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CONTINUED FRACTIONS, FIBONACCI NUMBERS, AND
SOME CLASSES OF IRRATIONAL NUMBERS

HANNA USCKA-WEHLOU

Abstract. In this paper we define an equivalence relation on the set of
positive irrational numbers less than 1. The relation is defined by means of
continued fractions. Equivalence classes under this relation are determined
by the places of some elements equal to 1 (called essential 1’s) in the contin-
ued fraction expansion of numbers. Analysis of suprema of all equivalence
classes leads to a solution which involves Fibonacci numbers and constitutes
the main result of this paper. The problem has its origin in the author’s
research on the construction of digital lines and upper and lower mechanical
and characteristic words according to the hierarchy of runs.

1. Introduction

Sequences generated by an irrational rotation have been intensively studied
by mathematicians, astronomers, crystallographers, and computer scientists;
see Venkov (1970) [18, pp. 65–68] and Bruckstein (1991) [4, section Some con-
sequences and historical remarks ]. These sequences, or related objects, can
be found back in the mathematical literature under many different names:
rotation sequences, cutting sequences, Beatty sequences, characteristic words,
upper and lower mechanical words, balanced words, Sturmian words, Christof-
fel words, Freeman codes (chain codes) of digital straight lines, and so on; see
Pytheas Fogg (2002) [5, p. 143]. There exist some recursive descriptions by
continued fractions (CF) of these sequences. The most well known is proba-
bly the one formulated by the astronomer J. Bernoulli in 1772, proven by A.
Markov in 1882 and described by Venkov (1970) [18, p. 67]. Also well known
is the description by Shallit (1991) [11], which can be found in Lothaire (2002)
[8, p. 75, 76, 104, 105] as the method by standard sequences.

In H. U-W (2008) [15] the author presented a new CF based description of
such sequences. The new description reflects the hierarchy of runs, by analogy
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to digital straight lines as defined by Azriel Rosenfeld in 1974 [10]. This new
description appeared to be a good basis for two partitions of upper mechanical
words (digital lines) with irrational slopes into equivalence classes according
to the length of runs (one of the relations) and the construction of runs (the
second one) on all levels in the hierarchy. This has been presented in H. U-W
(2009) [16]. Partitions of upper mechanical words with irrational slopes (which
are Sturmian words) can give a better understanding of their construction and,
as a consequence of that, can be useful in research in combinatorics on words.
In H. U-W (2009) [16] the author studied the equivalence classes obtained by
both partitions. While examining suprema of the equivalence classes under the
relation based on the construction of runs on all the levels in the hierarchy, the
author found a solution involving Fibonacci numbers. Now we formulate the
essence of this problem, independently from digital geometry and word theory.

The problem we discuss in this paper concerns least and greatest elements
in some sets of irrational numbers from the interval ]0, 1[. We define (by
means of CFs) an equivalence relation on ]0, 1[ \ Q; see Definition 4. This
partitions the set of positive irrational numbers less than 1 into equivalence
classes. Numbers with the same sequences of essential places (Definition 2)
in their CF expansions are gathered in the same class. As we will explain in
Section 3 (where we present the circumstances in which the presented problem
appeared), the upper mechanical words (digital lines) with slopes belonging
to the same equivalence class, have the same construction in terms of long
and short runs in the hierarchy of runs, because this is fully determined by
essential places of the slopes (Definition 1), as shown in Proposition 2. The
essential 1’s make that the most frequently appearing run on the level they
decide about is long (instead of short, as in case of CF elements different from
1; non-essential 1’s do not decide about the construction at all, they only
determine run length). Sturmian words with slopes belonging to the same
equivalence class thus share some construction-related properties, which can
give rise to a new tool to the research in combinatorics on words.

The main theorem of the presented paper (Theorem 1) is a description of
infima and suprema of all equivalence classes under the relation. The only
class which has a greatest element is the one which contains (

√
5 − 1)/2 =

[0; 1 ], the Golden Section, and the greatest element is the Golden Section
itself. Suprema of all the other equivalence classes are expressed by the odd-
numbered convergents of [0; 1 ]. They are thus fractions with numerators and
denominators being consecutive Fibonacci numbers.

