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A BASIS OF THE CONJUNCTIVELY POLYNOMIAL-LIKE
BOOLEAN FUNCTIONS

J. GONDA

Abstract. The spectra of the conjunctively polynomial-like Boolean func-
tions belonging to their modified canonical normal forms induce a linear
space over the field of two elements. A basis of this space was given in [7].
In this article we give another way to generate a matrix of the basis of the
space.

In this article disjunction and logical sum, conjunction and logical product,
exclusive or and modulo two sum, as well as complementation and negation
are used in the same sense and they are denoted respectively by +, · (or
simply without any operation sign), ⊕ and . The elements of the field with
two elements and the elements of the Boolean algebra with two elements are
denoted by the same signs, namely by 0 and 1; N denotes the non-negative
integers, and N+ the positive ones.

1. Introduction

Logical functions and especially the two-valued ones have important role in
our everyday life, so it is easy to understand why they are widely investigated.
A scope of the investigations is the representations of these functions and the
transforms from one representation to another ([3, 4, 5, 8]). Another area of
the examinations is the search of special classes of the set of the functions. Post
determined the closed classes of the switching functions [10], but there are a
lot of another classes of the Boolean functions invariant with respect to some
property. Such properties can be for example linear transforms. In [6] and
[7] it were introduced two classes of the Boolean functions invariant to some
linear transforms. These functions are called polynomial-like and conjunctively
polynomial-like.
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1.1. Representations of a Boolean function. It is well-known that an ar-
bitrary two-valued logical function of n variables can be written in the uniquely
determined canonical disjunctive normal form, i.e. as a logical sum whose mem-
bers are pairwise distinct logical products of n factors, where all of such logi-
cal products contain every logical variable exactly once, either negated or not
negated exclusively. Clearly, there exist exactly 2n such products. Supposing
that the variables are indexed by the integers 0 ≤ j < n and the variable in-
dexed by j is denoted by xj, these products can be numbered by the numbers
0 ≤ i < 2n in such a way that we consider the non-negative integer containing
0 in the j-th position of its binary expansion if the j-th variable of the given
product is negated, and 1 in the other case. Of course, this is a one to one cor-
respondence between the 2n distinct products and the integers of the interval

[0..2n − 1], and if i =
∑n−1

j=0 a
(i)
j 2j, where a

(i)
j is either 0 or 1, then the product

belonging to it is

(1) m
(n)
i =

n−1∏
j=0

(
a

(i)
j ⊕ xj

)
.

Such a product is called minterm (of n variables).
With the numbering given above we numbered the Boolean functions of n

variables, too. A Boolean function is uniquely determined by the minterms
contained in its canonical disjunctive normal form, so a Boolean function is
uniquely determined by a 2n long sequence of 0-s and 1-s, where a 0 in the j-th

position (now 0 ≤ j < 2n) means that m
(n)
j doesn’t occur in that function, and

1 means that the canonical disjunctive normal form of the function contains
the minterm of the index j (this sequence is the spectrum of the canonical dis-
junctive normal form of the function, and similarly will be defined the spectra

with respect to other representations of the function), i.e. for l =
∑2n−1

i=0 α
(l)
i 2i

with α
(l)
i ∈ {0, 1}

(2) f
(n)
l =

2n−1∑
i=0

α
(l)
i m

(n)
i .

Now f
(n)
l denotes the l-th Boolean function of n variables.

Instead of the 2n-long sequence of 0-s and 1-s it is enough to give the indices
of the 1-s:

(3) f
(n)
l =

∑ {
i ∈ N

∣∣∣i < 2n ∧ α
(l)
i = 1

}

or simply

(4) f (n) =
∑

{i ∈ N |i < 2n ∧ αi = 1} .

If this notation is applied then it is easy to give a Boolean function not com-
pletely defined, that is, a Boolean function having so called don’t care terms,
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briefly don’t cares. In this case we give separately the indices of the minterms
occuring in the function and the indices of the don’t cares:

(5)
f (n) =

∑ {i ∈ N |i < 2n ∧ αi = 1}
d(n) =

∑ {i ∈ N |i < 2n ∧mi is a don’t care term} .

