Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 26 (2010), 55-70 www.emis.de/journals ISSN 1786-0091

CERTAIN SUBCLASSES OF UNIFORMLY STARLIKE AND CONVEX FUNCTIONS DEFINED BY CONVOLUTION

M. K. AOUF, R. M. EL-ASHWAH, AND S. M. EL-DEEB

ABSTRACT. The aim of this paper is to obtain coefficient estimates, distortion theorems, convex linear combinations and radii of close-toconvexity, starlikeness and convexity for functions belonging to the subclass $TS_{\gamma}(f, g; \alpha, \beta)$ of uniformly starlike and convex functions, we consider integral operators associated with functions in this class. Furthermore partial sums $f_n(z)$ of functions f(z) in the class $TS_{\gamma}(f, g; \alpha, \beta)$ are considered and sharp lower bounds for the ratios of real part of f(z) to $f_n(z)$ and f'(z) to $f'_n(z)$ are determined.

1. INTRODUCTION

Let S denote the class of functions of the form:

(1.1)
$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k.$$

that are analytic and univalent in the open unit disk $U = \{z : |z| < 1\}$. Let $f \in S$ be given by (1.1) and $g \in S$ be given by

(1.2)
$$g(z) = z + \sum_{k=2}^{\infty} b_k z^k \quad (b_k \ge 0),$$

then the Hadamard product (or convolution) f * g of f and g is defined (as usual) by

(1.3)
$$(f * g)(z) = z + \sum_{k=2}^{\infty} a_k b_k z^k = (g * f)(z).$$

Following Goodman ([4] and [5]), Ronning ([9] and [10]) introduced and studied the following subclasses:

²⁰⁰⁰ Mathematics Subject Classification. 30C45.

Key words and phrases. Analytic, univalent, uniformly, convolution, partial sums.

(i) A function f(z) of the form (1.1) is said to be in the class $S_p(\alpha, \beta)$ of uniformly β -starlike functions if it satisfies the condition:

(1.4)
$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)} - \alpha\right\} > \beta \left|\frac{zf'(z)}{f(z)} - 1\right| \quad (z \in U),$$

where $-1 \leq \alpha < 1$ and $\beta \geq 0$.

(ii) A function f(z) of the form (1.1) is said to be in the class $UCV(\alpha, \beta)$ of uniformly β -convex functions if it satisfies the condition:

(1.5)
$$\operatorname{Re}\left\{1 + \frac{zf''(z)}{f'(z)} - \alpha\right\} > \beta \left|\frac{zf''(z)}{f'(z)}\right| \quad (z \in U),$$

where $-1 \leq \alpha < 1$ and $\beta \geq 0$.

It follows from (1.4) and (1.5) that

(1.6)
$$f(z) \in UCV(\alpha, \beta) \iff zf'(z) \in S_p(\alpha, \beta)$$

For $-1 \leq \alpha < 1$, $0 \leq \gamma \leq 1$ and $\beta \geq 0$, we let $S_{\gamma}(f, g; \alpha, \beta)$ be the subclass of S consisting of functions f(z) of the form (1.1) and the functions g(z) of the form (1.2) and satisfying the analytic criterion:

(1.7) Re
$$\left\{ \frac{z(f*g)'(z) + \gamma z^2(f*g)''(z)}{(1-\gamma)(f*g)(z) + \gamma z(f*g)'(z)} - \alpha \right\}$$

> $\beta \left| \frac{z(f*g)'(z) + \gamma z^2(f*g)''(z)}{(1-\gamma)(f*g)(z) + \gamma z(f*g)'(z)} - 1 \right|.$

Let T denote the subclass of S consisting of functions of the form:

(1.8)
$$f(z) = z - \sum_{k=2}^{\infty} a_k z^k \quad (a_k \ge 0) \,.$$

Further, we define the class $TS_{\gamma}(f, g; \alpha, \beta)$ by

(1.9)
$$TS_{\gamma}(f,g;\alpha,\beta) = S_{\gamma}(f,g;\alpha,\beta) \cap T.$$

We note that:

(i)
$$TS_0(f, \frac{z}{(1-z)}; \alpha, 1) = S_p T(\alpha)$$
 and
 $TS_0(f, \frac{z}{(1-z)^2}; \alpha, 1) = TS_1(f, \frac{z}{(1-z)}; \alpha, 1) = UCT(\alpha), (-1 \le \alpha < 1)$
(see Bharati et al. [3]);

(ii) $TS_1(f, \frac{z}{(1-z)}; 0, \beta) = UCT(\beta) \ (\beta \ge 0)$ (see Subramanian et al. [15]);

