SUBRINGS IN TRIGONOMETRIC POLYNOMIAL RINGS

TARIQ SHAH AND EHSAN ULLAH

Abstract

In this study we explore the subrings in trigonometric polynomial rings. Consider the rings T and T^{\prime} of real and complex trigonometric polynomials over the fields \mathbb{R} and its algebraic extension \mathbb{C} respectively (see [6]). We construct the subrings T_{0} of T and $T_{0}^{\prime}, T_{1}^{\prime}$ of T^{\prime}. Then T_{0} is a BFD whereas T_{0}^{\prime} and T_{1}^{\prime} are Euclidean domains. We also discuss among these rings the Condition : Let $A \subseteq B$ be a unitary (commutative) ring extension. For each $x \in B$ there exist $x^{\prime} \in U(B)$ and $x^{\prime \prime} \in A$ such that $x=x^{\prime} x^{\prime \prime}$.

1. Introduction

Following Cohn [3], an integral domain say D is atomic if each nonzero nonunit of D is a product of irreducible elements (atoms) of D, and it is well known that UFDs, PIDs and Noetherian domains are atomic domains. An integral domain D satisfies the ascending chain condition on principal ideals $(A C C P)$ if there does not exist any infinite strictly ascending chain of principal integral ideals of D. Every PID, UFD and Noetherian domain satisfy ACCP and a domain satisfying ACCP is atomic. Grams [5] and Zaks [11] provided examples of atomic domains which do not satisfy ACCP. An integral domain D is a bounded factorization domain ($B F D$) if it is atomic and for each nonzero nonunit of D, there is a bound on the length of factorization into products of irreducible elements (cf. [1]). Examples of BFDs are UFDs and Noetherian or Krull domains (cf. [1, Proposition 2.2]). By [10], an integral domain D is said to be a half-factorial domain (HFD) if D is atomic and whenever $x_{1}, \ldots x_{m}=$ $y_{1}, \ldots y_{n}$, where $x_{1}, x_{2}, \ldots x_{m}, y_{1}, y_{2} \ldots y_{n}$ are irreducibles in D, then $m=n$. A UFD is obviously an HFD, but the converse fails, since any Krull domain D with $C I(D) \cong \mathbb{Z}_{2}$ is an HFD [10], but not a UFD. Moreover, a polynomial extension of an HFD is not an HFD, for example $\mathbb{Z}[\sqrt{-3}][X]$ is not an HFD, as $\mathbb{Z}[\sqrt{-3}]$ is an HFD but not integrally closed [4].

[^0]In general,

$$
\mathrm{UFD} \Longrightarrow \mathrm{HFD} \Longrightarrow \mathrm{BFD} \Longrightarrow \mathrm{ACCP} \Longrightarrow \text { Atomic. }
$$

But none of the above implications is reversible.
In integral domains, factorization properties have been a common interest of algebraists, particularly for polynomial rings. In this study, we would investigate the factorization properties of the subrings of trigonometric polynomial rings T and T^{\prime} (see [6]). The basic concepts, notions and terminology are as standard in [6].

For the factorization of exponential polynomials, J. F. Ritt developed: "If $1+a_{1} e^{\alpha_{1} x}+\cdots+a_{n} e^{\alpha_{n} x}$ is divisible by $1+b_{1} e^{\beta_{1} x}+\cdots+b_{r} e^{\beta_{r} x}$ with no $b=0$, then every β is a linear combination of $\alpha_{1}, \ldots, \alpha_{n}$ with rational coefficients" $[8$, Theorem].