Another possibility for giving a Boolean function is the so-called Zhegalkin-

polynomial. Let S
(n)
i =

∏n−1
j=0

(
a

(i)
j + xj

)
, where i =

∑n−1
j=0 a

(i)
j 2j again. This

product contains only non-negated variables, and the j-th variable is contained
in it if and only if the j-th digit is 1 in the binary expansion of i. There
exist exactly 2n such products which are pairwise distinct. Now any Boolean
function of n variables can be written as a modulo two sum of such terms, and
the members occurring in the sum are uniquely determined by the function.
That means that we can give the function by a 2n-long 0 - 1 sequence, and if
the i-th member of such a sequence is ki then

(6) f (n) =
2n−1⊕
i=0

kiS
(n)
i .

Between the first and the second representation of the same Boolean function
there is a very simple linear algebraic transform. Considering the coefficients
of the canonical disjunctive normal form of a Boolean function of n variables
and the coefficients of the Zhegalkin polynomial of a function of n variables,
respectively, as the components of an element of a 2n-dimensional linear space
over the field of two elements, denoted by F2, the relation between the vec-
tors belonging to the two representations of the same Boolean function of n
variables can be given by k = A(n)α. Here k is the vector containing the
components of the Zhegalkin polynomial, α is the vector, composed of the
coefficients of the disjunctive representation of the given function, and A(n) is
the matrix of the transform in the natural basis.

For the matrix of the transform it is true that

(7) A(n+1) =





(1) if n = 0(
A(n) 0(n)

A(n) A(n)

)
if n ∈ N+

(this form of the matrix shows that for every n ∈ N, A(n) is the n-th Kronecker-

product power of the two-order

(
1 0
1 1

)
regular quadratic matrix). Really,

let u be a 2n+1-component vector, where n is a nonnegative integer, and let
u(0) and u(1) denote the vectors containing the first and the last 2n components
of u. In general, let

(
x, y

)
denote the scalar product of x and y. Then it is

easy to see that

(u, v) =
(
u(0), v(0)

)⊕ (
u(1), v(1)

)
.

It is obvious that if n = 0 then k = α, so if A(0) = (1) then

k = A(0)α.
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Now let’s suppose that for the n-variable Boolean functions k = A(n)α and
m(n) denotes the vector composed of the n-variable minterms and S(n) denotes
the vector composed of the n-variable Zhegalkin-monomials. Then

(
k(0), S(n+1)(0)

)
⊕

(
k(1), S(n+1)(1)

)
=

(
k, S(n+1)

)
=

(
A(n+1)α, S(n+1)

)

=
(
α,m(n+1)

)
=

(
α(0),m(n)xn

)⊕ (
α(1),m(n)xn

)

=
(
α(0),m(n) (1⊕ xn)

)⊕ (
α(1),m(n)xn

)

=
(
α(0),m(n)

)⊕ (
α(0) ⊕ α(1),m(n)xn

)

=
(
α(0),m(n)

)⊕ xn

(
α(0) ⊕ α(1), m(n)

)
(8)

=
(
A(n)α(0), S(n)

)
⊕ xn

(
A(n)α(0) ⊕A(n)α(1), S(n)

)

=
(
A(n)α(0), S(n)

)
⊕

(
A(n)α(0) ⊕A(n)α(1), S(n)xn

)

=
(
A(n)α(0) ⊕ 0(n)α(1), S(n+1)(0)

)

⊕
(
A(n)α(0) ⊕A(n)α(1), S(n+1)(1)

)
,

that is,

(9) A(n+1) =

(
A(n) 0(n)

A(n) A(n)

)
.