(iii)
$$TS_0(f, z + \sum_{k=2}^{\infty} \frac{(a)_{k-1}}{(c)_{k-1}} z^k; \alpha, \beta) = TS(\alpha, \beta) (-1 \le \alpha < 1, \beta \ge 0, c \ne 0, -1, -2, \ldots)$$
 (see Murugusundaramoorthy and Magesh [6,7]);

(iv)
$$TS_0(f, z + \sum_{k=2}^{\infty} k^n z^k; \alpha, \beta) = TS(n, \alpha, \beta) (-1 \le \alpha < 1, \beta \ge 0, n \in N_0 = N \cup \{0\}, N = \{1, 2, \ldots\})$$
 (see Rosy and Murugusundaramoorthy [11]);

(v)
$$TS_0(f, z + \sum_{k=2}^{\infty} {\binom{k+\lambda-1}{\lambda}} z^k; \alpha, \beta) = D(\beta, \alpha, \lambda) (-1 \le \alpha < 1, \beta \ge 0, \lambda > -1)$$
 (see Shams et al. [14]);

(vi)
$$TS_0(f, z + \sum_{k=2}^{\infty} [1 + \lambda(k-1)]^n z^k; \alpha, \beta) = TS_\lambda(n, \alpha, \beta)$$
 $(-1 \le \alpha < 1, \beta \ge 0, \lambda \ge 0, n \in N_0)$ (see Aouf and Mostafa [2]);

(vii)
$$TS_{\gamma}(f, z + \sum_{k=2}^{\infty} \frac{(a)_{k-1}}{(c)_{k-1}} z^k; \alpha, \beta) = TS(\gamma, \alpha, \beta)(-1 \le \alpha < 1, \beta \ge 0, 0 \le \gamma \le 1, c \ne 0, -1, -2, \ldots)$$
 (see Murugusundaramoorthy et al. [8]);

(viii)
$$TS_{\gamma}(f, z + \sum_{k=2}^{\infty} \Gamma_k z^k; \alpha, \beta) = TS_q^s(\gamma, \alpha, \beta)$$
 (see Ahuja et al. [1]), where

(1.10)
$$\Gamma_k = \frac{(\alpha_1)_{k-1} \dots (\alpha_q)_{k-1}}{(\beta_1)_{k-1} \dots (\beta_s)_{k-1}} \frac{1}{(k-1)!}$$

$$(\alpha_i > 0, \ i = 1, \dots, q; \ \beta_j > 0, \ j = 1, \dots, s; \ q \le s + 1; \ q, \ s \in N_0).$$

Also we note that

$$(1.11) \quad TS_{\gamma}(f, z + \sum_{k=2}^{\infty} k^{n} z^{k}; \alpha, \beta) = TS_{\gamma}(n, \alpha, \beta)$$

$$= \left\{ f \in T : \operatorname{Re} \left\{ \frac{(1 - \gamma)z(D^{n} f(z))' + \gamma z(D^{n+1} f(z))'}{(1 - \gamma)D^{n} f(z) + \gamma D^{n+1} f(z)} - \alpha \right\}$$

$$> \beta \left| \frac{(1 - \gamma)z(D^{n} f(z))' + \gamma z(D^{n+1} f(z))'}{(1 - \gamma)D^{n} f(z) + \gamma D^{n+1} f(z)} - 1 \right|,$$

$$-1 \le \alpha < 1, \ \beta \ge 0, \ n \in N_{0}, \ z \in U \right\}.$$

2. Coefficient estimates

Theorem 1. A function f(z) of the form (1.8) is in $TS_{\gamma}(f, g; \alpha, \beta)$ if

(2.1)
$$\sum_{k=2}^{\infty} \left[k(1+\beta) - (\alpha+\beta) \right] \left[1 + \gamma(k-1) \right] |a_k| \, b_k \le 1 - \alpha,$$

where $-1 \leq \alpha < 1, \ \beta \geq 0 \ and \ 0 \leq \gamma \leq 1.$

Proof. It suffices to show that

$$\beta \left| \frac{z(f * g)'(z) + \gamma z^2(f * g)''(z)}{(1 - \gamma)(f * g)(z) + \gamma z(f * g)'(z)} - 1 \right| - \operatorname{Re} \left\{ \frac{z(f * g)'(z) + \gamma z^2(f * g)''(z)}{(1 - \gamma)(f * g)(z) + \gamma z(f * g)'(z)} - 1 \right\} \le 1 - \alpha.$$