Latter on getting inspired by this, G. Picavet and M. Picavet [6] investigated some factorization properties in trigonometric polynomial rings. Following [6], when we replace all α_{k} above by $i m$, with $m \in \mathbb{Z}$, we obtain trigonometric polynomials. Whereas

$$
\begin{aligned}
T^{\prime} & =\left\{\sum_{k=0}^{n}\left(a_{k} \cos k x+b_{k} \sin k x\right): n \in \mathbb{N}, a_{k}, b_{k} \in \mathbb{C}\right\} \text { and } \\
T & =\left\{\sum_{k=0}^{n}\left(a_{k} \cos k x+b_{k} \sin k x\right): n \in \mathbb{N}, a_{k}, b_{k} \in \mathbb{R}\right\}
\end{aligned}
$$

are the trigonometric polynomial rings.
Again following [6], $\sin ^{2} x=(1-\cos x)(1+\cos x)$ shows that two different non-associated irreducible factorizations of the same element may appear. Throughout we denote by $\cos k x$ and $\sin k x$ the two functions $x \mapsto \cos k x$ and $x \mapsto \sin k x$ (defined over \mathbb{R}). Also from basic trigonometric identities, it is obvious that for each $n \in \mathbb{N} \backslash\{1\}, \cos n x$ represents a polynomial in $\cos x$ with degree n and $\sin n x$ represents the product of $\sin x$ and a polynomial in $\cos x$ with degree $n-1$. Conversely by linearization formulas, it follows that any product $\cos ^{n} x \sin ^{p} x$ can be written as:

$$
\sum_{k=0}^{q}\left(a_{k} \cos k x+b_{k} \sin k x\right), \text { where } q \in \mathbb{N} \text { and } a_{k}, b_{k} \in \mathbb{Q}
$$

Hence $T=\mathbb{R}[\cos x, \sin x] \subseteq \mathbb{C}[\cos x, \sin x]=T^{\prime}$.
Here T^{\prime} is a Euclidean domain and T is a Dedekind half-factorial domain (see [6, Theorem $2.1 \&$ Theorem 3.1]). We continue the investigations to find the factorization properties in trigonometric polynomial rings, begun in [6]. In other words we extend this study towards finding factorization properties of the subrings of trigonometric polynomial rings, by establishing T_{0}, T_{0}^{\prime}, and T_{1}^{\prime} as subrings.

In this paper we explored T_{0}, T_{0}^{\prime} and T_{1}^{\prime} and demonstrated that, the ring T_{0}^{\prime} and T_{1}^{\prime} are Euclidean domains, whereas T_{0} is a BFD. We also characterized the irreducible elements of T_{0}^{\prime}, and discussed Condition 1 (see [7, page 661]) among trigonometric polynomial rings.

2. The subrings of $\mathbb{C}[\cos x, \sin x]$

The Construction of T_{1}^{\prime}. We consider

$$
T_{1}^{\prime}=\left\{\sum_{k=0}^{n}\left(a_{k} \cos k x+i b_{k} \sin k x\right), n \in \mathbb{N}, a_{k}, b_{k} \in \mathbb{R}\right\} .
$$

Let

$$
z=\sum_{k=0}^{n}\left(a_{k} \cos k x+i b_{k} \sin k x\right) \in T_{1}^{\prime},
$$

As $\cos x=\frac{e^{i x}+e^{-i x}}{2}$ and $\sin x=\frac{e^{i x}-e^{-i x}}{2 i}$, so

$$
z=e^{-i n x}\left[\sum_{k=0}^{n}\left\{\left(\frac{a_{k}+b_{k}}{2}\right) e^{i(n+k) x}+\left(\frac{a_{k}-b_{k}}{2}\right) e^{i(n-k) x}\right\}\right],
$$

where $\frac{a_{k}+b_{k}}{2}, \frac{a_{k}-b_{k}}{2} \in \mathbb{R}$. Since z is an arbitrary, therefore every element of T_{1}^{\prime} is of the form

$$
e^{-i n x} P\left(e^{i x}\right), n \in \mathbb{N} \text {, where } P(X) \in \mathbb{R}[X]
$$