0(n) stands for the n-order zero matrix. From the previous results immediately
follows that

(
A(n+1)

)2
=

(
A(n) 0(n)

A(n) A(n)

)(
A(n) 0(n)

A(n) A(n)

)

=

( (
A(n)

)2
0(n)

0(n)
(
A(n)

)2

)
(10)

and as
(
A(0)

)2
= (1), so we get by induction that

(11)
(
A(n+1)

)2
= I(n+1)

where I(n) denotes the n-order identity matrix.
A similar representation of a Boolean function is the canonical conjunctive

normal form of the function. Let’s consider

(12) M
(n)
i =

n−1∑
j=0

(
a

(i)
j ⊕ xj

)

for 2n > i ∈ N. This function, the i-th maxterm of n variables is equal to 0

if and only if xj = a
(i)
j for every 0 ≤ j < n. By these maxterms a Boolean
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function can be expressed as

(13) f (n) =
2n−1∏
i=0

(
αi + M

(n)
i

)

where αi = f (n)
(
a

(i)
n−1, . . . , a

(i)
0

)
. From this last property follows that

f (n) =
2n−1∏
i=0

(
αi + M

(n)
i

)
= f

(n)
l

where l =
∑2n−1

i=0 αi2
i.

Now again the function can be given by the indices of the maxterms not
included in the function and, if there is any, by the indices of the don’t cares:

(14)
f (n) =

∏ {i ∈ N |i < 2n ∧ αi = 1}
d(n) =

∏ {i ∈ N |i < 2n ∧Mi is a don’t care term}.
In [7] it were defined the modified maxterms by

(15) M
(n)′
i =

n−1∑
j=0

(
a

(i)
j ⊕ xj

)
.

It is easy to see that M
(n)
i = M

(n)′
2n−1−i. Now if f (n) =

∏2n−1
i=0

(
βi + M

(n)′
i

)
= f

(n)
k

then αi = f (n)
(
a

(i)
n−1, . . . , a

(i)
0

)
= β2n−1−i. This form of the function given by

the modified maxterms is the modified conjunctive normal form of the function.

For u ⊕ v = u ⊕ v, so a
(i)
j ⊕ xj = a

(i)
j ⊕ xj and M

(n)′
i =

∑n−1
j=0

(
a

(i)
j ⊕ xj

)
. If

g(n) =
∏2n−1

i=0

(
βi + M

(n)
i

)
, then

f (n) (xn−1, . . . , x0) =
2n−1∏
i=0

(
αi +

n−1∑
j=0

(
a

(i)
j ⊕ xj

))

=
2n−1∏
i=0

(
αi + M

(n)
i

)
=

2n−1∏
i=0

(
βi + M

(n)′
i

)

=
2n−1∏
i=0

(
βi +

n−1∑
j=0

(
a

(i)
j ⊕ xj

))
(16)

= g(n) (xn−1, . . . , x0) = g(n) (xn−1, . . . , x0)

= g(n)D (xn−1, . . . , x0)

where D denotes the dual of the function. As if f = gD then g = fD so g(n) is
the complement of the dual of f (n) in (16).



6 J. GONDA

1.2. Polynomial-like and conjunctively polynomial-like Boolean func-
tions. Let’s consider again the transform between the canonical disjunctive
normal form and the Zhegalkin polynomial of the same function. If α is the
spectrum of the canonical disjunctive normal form of the function, and k is
the spectrum of the Zhegalkin polynomial of the function, then k = A(n)α. In
the special case when α = k, the corresponding function is a polynomial-like
Boolean function [6]. As A(0) = (1), so each of the two zero variable Boolean
functions is polynomial-like. Now let u = u0u1 be the spectrum of the canon-
ical disjunctive normal form of a Boolean function f of n + 1 variables, where
n is a nonnegative integer. Then

(17)

(
u0

u1

)
=

(
A(n) 0(n)

A(n) A(n)

)(
u0

u1

)

if and only if u0 = A(n)u0 and u1 = A(n)u0+ A(n)u1 = u0+ A(n)u1, that is f is
polynomial-like if and only if u0 =

(
A(n) + I(n)

)
u1, where u1 is the spectrum

of the canonical disjunctive normal form of an arbitrary Boolean function of
n variables. As a consequence we get that the number of the n + 1 variable
polynomial-like Boolean functions is equal to 22n

. It is easy to see, too, that
the spectra of the canonical disjunctive normal forms of the polynomial-like
Boolean functions of n + 1 variables make up a 2n-dimensional subspace of
the 2n+1-dimensional linear space of the spectra of the canonical disjunctive
normal forms of all of the n + 1 variable Boolean functions. This space is
spanned by the columns of the following matrix:

(18)

(
A(n) + I(n)

I(n)

)
.