We have

$$\beta \left| \frac{z(f*g)'(z) + \gamma z^2(f*g)''(z)}{(1-\gamma)(f*g)(z) + \gamma z(f*g)'(z)} - 1 \right| - \operatorname{Re} \left\{ \frac{z(f*g)'(z) + \gamma z^2(f*g)''(z)}{(1-\gamma)(f*g)(z) + \gamma z(f*g)'(z)} - 1 \right\} \leq (1+\beta) \left| \frac{z(f*g)'(z) + \gamma z^2(f*g)''(z)}{(1-\gamma)(f*g)(z) + \gamma z(f*g)'(z)} - 1 \right| \leq \frac{(1+\beta) \sum_{k=2}^{\infty} (k-1) [1+\gamma(k-1)] |a_k| b_k}{1-\sum_{k=2}^{\infty} [1+\gamma(k-1)] |a_k| b_k}.$$

This last expression is bounded above by $(1 - \alpha)$ if

$$\sum_{k=2}^{\infty} \left[k(1+\beta) - (\alpha+\beta) \right] \left[1 + \gamma(k-1) \right] |a_k| \, b_k \le 1 - \alpha,$$

and hence the proof is completed.

Theorem 2. A necessary and sufficient condition for f(z) of the form (1.8) to be in the class $TS_{\gamma}(f, g; \alpha, \beta)$ is that

(2.2)
$$\sum_{k=2}^{\infty} \left[k(1+\beta) - (\alpha+\beta) \right] \left[1 + \gamma(k-1) \right] a_k b_k \le 1 - \alpha,$$

Proof. In view of Theorem 1, we need only to prove the necessity. If $f(z) \in TS_{\gamma}(f, g; \alpha, \beta)$ and z is real, then

$$\frac{1-\sum_{k=2}^{\infty}k\left[1+\gamma(k-1)\right]a_{k}b_{k}z^{k-1}}{1-\sum_{k=2}^{\infty}\left[1+\gamma(k-1)\right]a_{k}b_{k}z^{k-1}}-\alpha\geq\beta\left|\frac{\sum_{k=2}^{\infty}(k-1)\left[1+\gamma(k-1)\right]a_{k}b_{k}z^{k-1}}{1-\sum_{k=2}^{\infty}\left[1+\gamma(k-1)\right]a_{k}b_{k}z^{k-1}}\right|.$$

Letting $z \to 1^-$ along the real axis, we obtain the desired inequality

$$\sum_{k=2}^{\infty} \left[k(1+\beta) - (\alpha+\beta) \right] \left[1 + \gamma(k-1) \right] a_k b_k \le 1 - \alpha.$$

Corollary 1. Let the function f(z) be defined by (1.8) be in the class $TS_{\gamma}(f, g; \alpha, \beta)$. Then

(2.3)
$$a_k \le \frac{1-\alpha}{[k(1+\beta) - (\alpha+\beta)][1+\gamma(k-1)]b_k} \quad (k\ge 2).$$

58

The result is sharp for the function

(2.4)
$$f(z) = z - \frac{1 - \alpha}{[k(1 + \beta) - (\alpha + \beta)] [1 + \gamma(k - 1)] b_k} z^k \ (k \ge 2).$$

3. Distortion theorems

Theorem 3. Let the function f(z) be defined by (1.8) be in the class $TS_{\gamma}(f, g; \alpha, \beta)$. Then for |z| = r < 1, we have

(3.1)
$$|f(z)| \ge r - \frac{1-\alpha}{(2-\alpha+\beta)(1+\gamma)b_2}r^2$$

and

(3.2)
$$|f(z)| \le r + \frac{1-\alpha}{(2-\alpha+\beta)(1+\gamma)b_2}r^2,$$

provided that $b_k \ge b_2$ $(k \ge 2)$. The equalities in (3.1) and (3.2) are attained for the function f(z) given by

(3.3)
$$f(z) = z - \frac{1 - \alpha}{(2 - \alpha + \beta)(1 + \gamma)b_2} z^2,$$

at z = r and $z = re^{i(2k+1)\pi}$ $(k \in Z)$.

Proof. Since for $k \ge 2$,

$$(2 - \alpha + \beta)(1 + \gamma)b_2 \le [k(1 + \beta) - (\alpha + \beta)][1 + \gamma(k - 1)]b_k,$$

using Theorem 2, we have

(3.4)
$$(2 - \alpha + \beta)(1 + \gamma)b_2 \sum_{k=2}^{\infty} a_k$$

 $\leq \sum_{k=2}^{\infty} [k(1 + \beta) - (\alpha + \beta)] [1 + \gamma(k - 1)] a_k b_k \leq 1 - \alpha$

that is, that

(3.5)
$$\sum_{k=2}^{\infty} a_k \le \frac{1-\alpha}{(2-\alpha+\beta)(1+\gamma)b_2}.$$

From (1.8) and (3.5), we have

(3.6)
$$|f(z)| \ge r - r^2 \sum_{k=2}^{\infty} a_k \ge r - \frac{1 - \alpha}{(2 - \alpha + \beta)(1 + \gamma)b_2} r^2$$

and

(3.7)
$$|f(z)| \le r + r^2 \sum_{k=2}^{\infty} a_k \le r + \frac{1-\alpha}{(2-\alpha+\beta)(1+\gamma)b_2} r^2.$$

This completes the proof of Theorem 3.