Conversely,

$$
e^{-i n x} P\left(e^{i x}\right)=\sum_{k=0}^{n-1}\left(\alpha_{k} e^{-i(n-k) x}+\alpha_{2 n-k} e^{i(n-k) x}\right)+\alpha_{n}
$$

where $\alpha_{k} \in \mathbb{R}$. As $e^{i x}=\cos x+i \sin x$, so

$$
\begin{aligned}
e^{-i n x} P\left(e^{i x}\right)= & \sum_{k=0}^{n-1}\left\{\left(\alpha_{k}+\alpha_{2 n-k}\right) \cos (n-k) x+\right. \\
& \left.i\left(\alpha_{2 n-k}-\alpha_{k}\right) \sin (n-k) x\right\}+\alpha_{n}
\end{aligned}
$$

where $\alpha_{k}+\alpha_{2 n-k}, \alpha_{2 n-k}-\alpha_{k} \in \mathbb{R}$. Therefore every element which is of the form $e^{-i n x} P\left(e^{i x}\right), n \in \mathbb{N}$, where $P(X) \in \mathbb{R}[X]$, is in T_{1}^{\prime}.

Conclusion 1. The consequence of above construction is:

$$
T_{1}^{\prime}=\left\{e^{-i n x} P\left(e^{i x}\right), n \in \mathbb{N}, \text { where } P(X) \in \mathbb{R}[X]\right\}
$$

So we have an isomorphism $f:(\mathbb{R}[X])_{X} \rightarrow T_{1}^{\prime}$ through the substitution morphism $X \rightarrow e^{i x}$. Therefore $T_{1}^{\prime} \simeq(\mathbb{R}[X])_{X}$.

Theorem 1. T_{1}^{\prime} is a Euclidean domain.

Proof. $(\mathbb{R}[X])_{X}$ is a localization of $\mathbb{R}[X]$ by a multiplicative system generated by a prime X. Also $\mathbb{R}[X]$ is a Euclidean domain. Therefore $(\mathbb{R}[X])_{X}$ is a Euclidean domain [9, Proposition 7]. Hence the isomorphism $T_{1}^{\prime} \simeq(\mathbb{R}[X])_{X}$ in Conclusion 1 gives the result.

The Construction of T_{0}^{\prime}. We define the set T_{0}^{\prime} of all polynomials of the form

$$
\sum_{k=0}^{n}\left(a_{k} \cos k x+b_{k} \sin k x\right),
$$

$n \in \mathbb{N}, a_{k}, b_{k} \in \mathbb{C}$ and $a_{n}=\alpha+\gamma+i \beta, b_{n}=-\beta+i(\alpha-\gamma)$ such that $\alpha, \beta, \gamma \in \mathbb{R}$, α, β and γ are not simultaneously zero. Let $z \in T_{0}^{\prime}$ be an arbitrary element, so we may write
$z=a_{0}+\sum_{k=1}^{n-1}\left(a_{k} \cos k x+b_{k} \sin k x\right)+\{(\alpha+\gamma+i \beta) \cos n x+(-\beta+i(\alpha-\gamma)) \sin n x\}$,
As $\cos x=\frac{e^{i x}+e^{-i x}}{2}$ and $\sin x=\frac{e^{i x}-e^{-i x}}{2 i}$, so

$$
\begin{array}{r}
z=a_{0}+\sum_{k=1}^{n-1}\left\{\left(\frac{a_{k}^{\prime}+b_{k}^{\prime \prime}+i\left(a_{k}^{\prime \prime}-b_{k}^{\prime}\right)}{2}\right) e^{i k x}+\left(\frac{a_{k}^{\prime}-b_{k}^{\prime \prime}+i\left(a_{k}^{\prime \prime}+b_{k}^{\prime}\right)}{2}\right) e^{-i k x}\right\} \\
+(\alpha+i \beta) e^{i n x}+\gamma e^{-i n x}
\end{array}
$$

where $a_{k}=a_{k}^{\prime}+i a_{k}^{\prime \prime}, b_{k}=b_{k}^{\prime}+i b_{k}^{\prime \prime}$ and $a_{k}^{\prime}, a_{k}^{\prime \prime}, b_{k}^{\prime}, b_{k}^{\prime \prime} \in \mathbb{R}, a_{0} \in \mathbb{C}$. Setting