The definition of the conjunctively polynomial-like Boolean functions is sim-
ilar to the definition of the polynomial-like Boolean functions. An n-variable
Boolean function f is conjunctively polynomial-like if the spectra of its Zhe-
galkin polynomial and its modified conjunctive normal form are equal, that
is, if β = k = A(n)α =

(
A(n)P(n)

)
β = U(n)β where P(n) is a 2n × 2n ma-

trix with 1-s in the side diagonal, and with 0-s at the other positions, that

is, P
(n)
i,j = δi,2n−1−j for 2n > i ∈ N and 2n > j ∈ N, and, consequently,

U
(n)
i,j = A

(n)
i,2n−1−j. Then, applying (7), we get that

(19) U(n) =





(1) if n = 0(
0(n−1) U(n−1)

U(n−1) U(n−1)

)
if n ∈ N+.

The minimal polynomial of U(n) is equal to λ + 1, if n = 0, to λ2 + λ + 1, if

n = 1, and to λ3 + 1 in every other case. It means that U(n)3 = I(n) for every
nonnegative integer n, as (λ + 1)(λ2 + λ + 1) = λ3 + 1.
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The condition β = U(n)β is fulfilled if and only if
(
I(n) + U(n)

)
β = 0, where

0 is the 2n-dimensional zero vector over F2, and the last equation is true if and
only if β lies in the nullspace of I(n) + U(n).

In [7] it was stated that both of the 0-variable Boolean functions are conjunc-
tively polynomial-like, and the conjunctively polynomial-like Boolean functions
of n variables can be given by

(20) β =

(
Q(n)−1

R(n)

I(µn×µn)

)
u.

Here µn = 2n+2(−1)n

3
, 2n − µn is the rank of

(21) U(n) + I(n) =

(
Q(n) R(n)

S(n) T(n)

)
,

Q(n) is a 2n − µn-order quadratic regular submatrix of U(n) + I(n), and u is
an arbitrary element of the µn-dimensional linear space over F2. If we denote(

Q(n)−1

R(n)

I(µn×µn)

)
by Y(n) then Y(n) is a 2n×µn matrix and the rank of this matrix

is equal to µn as the matrix has a µn-order identity matrix as a submatrix.
This result can be achieved as follows.

It is almost obvious that both of the 0-variable Boolean functions are con-
junctively polynomial-like. Now let µn = 2n+2(−1)n

3
and

U(n) + I(n) =

(
Q(n) R(n)

S(n) T(n)

)

where Q(n) is a 2n − µn-order quadratic submatrix of U(n) + I(n). In [7] it was
proved that Q(n) is regular, and

(
Q(n)−1

0((2n−µn)×µn)

S(n)Q(n)−1

I(µn×µn)

)(
Q(n) R(n)

S(n) T(n)

)

=

(
I((2n−µn)×(2n−µn)) Q(n)−1

R(n)

0(µn×(2n−µn)) 0(µn×µn)

)
.(22)

If Z(n) =

(
Q(n)−1

0((2n−µn)×µn)

S(n)Q(n)−1

I(µn×µn)

)
, then

(
Q(n) 0((2n−µn)×µn)

S(n) I(µn×µn)

)
Z(n)

=

(
I((2n−µn)×(2n−µn)) 0((2n−µn)×µn)

0(µn×(2n−µn)) I(µn×µn)

)
= I(n),(23)

that is, Z(n) is a regular matrix, so
(
U(n) + I(n)

)
β = 0 if and only if

Z(n)
(
U(n) + I(n)

)
β = 0.
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By (22) this last equation is equivalent to

(24)
(
I((2n−µn)×(2n−µn)) Q(n)−1

R(n)
) (

β(1)

β(2)

)
= 0(2n−µn)

where β(1) ∈ F2n−µn

2 and β(2) ∈ Fµn

2 . It means that β is an eigenvector of the

transform represented by U(n) if and only if β(1) = Q(n)−1

R(n)β(2), that is, if
and only if

(25) β =

(
Q(n)−1

R(n)

I(µn×µn)

)
u

with an arbitrary u ∈ Fµn

2 .