2. An equivalence relation on the set of positive irrational
numbers less than 1

In this paper we assume that the simple continued fraction (CF) expansion
of each a ∈ ]0, 1[ \ Q is given, expressed as a = [0; a1, a2, a3, . . . ], and we
know the positive integers ak for all k ∈ N+. These are called the elements of
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the CF. By index of a CF element ak we mean the positive integer k which
describes the place of the element ak in the CF expansion of a. We recall that

(1) [a0; a1, a2, a3, . . . ] = a0 +
1

a1 +
1

a2 +
1

a3 + · · ·

.

In our case, when a ∈ ]0, 1[ \Q, we have a0 = bac = 0 and the sequence of the
CF elements (a1, a2, . . . ) is infinite. We call [a0; a1, a2, . . . , an], for each n ∈ N,
the nth convergent of the CF [a0; a1, a2, . . . ]. If we define

(2) p0 = a0, p1 = a1a0 + 1, and pn = anpn−1 + pn−2 for n ≥ 2

and

(3) q0 = 1, q1 = a1, and qn = anqn−1 + qn−2 for n ≥ 2,

then

(4) [a0; a1, a2, . . . , an] =
pn

qn

for n ∈ N,

see for example Vajda (2008) [17, pp. 158–159]. For more information about
CFs see Khinchin (1997) [6].

Some elements equal to 1 in the CF expansion of a ∈ ]0, 1[ \Q will receive
special attention. The reason for this has its roots in the theory of digital lines
or, equivalently, upper mechanical words with slope a and intercept 0. This
will be explained in Section 3.

Definition 1. Let a ∈ ]0, 1[ be an irrational number and let [0; a1, a2, a3, . . . ]
be its CF expansion. Let k ∈ N+ be such that ak = 1. The integer k is called
an essential place for a if the following assertions hold:

• k ≥ 2
• ∃ j ∈ N, [0; a1, a2, . . . ] = [0; a1, a2, . . . , ak−2j−1, 1, 1, . . . , 1, 1︸ ︷︷ ︸

2j

, ak, . . . ]

and, if k − 2j − 1 ≥ 2, then ak−2j−1 ≥ 2.

In other words, a natural number k ≥ 2 is an essential place of a = [0; a1, a2, . . . ]
iff ak = 1 and ak is directly preceded by an even number (i.e., by 0, 2, 4, . . . ) of
consecutive 1’s (i.e., elements am = 1) with an index m greater than 1. Such
elements ak (where k is an essential place) we called essential 1’s in H. U-W
(2009) [16, Definition 6]. The CF elements ak = 1 which are not in essential
places in the CF expansion of a (i.e., if k = 1, or if k ≥ 3 and ak is directly
preceded by an odd number of consecutive 1’s with an index greater than 1),
are called non-essential 1’s.

Definition 2. Let a = [0; a1, a2, . . . ] be irrational. We denote by A the set of
all essential places for a, i.e., A = {k ∈ N+; k is an essential place for a}, and
by |A| the cardinality of A. Let the set J be as follows:

• A = ∅ ⇒ J = ∅,
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• |A| = ℵ0 ⇒ J = N+,
• [ ∃ M ∈ N+, |A| = M ] ⇒ J = [1, M ]Z.

We define (sj)j∈J , the sequence of essential places of the CF expansion of a as
follows:

• J = ∅ ⇒ (sj)j∈∅ = ∅,
• J 6= ∅ ⇒ (sj)j∈J is such that s1 = min{k ∈ N+; k ∈ A} and, if

n ∈ J \ {1}, then sn = min{k > sn−1; k ∈ A}.
In words, J = ∅ if there are no 1’s in the CF expansion of a (except maybe
for a1), J = N+ is there are infinitely many 1’s in the CF expansion of a, and
J = [1, M ]Z for some M ∈ N+ if there are exactly M essential places (essential
1’s) in the CF expansion of a. The sequence of essential places for a is indexed
by J and we put the smallest essential place first, the next one on the second
place, and so on. The sequence of essential places defined above was called the
sequence of the places of essential 1’s in H. U-W (2009) [16, Definition 7].