$$
\alpha_{k}^{\prime}=\frac{a_{k}^{\prime}+b_{k}^{\prime \prime}+i\left(a_{k}^{\prime \prime}-b_{k}^{\prime}\right)}{2} \text { and } \beta_{k}^{\prime}=\frac{a_{k}^{\prime}-b_{k}^{\prime \prime}+i\left(a_{k}^{\prime \prime}+b_{k}^{\prime}\right)}{2},
$$

we have

$$
z=e^{-i n x}\left[a_{0} e^{i n x}+\sum_{k=1}^{n-1}\left\{\alpha_{k}^{\prime} e^{i(n+k) x}+\beta_{k}^{\prime} e^{i(n-k) x}\right\}+(\alpha+i \beta) e^{i 2 n x}+\gamma\right],
$$

where $\alpha_{k}^{\prime}, \beta_{k}^{\prime}, a_{0} \in \mathbb{C}$, and $\alpha, \beta, \gamma \in \mathbb{R}$. Since z is an arbitrary, therefore every element of T_{0}^{\prime} is of the form

$$
e^{-i n x} P\left(e^{i x}\right), n \in \mathbb{N} \text {, where } P(X) \in \mathbb{R}+X \mathbb{C}[X]
$$

Conversely,

$$
e^{-i n x} P\left(e^{i x}\right)=\alpha_{0} e^{-i n x}+\alpha_{2 n} e^{i n x}+\sum_{k=1}^{n-1}\left(\alpha_{k} e^{-i(n-k) x}+\alpha_{2 n-k} e^{i(n-k) x}\right)+\alpha_{n}
$$

where $\alpha_{0} \in \mathbb{R}, \alpha_{k} \in \mathbb{C}$. Let

$$
\alpha_{k}=\alpha_{k}^{\prime}+i \alpha_{k}^{\prime \prime}, \alpha_{2 n-k}=\alpha_{2 n-k}^{\prime}+i \alpha_{2 n-k}^{\prime \prime}, \quad \alpha_{2 n}=\alpha_{2 n}^{\prime}+i \alpha_{2 n}^{\prime \prime} .
$$

So for $e^{i x}=\cos x+i \sin x$, we have

$$
\begin{aligned}
e^{-i n x} P\left(e^{i x}\right)= & \left(\alpha_{0}+\alpha_{2 n}^{\prime}+i \alpha_{2 n}^{\prime \prime}\right) \cos n x+\left(-\alpha_{2 n}^{\prime \prime}+i\left(\alpha_{2 n}^{\prime}-\alpha_{0}\right)\right) \sin n x \\
& +\sum_{k=1}^{n-1}\left\{\left(\alpha_{k}^{\prime}+\alpha_{2 n-k}^{\prime}+i\left(\alpha_{k}^{\prime \prime}+\alpha_{2 n-k}^{\prime \prime}\right)\right) \cos (n-k) x\right. \\
& \left.+\left(\alpha_{k}^{\prime \prime}-\alpha_{2 n-k}^{\prime \prime}+i\left(\alpha_{2 n-k}^{\prime}-\alpha_{k}^{\prime}\right)\right) \sin (n-k) x\right\}+\alpha_{n} \\
= & a_{n} \cos n x+b_{n} \sin n x \\
& +\sum_{k=1}^{n-1}\left\{a_{k} \cos (n-k) x+b_{k} \sin (n-k) x\right\}+\alpha_{n}
\end{aligned}
$$

where

$$
\begin{aligned}
a_{n} & =\alpha_{0}+\alpha_{2 n}^{\prime}+i \alpha_{2 n}^{\prime \prime}, b_{n}=-\alpha_{2 n}^{\prime \prime}+i\left(\alpha_{2 n}^{\prime}-\alpha_{0}\right) \\
a_{k} & =\alpha_{k}^{\prime}+\alpha_{2 n-k}^{\prime}+i\left(\alpha_{k}^{\prime \prime}+\alpha_{2 n-k}^{\prime \prime}\right) \\
b_{k} & =\alpha_{k}^{\prime \prime}-\alpha_{2 n-k}^{\prime \prime}+i\left(\alpha_{2 n-k}^{\prime}-\alpha_{k}^{\prime}\right)
\end{aligned}
$$

Therefore every element which is of the form $e^{-i n x} P\left(e^{i x}\right), n \in \mathbb{N}$, where $P(X) \in \mathbb{R}+X \mathbb{C}[X]$, is in T_{0}^{\prime}.