2. New results

Let U(n) denote the matrix of the transform of the modified canonical dis-
junctive normal form of a Boolean function to its Zhegalkin polynomial. As 1
is the (only) eigenvalue of the transform, the space of the eigenvectors of the
transform is equal to the nullspace of the transform determined by U(n) + I(n),
so, if we want to generate the conjunctively polynomial-like Boolean functions,
we have to determine a basis of this nullspace. From now on we denote the
matrix the columns of which are linearly independent, and which span the
nullspace of U(n) + I(n) by V(n). This matrix is a 2n × µn-order matrix where

µn = 2n+2(−1)n

3
. As we saw, such a matrix is for instance

(
Q(n)−1

R(n)

I(µn×µn)

)
where

Q(n) is the 2n − µn-order left upper submatrix of U(n) + I(n), and R(n) is the
(2n − µn) × µn-size right upper submatrix of the same matrix. If n > 1 then
µn > 1, and then V(n) is not uniquely determined, as every column of V(n)

contains at least one nonzero element, and then adding for instance the first
column to the second one, this matrix differs from V(n), the columns of the new
matrix are linearly independent, and also they span the nullspace of U(n)+I(n).
If the last µn rows of V(n) establish a µn-order identity matrix, and we want
to emphasize this property of the matrix, then this matrix will be denoted by

V
(n)
0 (earlier such a matrix was denoted by Y(n)). In the case of n = 1, µn = 0,

so V(n) is uniquely determined, and the last µn rows of this matrix form an
identity matrix. If n = 0, then µn = 1, U(n) + I(n) = (0), and (1) is the only
V(n), so in this case again V(n) is uniquely determined, and the last µn rows
of V(n) form an identity matrix. Now we have that if n < 2 then necessarily

(26) V(n) = V
(n)
0 .

In general, V
(n)
0 is uniquely determined as if V is a matrix with similar

properties, then V = V
(n)
0 K with a regular µn-order quadratic matrix, and

then it is true for the last µn rows of the matrices, too, that is I(µn×µn) =

I(µn×µn)K, so K = I(µn×µn) and V = V
(n)
0 .
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Theorem 1. If µn = 2n+2(−1)n

3
for n ∈ N then µn+2 = 2n + µn.

Proof.

µn+2 =
2n+2 + 2 (−1)n+2

3
=

4 · 2n + 2 (−1)n

3

= 2n +
2n + 2 (−1)n

3
= 2n + µn.(27)

¤

From the previous theorem follows that V(n+2) is a 2n+2 × µn+2 = 2n+2 ×
(2n + µn)-size matrix. Then it can be partitioned to a 1 × 2 hypermatrix so
that the first element of this matrix is a µn-column matrix, and the second
element is a matrix with 2n columns.

By recursion we can express U(n+2) + I(n+2) in the following form:

(28) U(n+2) + I(n+2) =




I(n) 0(n) 0(n) U(n)

0(n) I(n) U(n) U(n)

0(n) U(n) I(n) U(n)

U(n) U(n) U(n) U(n) + I(n)


 .

We will use this form in the further parts of the paper.

Theorem 2. The columns of

(29) W(n+2) =




0(2n×µn)

V(n)

V(n)

0(2n×µn)




are eigenvectors of the transform determined by U(n+2).

Proof. As the columns of V(n) establish a basis of the subspace of the eigen-
vectors of the transform of U(n), and the eigenvalue of the transform is equal
to 1, so

(30)
(
U(n) + I(n)

)
V(n) = 0(2n×µn).

Then

(
U(n+2) + I(n+2)

)
W(n+2) =




I(n) 0(n) 0(n) U(n)

0(n) I(n) U(n) U(n)

0(n) U(n) I(n) U(n)

U(n) U(n) U(n) U(n) + I(n)







0(2n×µn)

V(n)

V(n)

0(2n×µn)




=




0(2n×µn)

0(2n×µn)

0(2n×µn)

0(2n×µn)


 . ¤
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From the theorem above it follows that we can search V(n+2) in the following
form:

(31) V(n+2) =
(

W(n+2) M(n+2)
)

where M(n+2) is a 2n+2×2n = 4·2n×2n-size matrix. The columns of V(n+2) form
a basis of the µn+2-dimensional subspace of the n + 2-variable conjunctively
polynomial-like Boolean functions, and then the columns of V(n+2) are linearly
independent. In this case V(n+2) can contain a µn+2-order identity matrix as a
submatrix. The 2n last rows of W(n+2) contain only 0-s, so if the last 2n rows
of M(n+2) give a 2n-order identity matrix, then with this choice the columns of(

W(n+2) M(n+2)
)

are surely linearly independent. We shall see that really
there is a basis of the space of the n+2-variable conjunctively polynomial-like
Boolean functions with this property.

Let’s partition M(n+2) into the column-matrix of four 2n-order quadratic
matrices, the fourth of which is the identity matrix:

(32) M(n+2) =




B(n)

C(n)

D(n)

I(n)


 .

As

(33) U(n+1) =

(
0(n) U(n)

U(n) U(n)

)

and then

U(n+2) =

(
0(n+1) U(n+1)

U(n+1) U(n+1)

)

=




0(n) 0(n) 0(n) U(n)

0(n) 0(n) U(n) U(n)

0(n) U(n) 0(n) U(n)

U(n) U(n) U(n) U(n)


 ,(34)

from the criterion of
(
U(n+2) + I(n+2)

)
M(n+2) = 0(2n+2×2n) we get the following

equations:

B(n) + U(n) = 0(n)

C(n) + U(n)
(
D(n) + I(n)

)
= 0(n)

D(n) + U(n)
(
C(n) + I(n)

)
= 0(n)(35)

U(n)
(
B(n) + C(n) + D(n)

)
+

(
U(n) + I(n)

)
= 0(n)
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or, in another form

(36)

B(n) = U(n)

C(n) + U(n)D(n) = U(n)

U(n)C(n) + D(n) = U(n)

U(n)B(n) + U(n)C(n) + U(n)D(n) = U(n) + I(n).

Considering that
(
U(n)

)3
= I(n), the last equation is a consequence of the

previous three equations, as


I(n) 0(n) 0(n) 0(n)

0(n) I(n) 0(n) 0(n)

0(n) U(n)2 U(n) 0(n)

U(n) U(n) + I(n) U(n)2 I(n)







I(n) 0(n) 0(n) U(n)

0(n) I(n) U(n) U(n)

0(n) U(n) I(n) U(n)

U(n) U(n) U(n) U(n) + I(n)


 =

=




I(n) 0(n) 0(n) U(n)

0(n) I(n) U(n) U(n)

0(n) 0(n) U(n) + I(n) U(n)2 + I(n)

0(n) 0(n) 0(n) 0(n)


(37)

(and



I(n) 0(n) 0(n) 0(n)

0(n) I(n) 0(n) 0(n)

0(n) U(n)2 U(n) 0(n)

U(n) U(n) + I(n) U(n)2 I(n)


(38)

is a regular matrix as it is a lower triangle matrix – as a hypermatrix! – with
regular matrices in its main diagonal).

From the second equation in (35)

(39) C(n) = U(n)
(
D(n) + I(n)

)
,

and with this result we get from the third equation that

(40)
(
U(n)2 + I(n)

)
D(n) = U(n)2 + U(n).

Multiplying from the left by U(n)

(41)
(
U(n) + I(n)

)
D(n) = U(n)2 + I(n) =

(
U(n) + I(n)

)2
.

This last equation has several solutions, as U(n)+I(n) is not regular. Apparently
one of the solutions is the following:

(42) D(n) = U(n) + I(n).

Then

(43) C(n) = U(n)
(
D(n) + I(n)

)
= U(n)2

and from the first equation in (36)

(44) B(n) = U(n).
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With all of these results we get that we can choose M(n+2) as follows:

(45) M(n+2) =




U(n)

U(n)2

U(n) + I(n)

I(n)




and then the columns of

(46) O =




0(2n×µn) U(n)

V(n) U(n)2

V(n) U(n) + I(n)

0(2n×µn) I(n)




set up a basis of the linear space of the conjunctively polynomial-like Boolean
functions of n + 2 variables. This means that O = V(n+2).