The following lemma shows how to find essential places in an easy way.

Lemma 1. Let a = [0; a1, a2, . . . ] be irrational and let the set J for this slope
be as described in Definition 2. Then the sequence (sj)j∈J of essential places
of the CF expansion of a is (sj)j∈∅ = ∅ if J = ∅ and, if J 6= ∅, then (sj)j∈J is
as follows: s1 = min{k ≥ 2; ak = 1} and

(5) n ∈ J \ {1} ⇒ sn = min{k ≥ sn−1 + 2; ak = 1}.
Proof. Let us consider any irrational a = [0; a1, a2, . . . ] and the corresponding
(sj)j∈J as in Definition 2. If J = ∅, then (sj)j∈∅ = ∅. If J 6= ∅, then we can
prove the statement by induction (if |J | = M for some M ∈ N+, the proof has
only a finite number of steps). It follows from Definition 1 that s1 ≥ 2. Let us
take any m ∈ J \ {1} such that sm−1 is an essential place. We will show that
the next essential place is sm = min{k ≥ sm−1 + 2; ak = 1}. First we show
that sm − sm−1 ≥ 2. Suppose not, i.e., sm = sm−1 + 1. Then both asm−1 = 1
and asm−1+1 = 1, which are consecutive CF elements of a, are essential 1’s.
This is not possible, however, because, as consecutive CF elements equal to
1, they cannot both be directly preceded by an even number of CF elements
equal to 1 and with an index greater than 1. We get a contradiction, so it
must be sm − sm−1 ≥ 2.

If the difference between sm (as defined by (5)) and sm−1 is greater than 2,
then asm = 1 is the next essential 1 following after asm−1 , because, according
to (5), there are no other 1’s between asm−1 and asm (maybe asm−1+1 = 1, but
then it is a non-essential 1, as it is directly preceded by an odd number of
aj = 1 with j > 1, and sm−1 + 1 < sm − 1), so asm = 1 is directly preceded by
zero (i.e., an even number) 1’s.

If sm − sm−1 = 2 (where sm is defined by (5)), then asm = 1 is the next
essential 1 following after asm−1 , because it is directly preceded by an even
number of CF elements equal to 1 and with index greater than 1. This number
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is equal to zero if asm−1+1 ≥ 2 and to the even number of such 1’s corresponding
to sm−1, increased by 2, in case asm−1+1 = 1. ¤
Example 1. Let a = [0; a1, a2, a3, a4, . . . ], with ∀ k < 16, ak = 1 if and only
if k ∈ {1, 3, 4, 6, 7, 10, 13, 14, 15}. We find the sequences of essential places in
the CF expansion of such a in the following way:

a = [0; 1, a2, 1, 1, a5, 1, 1, a8, a9, 1, a11, a12, 1, 1, 1, . . . ]
↓ ↓ ↓ ↓ ↓ . . .

(sj)j∈J = ( 3, 6, 10, 13 15 . . . ).

All essential 1’s with index less than 16 are underlined. We have (sj)j∈J =
(3, 6, 10, 13, 15, . . . ). The first four non-essential 1’s are a1, a4, a7, a14.

The following proposition describes all the possible sequences of essential
places for CF-expansions of positive irrational a less than 1. First, we will
introduce the following definition.

Definition 3. A sequence (tj)j∈J of positive integer numbers will be called an
essential sequence iff:

• the set J is as follows: J = ∅, J = N+ or J = [1,M ]Z for some
M ∈ N+,

• the sequence (tj)j∈J (if not empty) is a sequence of positive integers
such that t1 ≥ 2 and, for k ∈ J \ {1}, tk − tk−1 ≥ 2.

Proposition 1. A sequence of positive integer numbers is an essential sequence
iff it is the sequence of essential places for some irrational a = [0; a1, a2, . . . ].