Conclusion 2. The consequence of above construction is:

$$
T_{0}^{\prime}=\left\{e^{-i n x} P\left(e^{i x}\right), n \in \mathbb{N}, \text { where } P(X) \in \mathbb{R}+X \mathbb{C}[X]\right\}
$$

So again we have an isomorphism $f:(\mathbb{R}+X \mathbb{C}[X])_{X} \rightarrow T_{0}^{\prime}$ through the substitution morphism $X \rightarrow e^{i x}$. Therefore $T_{0}^{\prime} \simeq(\mathbb{R}+X \mathbb{C}[X])_{X}$.

Theorem 2. The integral domain T_{0}^{\prime} is a Euclidean domain having irreducible elements, up to units, trigonometric polynomials of the form $\cos x+i \sin x-a$, where $a \in \mathbb{C} \backslash\{0\}$.
Proof. Since $(\mathbb{R}+X \mathbb{C}[X])_{X}=\mathbb{C}[X, 1 / X]=\mathbb{C}[X]_{X}$ is a UFD (PID, Euclidean domain, etc.). Thus the domain $(\mathbb{R}+X \mathbb{C}[X])_{X}$ is a Euclidean domain. Now use the isomorphism $T_{0}^{\prime} \simeq(\mathbb{R}+X \mathbb{C}[X])_{X}$ in Conclusion 2.

The following assertion is the analogue of [6, Corollary 2.2] and gives the factorization in T_{0}^{\prime} instead of T^{\prime}.

Corollary 1. Let $z=\sum_{k=0}^{n}\left(a_{k} \cos k x+b_{k} \sin k x\right), n \in \mathbb{N} \backslash\{1\}, a_{k}, b_{k} \in \mathbb{C}$ with $\left(a_{n}, b_{n}\right) \neq(0,0)$, such that $a_{n}=\alpha+\gamma+i \beta$ and $b_{n}=-\beta+i(\alpha-\gamma)$, where $\alpha, \beta, \gamma \in \mathbb{R}$. Let d be a common divisor of the integers k such that $\left(a_{k}, b_{k}\right) \neq(0,0)$. Then z has a unique factorization

$$
\lambda(\cos n x-i \sin n x) \prod_{j=1}^{\frac{2 n}{d}}\left(\cos d x+i \sin d x-\alpha_{j}\right), \text { where } \lambda, \alpha_{j} \in \mathbb{C} \backslash\{0\}
$$

Proof. Since $T_{0}^{\prime} \subseteq T^{\prime}$, therefore proof follows by [6, Corollary 2.2].

Now onwards the symbol \cap in all diagrams will represent the inclusion \subseteq.
Remark 1. $\mathbb{R}+X \mathbb{C}[X]$ is a Noetherian HFD wedged between two Euclidean domains $\mathbb{R}[X]$ and $\mathbb{C}[X]$, that is $\mathbb{R}[X] \subseteq \mathbb{R}+X \mathbb{C}[X] \subseteq \mathbb{C}[X]$ and the localization of all these by a multiplicative system generated by X preserves their factorization properties in the following way

$$
\begin{array}{ccc}
\mathbb{R}[X] & \subseteq \mathbb{R}+X \mathbb{C}[X] & \subseteq \\
\cap & \mathbb{C}[X] \\
(\mathbb{R}[X])_{X} & \subseteq(\mathbb{R}+X \mathbb{C}[X])_{X} & \subseteq(\mathbb{C}[X])_{X}
\end{array}
$$

Using Conclusion 1, Conclusion 2 and [6, Theorem 2.1], we have

$$
\begin{array}{cccc}
\mathbb{R}[X] \subseteq \mathbb{R}+X \mathbb{C}[X] \subseteq \mathbb{C}[X] \\
\cap & \cap & \cap \\
T_{1}^{\prime} \subseteq & T_{0}^{\prime} & \subseteq & T^{\prime}
\end{array}
$$

where T_{0}^{\prime} is a Euclidean domain wedged between two Euclidean domains T_{1}^{\prime} and T^{\prime}.

