scaling

σ(A) =

max
i,j∈J+

(|aij|)
min

i,j∈J+

(|aij|) =
2283278.0643

0.0010
= 2.28328E + 09,

so the resulting matrix is as follows

A =




4.8781 29268.4414 3317.0901 2282938.5 331709.000
2.0000 4.000 345.000 1234.000 234.000

15003.0000 2.5005 2283278.0643 17.0034 117.0234
9.0000 6.000 0.001 567.000 4.000

567.0000 7.000 234.000 24.000 234.000
56.0000 8.000 345.000 0.001 3.000

45000.0000 9.000 4.000 3.000 123.000




.

Note, that the largest and the smallest entries of the matrix are in the same col-
umn, so in the next scaling operation we have to scale a row. After performing
9 such scaling operations we obtain resulting matrix with σ(A) = 4.92E + 05.

Observe, that when using this scaling rule in each step we scale only one row
or column, so the rule is not so expensive as the previous two scaling rules.

5. Testing and comparison of the scaling rules

In this section we briefly describe the main results obtained during testing
the scaling rules mentioned above. A special testing program was developed
in C++. The most important properties we focused on are as follows:

SCALING PROBLEMS IN LINEAR-FRACTIONAL PROGRAMMING 299

• How long time (or iterations) does the rule take to produce a predefined
improvement.

• How long time (or iterations) does the rule take to produce resulting
matrix with a predefined σ(A);

• How great an improvement can be achieved in one scaling iteration;

We tested these rules using 1100 randomly generated matrices with a size
from 10 × 10 to 130 × 130 with different densities. For each size there were
generated 9 matrices with different density and performed all three scaling
rules.

The main results obtained may be summarized as follows:

(1) All three rules can produce resulting matrix with a better σ(A).
(2) When applying Geometric-rule or Mean-rule after several (depending

on the size and the density of matrix) iterations scaling factors for rows
and columns tend to 1.0, so no further improvement can be achieved.
Moreover, in each scaling iteration we have to scale successively all rows
and all columns. The best improvement was achieved for matrices with
relatively small size and the density between 20% and 40%.

(3) Max/Min-rule in each iteration requires scaling only one row or column
and usually produces a better matrix. At the same time, the more
iterations, the slower improvement.

Summarizing our test results we present the following two tableaus. The first
of them shows the (average) improvement achieved by different methods for
the problems of different density. The second one presents the same results
grouped by the size of the test problems.

300 E. BAJALINOV AND A. RÁCZ

All tests were performed in the following environment:

• Operating system: Microsoft Windows XP Home Edition +SP2
• CPU: Mobile AMD Turion 64 MT-32, 1.8GHz
• RAM: 512Mb

——————————————————

References

[1] E. B. Bajalinov. Linear-fractional programming. Theory, methods, applications and soft-
ware. Kluwer Academic Publishers, 2003.

[2] A. Curtis and J. Reid. On the automatic scaling of matrices for Gaussian elimination.
J. Inst. Math. Appl., 10:118–124, 1972.

[3] I. S. Duff, A. M. Erisman, and J. K. Reid. Direct methods for sparse matrices. Mono-
graphs on Numerical Analysis. The Clarendon Press Oxford University Press, New York,
1986. Oxford Science Publications.

[4] S. Pissanetzky. Sparse matrix technology. Academic Press Inc. [Harcourt Brace Jo-
vanovich Publishers], London, 1984.

[5] R. D. Skeel. Scaling for numerical stability in Gaussian elimination. J. Assoc. Comput.
Mach., 26:494–526, 1979.

Received on May 12, 2009, accepted on June 6, 2009

SCALING PROBLEMS IN LINEAR-FRACTIONAL PROGRAMMING 301

Faculty of Informatics,
Debrecen University,
4010 Debrecen, Egyetem tér 1, P.O.B. 12, Hungary
E-mail address: bajalinov.erik@inf.unideb.hu
E-mail address: racz.anett@inf.unideb.hu