Proof. Let (tj)j∈J be an essential sequence (Definition 3). We define a =
[0; a1, a2, . . . ] in the following way: if J = ∅, then we take any a1 ∈ N+ and,
for each n ≥ 2, we choose any an ≥ 2. If J is not empty, we define ati = 1 for
all i ∈ J and ak for k ∈ N+ \ {tj}j∈J can be any integer greater than or equal
to 2. It follows trivially from Definitions 1 and 2 that (tj)j∈J is the sequence
of essential places for such a. The second implication in the statement follows
from Lemma 1. ¤
All sequences of essential places have elements greater than or equal to 2, are
increasing and the difference between each two consecutive elements is greater
than or equal to 2. Each sequence, finite or infinite, with those properties (i.e.,
an essential sequence), is the sequence of essential places for some a ∈ ]0, 1[\Q.

We can identify with each other all irrational numbers from the interval ]0, 1[
which have the same sequences of essential places.

Definition 4. We define the following relation ∼ess⊂ (]0, 1[ \Q)2. If a and a′

are positive irrational numbers less than 1, then

a ∼ess a′ ⇔
(
s
(a)
j

)
j∈J

=
(
s
(a′)
k

)
k∈J ′

,

where
(
s
(a)
j

)
j∈J

and
(
s
(a′)
k

)
k∈J ′

are the corresponding sequences of essential

places in the CF expansion of a and a′ respectively.
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The relation ∼ess partitions the set ]0, 1[\Q into equivalence classes defined by
essential sequences (Definition 3, Proposition 1). Let us consider the following
examples.

Example 2. Let (tj)j∈∅ = ∅. The class under ∼ess generated by this sequence
is the set of all a ∈ ]0, 1[ \Q such that a = [0; a1, a2, . . . ], where a1 ∈ N+ and
an ≥ 2 for all n ≥ 2.

Example 3. Let (tj)j∈N+ = (2j)j∈N+ . The class under ∼ess generated by this
sequence is the set of all positive irrational numbers with the CF expansion
a = [0; a1, 1, a3, 1, a5, 1, . . . ], where a2n+1 ∈ N+ for all n ∈ N. The Golden
Section (

√
5− 1)/2 belongs to this class.

The problem we want to solve in this paper is the question about supremum
and infimum of each class under ∼ess. The following lemma, which shows how
to compare two CFs with each other, will help us to find the solution.

Lemma 2. Let a0, b0 ∈ Z and ai, bi ∈ N+ for all i ∈ N+. Then

[a0; a1, a2, . . . ] < [b0; b1, b2, . . . ] ⇔

(a0,−a1, a2,−a3, a4,−a5, . . . )
lexic.
< (b0,−b1, b2,−b3, b4,−b5, . . . ),

where the first inequality is according to the order < on the real numbers, and
the second inequality is according to the lexicographical order on sequences.

Theorem 1 (Main Theorem). There exists no equivalence class under ∼ess
with a least element according to the order ≤ on the real numbers. The infimum
is equal to 0 for all the classes.

There exists exactly one class under ∼ess which has a greatest element ac-
cording to the order ≤ on the real numbers. This class is defined by the sequence
(tj)j∈N+ = (2j)j∈N+ and the maximum is the Golden Section (

√
5−1)/2. More-

over, the following statement describes suprema of all the classes under ∼ess
different from [(2j)j∈N+ ]∼ess. For all n ∈ N+

[(∀ k ∈ [1, n− 1]Z, tk = 2k) ∧ (tn > 2n ∨ |J | = n− 1)]

⇒ sup{a ∈ ]0, 1[ \Q; a ∈ [(tj)j∈J ]∼ess} =
F2n−1

F2n

,

where (Fn)n∈N+ is the Fibonacci sequence, i.e.,

(6) F1 = 1, F2 = 1 and, for k ≥ 3, Fk = Fk−1 + Fk−2,

|J | denotes the cardinality of J , and (tj)j∈J is any essential sequence different
from (2j)j∈N+.