Remark 2. (a) Consider the domain extension $\mathbb{R}[X] \subseteq(\mathbb{R}[X])_{X}$. As $X \mathbb{R}[X]$ is a maximal ideal of $\mathbb{R}[X]$ and $X \mathbb{R}[X] \cap(X) \neq \phi$. Therefore the extended ideal $(X \mathbb{R}[X])^{e}=(\mathbb{R}[X])_{X}\left[12\right.$, Corollary 2]. Hence $(X \mathbb{R}[X])^{e} \simeq T_{1}^{\prime}$ by Conclusion 1.
(b) If we consider the domain extension $\mathbb{R}+X \mathbb{C}[X] \subseteq(\mathbb{R}+X \mathbb{C}[X])_{X}$. We observe, that $X \mathbb{C}[X]$ is a maximal ideal of $\mathbb{R}+X \mathbb{C}[X]$ and $X \mathbb{C}[X] \cap(X) \neq \phi$. Therefore the extended ideal $(X \mathbb{C}[X])^{e}=(\mathbb{R}+X \mathbb{C}[X])_{X}[12$, Corollary 2]. Hence $(X \mathbb{C}[X])^{e} \simeq T_{0}^{\prime}$ by Conclusion 2 .
(c) On the same lines we can apply the same result to the domain extension $\mathbb{C}[X] \subseteq(\mathbb{C}[X])_{X}$. In this case $X \mathbb{C}[X]$ is a maximal ideal of $\mathbb{C}[X]$ and $X \mathbb{C}[X] \cap(X) \neq \phi$. Therefore the extended ideal $(X \mathbb{C}[X])^{e}=(\mathbb{C}[X])_{X}$ [12, Corollary 2]. Hence $(X \mathbb{C}[X])^{e} \simeq T^{\prime}$ by [6, Theorem 2.1].
Definition 1. Let J be a subset of T_{1}^{\prime} defined by

$$
J=\left\{\sum_{k=0}^{n}\left(a_{k} \cos k x+i b_{k} \sin k x\right), n \in \mathbb{N}, a_{k}, b_{k} \in \mathbb{Q} \text { and } a_{n}=b_{n}\right\} .
$$

Definition 2. Let I be a subset of T_{0}^{\prime} defined by

$$
\begin{aligned}
& I=\left\{\sum_{k=0}^{n}\left(a_{k} \cos k x+b_{k} \sin k x\right): n \in \mathbb{N}, a_{k}, b_{k} \in \mathbb{C}\right. \\
& \left.\quad \text { and } a_{n}=\alpha+i \beta, b_{n}=-\beta+i \alpha\right\} .
\end{aligned}
$$

Lemma 1. For the maximal ideal $X \mathbb{R}[X]$ (respectively $X \mathbb{C}[X]$) of $\mathbb{R}[X]$ (respectively $\mathbb{R}+X \mathbb{C}[X])$, we have $(X \mathbb{R}[X])_{X} \simeq J$ (respectively $\left.(X \mathbb{C}[X])_{X} \simeq I\right)$.
Proof. Follows by Conclusion 1 (respectively Conclusion 2).

Condition 1. Let $A \subseteq B$ be a unitary (commutative) ring extension. For each $x \in B$ there exist $x^{\prime} \in U(B)$ and $x^{\prime \prime} \in A$ such that $x=x^{\prime} x^{\prime \prime}[7$, page 661].
Example 1. (a) If the ring extension $A \subseteq B$ satisfies Condition 1, then the ring extension $A+X B[X] \subseteq B[X]$ (or $A+X B[[X]] \subseteq B[[X]]$) also satisfies Condition 1.
(b) If the ring extensions $A \subseteq B$ and $B \subseteq C$ satisfy Condition 1 , then so does the ring extension $A \subseteq C$.
(c) If B is a fraction ring of A, then the ring extension $A \subseteq B$ satisfies Condition 1. Hence the ring extension $A \subseteq B$ satisfies Condition 1 is the generalization of localization.
(d) If B is a field, then the ring extension $A \subseteq B$ satisfies Condition 1 .