If n > 1 then µn > 1, and the last µn rows of U(n) + I(n) contain nonzero
elements, so the submatrix of the last µn+2 rows of O is not equal to the µn+2-
order identity matrix. From this follows that V(n+2) given above is not equal

to V
(n+2)
0 . But if V(n) in O is equal to V

(n)
0 , then

(47) V(n) = V
(n)
0 =

(
H(n)

I(µn×µn)

)

where H(n) is a (2n − µn)× µn-size matrix. Let

(48) U(n) + I(n) =

(
F(n)

G(n)

)

with a µn × 2n-size G(n). Then

(
U(n) + I(n)

)
+ V

(n)
0 G(n) =

(
F(n)

G(n)

)
+

(
H(n)

I(µn×µn)

)
G(n)

=

(
F(n) + H(n)G(n)

0(µn×2n)

)
(49)

and consequently

O ·
(

I(µn×µn) G(n)

0(2n×µn) I(n)

)
=




0(2n×µn) U(n)

V
(n)
0 U(n)2

V
(n)
0 U(n) + I(n)

0(2n×µn) I(n)


 ·

(
I(µn×µn) G(n)

0(2n×µn) I(n)

)

=




0(2n×µn) U(n)

V
(n)
0 U(n)2 + V

(n)
0 G(n)

V
(n)
0

(
U(n) + I(n)

)
+ V

(n)
0 G(n)

0(2n×µn) I(n)
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=




0(2n×µn) U(n)

V
(n)
0 U(n)2 + V

(n)
0 G(n)

H(n) F(n)+H(n)G(n)

I(µn×µn) 0(µn×2n)

0(2n×µn) I(n)




(50)

=

(
H(n+2)

I(µn+2×µn+2)

)
= V

(n+2)
0 .

In [7] it was stated that the columns of

(
Q(n)−1

R(n)

I(µn×µn)

)
form a basis of the

nullspace of U(n) + I(n), where

(51) U(n) + I(n) =

(
Q(n) R(n)

S(n) T(n)

)

with the 2n−µn-order regular matrix of Q(n). As V
(n)
0 is uniquely determined,

so we get that

(52) Q(n+2)−1

R(n+2) = H(n+2) =




0(2n×µn) U(n)

V
(n)
0 U(n)2 + V

(n)
0 G(n)

H(n) F(n)+H(n)G(n)


 .

3. Conclusion

In an earlier paper [7] a matrix was given, the columns of which linearly
independent are and generate the space of the conjunctively polynomial-like
Boolean functions. If

(53) U(n) + I(n) =

(
Q(n) R(n)

S(n) T(n)

)

where U(n) denotes the matrix of the transform from the space of the modi-
fied canonical conjunctive form of the Boolean functions to the space of the
Zhegalkin polynomial of the switching functions and Q(n) is a 2n − µn-order
quadratic matrix then this generator matrix is

(54)

(
Q(n)−1

R(n)

I(µn×µn)

)
.

To determine this matrix one have to invert a rather big matrix which is
a time-consuming procedure. In the present paper it was pointed out that
this matrix can be generated recursively, too. If we don’t hold to a matrix
containing an identity matrix as a submatrix as large as the number of the
columns of the matrix, then our matrix can be generated rather quickly by the
following recursion:

(55) V(0) = (1)
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(56) V(1) = ()

and for n ∈ N

(57) V(n+2) =




0(2n×µn) U(n)

V(n) U(n)2

V(n) U(n) + I(n)

0(2n×µn) I(n)


 .

Also U(n) and
(
U(n)

)2
can be generated by very simple recursions: U(0) = (1),

and the recursion for U(n) is as follows

(58) U(n+1) =

(
0(n) U(n)

U(n) U(n)

)
;

finally for every n ∈ N, 2n > i ∈ N and 2n > j ∈ N

(59)
((

U(n)
)2

)
i,j

= U
(n)
2n−1−i,2n−1−j.

By recursion it means that
(
U(0)

)2
= (1) and

(60)
(
U(n+1)

)2
=

( (
U(n)

)2 (
U(n)

)2

(
U(n)

)2
0(n)

)
.
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