Proof. To prove the statement about infimum we observe that in each equiv-
alence class under ∼ess there exist numbers a = [0; a1, a2, . . . ] with a1 = 1,
numbers with a1 = 2, etc. When a1 tends to infinity, then a = [0; a1, a2, . . . ]
tends to zero, so zero is infimum and we have no least element in the class
(which is a subset of ]0, 1[ \Q).
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To prove the statement about supremum, we take J = ∅, J = N+ or
J = [1,M ]Z for some M ∈ N+ and we consider all the classes generated by
all possible essential sequences, i.e., by sequences (tj)j∈J of integers such that
t1 ≥ 2 and ti − ti−1 ≥ 2 for all i ∈ J \ {1}.

The flowchart on p. 24 analyzes all such possible classes with respect to
greatest elements and suprema. We use Lemma 2 in each step of the flowchart.
To make a CF as large as possible, the even-numbered CF elements must be
as large as possible (it is represented by the left-hand side of the flowchart)
and the odd-numbered CF elements must be as small as possible, thus equal
to 1 (see the right-hand side of the flowchart).

If J = ∅, then there is clearly no greatest element in the equivalence class
[∅]∼ess , because all the numbers [0; 1, a2, . . . ] with an ≥ 2 for n ≥ 2 (which
are the only candidates for the position of maximum) belong to it and, when
a2 tends to infinity, then [0; 1, a2, . . . ] tends to 1, which does not belong to
]0, 1[ \Q, so there is no greatest element. The supremum is equal to 1. The
same reasoning holds for J 6= ∅ in case when t1 > 2 (thus a2 ≥ 2).

If J 6= ∅ and t1 = 2 (thus a2 = 1), we consider the only (according to
Lemma 2) candidate for a greatest element and it is [0; 1, 1, 1, a4, . . . ]. If t2 > 4
(thus a4 ≥ 2), we repeat the same reasoning again: when a4 tends to infinity,
then [0; 1, 1, 1, a4, . . . ] tends to 2

3
, so it is the supremum. There is no greatest

element, because the supremum is rational. We go on like this, using Lemma 2
about comparison of CFs.

The rightmost way of the flowchart from p. 24 leads to [0; 1 ], which is
irrational, equal to (

√
5 − 1)/2. This means that the only class which has

a greatest element is the class as described in Example 3, generated by the
essential sequence (tj)j∈N+ = (2j)j∈N+ .

The statement about suprema of all the classes can be derived from the flow-
chart. It follows from (2), (3), (4) and (6), that the odd-numbered convergents

of the Golden Section [0; 1 ] are p2n−1

q2n−1
= F2n−1

F2n
for n ∈ N+; see for example

Vajda (2008) [17, pp. 101–105] or Benjamin and Quinn (2003) [3, p. 52]. The
odd-numbered convergents are thus F1

F2
= 1, F3

F4
= 2

3
, F5

F6
= 5

8
, F7

F8
= 13

21
, F9

F10
=

34
55

, . . . . Moreover, when analyzing the flowchart one can ensure oneself that it
covers all the possible classes under ∼ess. ¤

In Theorem 1 we answered questions about least and greatest elements in
classes generated by the relation ∼ess. No equivalence class under ∼ess has
a least element. The infimum in each class is equal to zero. The answer
related to largest elements is much more interesting. The partition of all the
irrational numbers from the interval ]0, 1[ into equivalence classes under ∼ess
gives the sets with suprema equal to the odd-numbered convergents of the
Golden Section, thus with no largest element belonging to the class (which
is a set of irrational numbers). The only exception is the class generated by
(tj)j∈N+ = (2j)j∈N+ , which has a greatest element and it is equal to the Golden
Section.
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the candidates for max for any J : [0; 1, a2, . . . ]
¢

¢
¢¢®

t1 > 2 or J = ∅ (i.e., a2 ≥ 2)

[0; 1, a
(n)
2 , . . . ]

a
(n)
2 →∞→ 1

no max
?

t1 = 2
(i.e., a2 = 1)

the candidates for max: [0; 1, 1, 1, a4, . . . ]
¢

¢
¢¢®

t2 > 4 or |J | = 1 (i.e., a4 ≥ 2)

[0; 1, 1, 1, a
(n)
4 , . . . ]

a
(n)
4 →∞→ 2

3

no max
?