Condition 2. Let A, A_{1}, B, B_{1} be unitary (commutative) rings such that

$$
\begin{aligned}
& A \subseteq B \\
& \cap \\
& A_{1} \subseteq B_{1}
\end{aligned}
$$

Then for each $x \in B_{1}$ there exist $x^{\prime} \in U(B)$ and $x^{\prime \prime} \in A_{1}$ such that $x=x^{\prime} x^{\prime \prime}$.
Lemma 2. Let $A \subseteq B$ be a unitary (commutative) ring extension which satisfies Condition 1. If N is a multiplicative system in A then the ring extension $N^{-1} A \subseteq N^{-1} B$ satisfies Condition 2 .
Proof. Since the ring extension $A \subseteq B$ satisfies Condition 1. Therefore for each $a \in B$ there exist $b \in U(B)$ and $c \in A$ such that $a=b c$. Obviously $N^{-1} A \subseteq N^{-1} B$ and let $x=\frac{a}{s} \in N^{-1} B$. Then $x=\frac{a}{s}, a \in B, s \in N$. This implies $x=\frac{b c}{s}=b \frac{c}{s}$, where $b \in U(B)$ and $\frac{c}{s} \in N^{-1} A$.
Example 2. (a) If the ring extensions $A \subseteq B$ and $B \subseteq C$ satisfy Condition 2, then so does the ring extension $A \subseteq C$.
(b) For $A=A_{1}$ and $B=B_{1}$ the Condition 1 and Condition 2 coincides.
(c) If the ring extension $A_{1} \subseteq B_{1}$ satisfies Condition 2, then it does satisfies Condition 1.
(d) By Lemma 2, the ring extensions $T_{1}^{\prime} \subseteq T_{0}^{\prime}$ and $T_{0}^{\prime} \subseteq T^{\prime}$ satisfy Condition 2 so does the ring extension $T_{1}^{\prime} \subseteq T^{\prime}$.
Remark 3. Consider the commutative inclusion diagram made by the following domain extensions

$$
\begin{array}{rlcl}
\mathbb{R}[X] & \subseteq \mathbb{R}+X \mathbb{C}[X] & \subseteq \mathbb{C}[X] \\
\cap & \searrow & \ddots & \cap \\
T_{1}^{\prime} & \subseteq & T_{0}^{\prime} & \subseteq T^{\prime}
\end{array}
$$

Among these domain extensions $\mathbb{R}+X \mathbb{C}[X] \subseteq \mathbb{C}[X], \mathbb{R}[X] \subseteq T_{1}^{\prime}, \mathbb{R}+X \mathbb{C}[X] \subseteq$ T_{0}^{\prime} and $\mathbb{C}[X] \subseteq T^{\prime}$ satisfy Condition 1 (see Example 1). Whereas the domain extensions $T_{0}^{\prime} \subseteq T^{\prime}$ and $T_{0}^{\prime} \subseteq T^{\prime}$ satisfy Condition 2 . So by transitivity the domain extensions $\mathbb{R}[X] \subseteq T_{0}^{\prime}, \mathbb{R}+X \mathbb{C}[X] \subseteq T^{\prime}$ and $T_{1}^{\prime} \subseteq T^{\prime}$ also satisfy Condition 2. Also note that the domain extension $\mathbb{R}[X] \subseteq \mathbb{R}+X \mathbb{C}[X]$ does not satisfy any of Condition 1 and Condition 2.