t2 = 4
(i.e., a4 = 1)

the candidates for max: [0; 1, 1, 1, 1, 1, a6, . . . ]
¢

¢
¢¢®

t3 > 6 or |J | = 2 (i.e., a6 ≥ 2)

[0; 1, 1, 1, 1, 1, a
(n)
6 , . . . ]

a
(n)
6 →∞→ 5

8

no max
?

t3 = 6
(i.e., a6 = 1)

the candidates for max: [0; 1, 1, 1, 1, 1, 1, 1, a8, . . . ]
¢

¢
¢¢®

t4 > 8 or |J | = 3 (i.e., a8 ≥ 2)

[0; 1, 1, 1, 1, 1, 1, 1, a
(n)
8 , . . . ]

a
(n)
8 →∞→ 13

21

no max
?

t4 = 8
(i.e., a8 = 1)

the candidates for max: [0; 1, 1, 1, 1, 1, 1, 1, 1, 1, a10, . . . ]
¢

¢
¢¢®

t5 > 10 or |J | = 4 (i.e., a10 ≥ 2)

[0; 1, 1, 1, 1, 1, 1, 1, 1, 1, a
(n)
10 , . . . ]

a
(n)
10 →∞→ 34

55

no max
?

t5 = 10
(i.e., a10 = 1)

the candidates for max: [0; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, a12, . . . ]

and so on. . .
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3. The origin of the problem. Digital lines and Sturmian words

In this section we will give some information about the circumstances in
which the presented problem arose. In H. U-W (2009) [16] we analyzed two
equivalence relations defined on the set of all slopes a ∈ ]0, 1[ \ Q of digital
straight lines y = ax (or, equivalently, of upper mechanical words u(a) : N →
{0, 1}, un(a) = da(n+1)e−dane for each n ∈ N). One of those relations is the
one discussed in the presented paper. This relation identifies with each other
all slopes which have the same sequences of essential places (Definitions 1 and
2) in their CF expansions. We know from H. U-W (2008) [14] that essential
1’s determine the construction of digital lines. How exactly, will be shown in
Proposition 2.

General information about digital straightness can be found in the review
by R. Klette and A. Rosenfeld from 2004 [7]. Very good sources of information
are also Reveillès (1991) [9] and Stephenson (1998) [12]. The digitization DR′

of y = ax for some a ∈ ]0, 1[ \ Q as defined in H. U-W (2007) [13] is the
following:

(7) DR′(y = ax) = {(k, dake); k ∈ Z}.
We illustrate it with an example in Figure 1.

0

0

0

0

1

1

1

( 0 , 0 )

( 1 ,   a   )

( 3 ,   3 a  ) ( 4 ,   4 a  )

( 2 ,   2 a  )

( 7 ,   7 a  )( 6 ,   6 a  )( 5 ,   5 a  )

y  =  a x

Figure 1. Digitization of y = ax for some a ∈ ]0, 1[ \ Q;
u(a) = 1010100 · · · .

The 0’s and 1’s on the squares in the picture show the relationship between
digital lines and upper and lower mechanical and characteristic words. Let us
recall the definitions of those words; see Lothaire (2002) [8, p. 53].

Definition 5. For each a ∈ ]0, 1[ \ Q we define two binary words in the
following way: l(a) : N → {0, 1}, u(a) : N → {0, 1} are such that for each
n ∈ N

ln(a) = ba(n + 1)c − banc, un(a) = da(n + 1)e − dane.
The word l(a) is the lower mechanical word and u(a) is the upper mechanical
word with slope a and intercept 0.
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We have l0(a) = bac = 0 and u0(a) = dae = 1 and, because dxe − bxc = 1
for irrational x, we have

(8) l(a) = 0c(a), u(a) = 1c(a)

(meaning 0, resp. 1 concatenated to c(a)). The word c(a) is called the charac-
teristic word of a. For each a ∈ ]0, 1[ \Q, the characteristic word associated
with a is thus the following infinite word c(a) : N+ → {0, 1}:
(9) cn(a) = ba(n + 1)c − banc = da(n + 1)e − dane, n ∈ N+.

Formulae (7), (8) and (9), together with the 0’s and 1’s in Figure 1, illus-
trate and explain the relationship between digital lines and lower and upper
mechanical and characteristic words. The developed theory is thus also valid
for upper and lower mechanical words and characteristic words; see for example
Lothaire (2002) [8, p. 53, 2.1.2 Mechanical words, rotations ], H. U-W (2008)
[15]. According to Theorem 2.1.13 in Lothaire (2002) [8, p. 57], irrational
(lower or upper) mechanical words are Sturmian words.

Our description of digital lines in the author’s papers [13, 14, 16] reflected
the hierarchy of runs on all digitization levels. The concept of runs was al-
ready introduced and explored by Azriel Rosenfeld (1974) [10, p. 1265]. We
call runk(j) for k, j ∈ N+ a run of digitization level k. Each run1(j) can be
identified with a subset of Z2 : {(i0 + 1, j), (i0 + 2, j), . . . , (i0 + m, j)}, where
m is the length ‖run1(j)‖ of the run. For upper mechanical words, the corre-
sponding run is 10m−1, where m− 1 is the number of all the letters 0 between
the letter 1 in the beginning of the run and the next occurring letter 1 in the
word. For each a ∈ ]0, 1[ \Q we have only two possible run1 lengths:

⌊
1
a

⌋
and⌊

1
a

⌋
+ 1. All runs with one of those lengths always occur alone, i.e., do not

have any neighbors of the same length in the sequence (run1(j))j∈N+ , while
the runs of the other length can appear in sequences. The same holds for
the sequences (runk(j))j∈N+ on each level k ≥ 2. We use the notation Sm

k Lk,
LkS

m
k , Lm

k Sk and SkL
m
k , when describing the form of digitization runsk+1. For

example, Sm
k Lk means that the runk+1 consists of m short runsk (Sk) and one

long runk (Lk) in this order. In Figure 2 we can see an example of the run hi-
erarchical structure for the line y = ax with a = [0; 1, 2, 1, 1, 3, 1, 1, a8, a9, . . . ],
where a8, a9, · · · ∈ N+.

The basis for the author’s CF description, from H. U-W (2008) [14], of digital
lines y = ax for a ∈ ]0, 1[ \ Q according to the definition (7) constitutes the
following index jump function.

Definition 6. Let a = [0; a1, a2, a3, . . . ] be a positive irrational number less
than 1. We define the index jump function ia : N+ → N+ for a as follows:
ia(1) = 1, ia(2) = 2, and, for k ≥ 2, ia(k + 1) = ia(k) + 1 + δ1(aia(k)), where

δ1(x) =

{
1, x = 1
0, x 6= 1

and an for n ∈ N+ are the CF elements of a.
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a  =  [ 0 ;  1 ,  2 ,  1 ,  1 ,  3 ,  1 ,  1 ,  a 8 ,  a 9 ,  . . . ]s l o p e s :

e s s e n t i a l  1 ' s :  a 3 ,  a 6

n o n - e s s e n t i a l  1 ' s :  a 1 ,  a 4 ,  a 7

S 1

L 1

S 2

L 2

S 3

L 3

S 4

L 4

2 , 3
0  i
n

1 , 4
2  i
n

, 8 0
 i n

, 6 0
 i n

S 5 = S 4 L 4 = ( L 3 S 3
2 ) ( L 3 S 3

3 ) = ( L 2
2 S 2 ) ( L 2 S 2 )

2 ( L 2
2 S 2 ) ( L 2 S 2 )

3

= ( S 1
2 L 1 )

2 ( S 1 L 1 ) [ ( S 1
2 L 1 ) ( S 1 L 1 ) ]

2

( S 1
2 L 1 )

2 ( S 1 L 1 ) [ ( S 1
2 L 1 ) ( S 1 L 1 ) ]

3

S
i
 d e n o t e s  s h o r t  r u n s  o f  l e v e l  i

L
i
 d e n o t e s  l o n g  r u n s  o f  l e v e l  i

f o r   i  =  1 ,  2 ,  3 ,  4 ,  5  :

Figure 2. Hierarchy of long and short runs on the first four dig-
itization levels; to translate this hierarchy for the case of upper
mechanical words, put S1 = 1 and L1 = 10.