The subring of $\mathbb{R}[\cos x, \sin x]$. Consider the substitution morphism

$$
g: \mathbb{Z}[X, Y] \rightarrow \mathbb{Z}[\cos x, \sin x]
$$

defined by $g(X)=\cos x$ and $g(Y)=\sin x$ such that

$$
g\left(X^{2}+Y^{2}-1\right)=g\left(X^{2}\right)+g\left(Y^{2}\right)-1=\cos ^{2} x+\sin ^{2} x-1=0 .
$$

This implies $\left(X^{2}+Y^{2}-1\right)=\operatorname{Ker} g$, therefore

$$
\mathbb{Z}[\cos x, \sin x] \simeq \mathbb{Z}[X, Y] /\left(X^{2}+Y^{2}-1\right)
$$

Theorem 3. The integral domain $T_{0}=\mathbb{Z}[\cos x, \sin x]$ is a $B F D$.
Proof. Since $\mathbb{Z}[X, Y] /\left(X^{2}+Y^{2}-1\right) \simeq \mathbb{Z}[\cos x, \sin x]$, with $\mathbb{Z}[X, Y]$ a Noetherian domain. Therefore $\mathbb{Z}[\cos x, \sin x]$ is Notherian, hence the result.

Remark 4. (a) T is a Dedekind HFD [6, Theorem 3.1], whereas T_{0} is a Noetherian BFD.
(b) T_{0} is a free $\mathbb{Z}[\cos x]$-module and has basis $\{1, \sin x\}$.
(c) $\mathbb{Z}[\cos x]$ is a Euclidean domain because $\mathbb{Z}[\cos x] \simeq \mathbb{Z}[X]$, therefore the BFD T_{0} lies between Euclidean domains $\mathbb{Z}[\cos x]$ and T_{0}^{\prime}.
(d) T_{0}^{\prime} is a free T_{0}-module and has basis $\{1, i\}$.
(e) T^{\prime} is a T_{0}-module also T is a T_{0}-module.
(f) T^{\prime} is a T_{0}^{\prime}-module.

References

[1] D. D. Anderson, D. F. Anderson, and M. Zafrullah. Factorization in integral domains. J. Pure Appl. Algebra, 69(1):1-19, 1990.
[2] D. D. Anderson, D. F. Anderson, and M. Zafrullah. Factorization in integral domains. II. J. Algebra, 152(1):78-93, 1992.
[3] P. M. Cohn. Bezout rings and their subrings. Proc. Cambridge Philos. Soc., 64:251-264, 1968.
[4] J. Coykendall. A characterization of polynomial rings with the half-factorial property. In Factorization in integral domains (Iowa City, IA, 1996), volume 189 of Lecture Notes in Pure and Appl. Math., pages 291-294. Dekker, New York, 1997.
[5] A. Grams. Atomic rings and the ascending chain condition for principal ideals. Proc. Cambridge Philos. Soc., 75:321-329, 1974.
[6] G. Picavet and M. Picavet-L'Hermitte. Trigonometric polynomial rings. In Commutative ring theory and applications (Fez, 2001), volume 231 of Lecture Notes in Pure and Appl. Math., pages 419-433. Dekker, New York, 2003.
[7] N. Radu, S. O. I. Al-Salihi, and T. Shah. Ascend and descend of factorization properties. Rev. Roumaine Math. Pures Appl., 45(4):659-669 (2001), 2000.
[8] J. F. Ritt. A factorization theory for functions $\sum_{i=1}^{n} a_{i} e^{\alpha_{i} x}$. Trans. Amer. Math. Soc., 29(3):584-596, 1927.
[9] P. Samuel. About Euclidean rings. J. Algebra, 19:282-301, 1971.
[10] A. Zaks. Half-factorial-domains. Israel J. Math., 37(4):281-302, 1980.
[11] A. Zaks. Atomic rings without a.c.c. on principal ideals. J. Algebra, 74(1):223-231, 1982.
[12] O. Zariski and P. Samuel. Commutative algebra. Vol. 1. Springer-Verlag, New York, 1958.

Quaid-I-Azam University, Pakistan
E-mail address: stariqshah@gmail.com
Passau Universität, Germany
E-mail address: ehsanu01@stud.uni-passau.de

[^0]: 2000 Mathematics Subject Classification. 13A05, 13B30, 12D05, 42A05.
 Key words and phrases. trigonometric polynomial, HFD, condition 1, condition 2, irreducible.