In H. U-W (2009) [16, Definition 6], essential 1’s for [0; a1, a2, . . . ] were
defined as such ak = 1 that k = ia(m) for some m ≥ 2 (compare Definition 6
with Lemma 1). The index jump function registers the essential places from the
CF expansion of a. We have (ia(k))k∈N+ = N+\(sj +1)j∈J for all a ∈ ]0, 1[\Q;
for more details see H. U-W (2009) [16].

The following proposition, which is an immediate consequence of Theorem 4
from H. U-W (2008) [14], explains the role of essential 1’s in the construction
of digital lines, and, equivalently, in the run hierarchical structure of upper
mechanical words.

Proposition 2. If a is irrational and a = [0; a1, a2, . . . ], then for the digiti-
zation of y = ax (the run hierarchical structure of u(a)) we have the follow-
ing. The CF elements a2, a3, . . . determine the run hierarchical construction
of y = ax (of u(a)) in the following way. For each k ∈ N+

• aia(k+1) ≥ 2 ⇒ Sk is the most frequent run on level k,
• aia(k+1) = 1 ⇒ Lk is the most frequent run on level k,

where ia is the corresponding index jump function as defined in Definition 6.

The only 1’s in the CF expansion of a which influence the run-hierarchical
construction of digital line y = ax (upper mechanical word u(a)) are thus
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those which are indexed by the values of the index jump function, equivalently,
those which are directly preceded by an even number of consecutive 1’s with an
index greater than 1. Briefly, only essential 1’s cause the change of the most
frequent run on the level they correspond to from short (Sk) to long (Lk).
Which level they correspond to, is determined by the index jump function
generated by a, as shown in Proposition 2. We will illustrate this proposition
with the following example.

Example 4. We consider the lines as in Figure 2, thus lines y = ax with slopes
a = [0; 1, 2, 1, 1, 3, 1, 1, a8, a9, . . . ], where a8, a9, · · · ∈ N+. Each CF element
of a is responsible for some digitization level. According to Proposition 2,
if aia(k+1) ≥ 2, then the most frequent run on level k is the short one, Sk.
Otherwise, i.e., if aia(k+1) = 1, the dominating runk is Lk. For the lines as in
Figure 2, we have thus the following, which can be compared with the picture:

level k aia(k+1) the most frequent runk

1 aia(2) = a2 = 2 ≥ 2 S1

2 aia(3) = a3 = 1 L2

3 aia(4) = a5 = 3 ≥ 2 S3

4 aia(5) = a6 = 1 L4

Indeed, we have L2 = S2
1L1, L3 = L2

2S2, L4 = L3S
3
3 , L5 = S4L

2
4.

4. Conclusion

We have presented a partition of the set ]0, 1[ \ Q into equivalence classes
under a CF-defined equivalence relation. The relation groups together all pos-
itive irrational numbers less than 1 which have the same sequences of essential
places in their CF expansions. All digital lines (upper mechanical words) with
slopes belonging to the same equivalence class have the same construction in
terms of long and short runs on all the levels in the hierarchy of runs. We
have proven that the only class which has a greatest element is the class rep-
resented by the Golden Section. All the other classes have suprema defined by
Fibonacci numbers.

The problem comes originally from digital geometry and word theory, but it
can be formulated independently from these domains, as a problem concerning
irrational numbers.

Because of the strong relationship between our description of digitization
and the Gauss map (see the concept of digitization parameters from [13]), it
would be interesting to compare our results to those of Bates et al. (2005) [2]
and examine the relationship between the symmetry partners described there
and our equivalence relation.

Another possible continuation of the research on our equivalence relation
could be analysis of properties of the CFs with sequences of essential places
determined by well-known sequences such like the Fibonacci numbers or the
Pell numbers. One could try, for example, formulate the rules for transcen-
dentality of CFs depending on the sequences of essential places. Examples
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of analysis of transcendentality of CFs can be found in Adamczewski et al.
(2006) [1].
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for useful comments and constructive criticism which led to improvements in
this paper.
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