Theorem 4. Let the function f(z) be defined by (1.8) be in the class $TS_{\gamma}(f, g; \alpha, \beta)$. Then for |z| = r < 1, we have

(3.8)
$$\left| f'(z) \right| \ge 1 - \frac{2(1-\alpha)}{(2-\alpha+\beta)(1+\gamma)b_2} r$$

and

(3.9)
$$\left| f'(z) \right| \le 1 + \frac{2(1-\alpha)}{(2-\alpha+\beta)(1+\gamma)b_2}r,$$

provided that $b_k \ge b_2$ $(k \ge 2)$. The result is sharp for the function f(z) given by (3.3).

Proof. From Theorem 2 and (3.5), we have

(3.10)
$$\sum_{k=2}^{\infty} k a_k \le \frac{2(1-\alpha)}{(2-\alpha+\beta)(1+\gamma)b_2}$$

Since the remaining part of the proof is similar to the proof of Theorem 3, we omit the details. $\hfill \Box$

4. Convex linear combinations

Theorem 5. Let $\mu_{v} \geq 0$ for v = 1, 2, ..., l and $\sum_{v=1}^{l} \mu_{v} \leq 1$. If the functions $F_{v}(z)$ defined by

(4.1)
$$F_{\upsilon}(z) = z - \sum_{k=2}^{\infty} a_{k,\upsilon} z^{k} \quad (a_{k,\upsilon} \ge 0; \ \upsilon = 1, 2, \dots, l)$$

are in the class $TS_{\gamma}(f, g; \alpha, \beta)$ for every $\upsilon = 1, 2, ..., l$, then the function f(z) defined by

$$f(z) = z - \sum_{k=2}^{\infty} \left(\sum_{\nu=1}^{l} \mu_{\nu} a_{k,\nu} \right) z^{k}$$

is in the class $TS_{\gamma}(f, g; \alpha, \beta)$

Proof. Since $F_v(z) \in TS_{\gamma}(f, g; \alpha, \beta)$, it follows from Theorem 2 that

(4.2)
$$\sum_{k=2}^{\infty} \left[k(1+\beta) - (\alpha+\beta) \right] \left[1 + \gamma(k-1) \right] a_{k,v} b_k \le 1 - \alpha,$$

for every $v = 1, 2, \ldots, l$. Hence

$$\sum_{k=2}^{\infty} [k(1+\beta) - (\alpha+\beta)] [1+\gamma(k-1)] \left(\sum_{\nu=1}^{l} \mu_{\nu} a_{k,\nu}\right) b_{k}$$

= $\sum_{\nu=1}^{l} \mu_{\nu} \left(\sum_{k=2}^{\infty} [k(1+\beta) - (\alpha+\beta)] [1+\gamma(k-1)] a_{k,\nu} b_{k}\right)$
 $\leq (1-\alpha) \sum_{\nu=1}^{l} \mu_{\nu} \leq 1-\alpha.$

By Theorem 2, it follows that $f(z) \in TS_{\gamma}(f, g; \alpha, \beta)$.

Corollary 2. The class $TS_{\gamma}(f, g; \alpha, \beta)$ is closed under convex linear combinations.

Theorem 6. Let $f_1(z) = z$ and

(4.3)
$$f_k(z) = z - \frac{1 - \alpha}{[k(1 + \beta) - (\alpha + \beta)] [1 + \gamma(k - 1)] b_k} z^k \quad (k \ge 2)$$

for $-1 \leq \alpha < 1, 0 \leq \gamma \leq 1$ and $\beta \geq 0$. Then f(z) is in the class $TS_{\gamma}(f, g; \alpha, \beta)$ if and only if it can be expressed in the form:

(4.4)
$$f(z) = \sum_{k=1}^{\infty} \mu_k f_k(z),$$

where $\mu_k \ge 0$ and $\sum_{k=1}^{\infty} \mu_k = 1$.

Proof. Assume that

(4.5)
$$f(z) = \sum_{k=1}^{\infty} \mu_k f_k(z)$$
$$= z - \sum_{k=2}^{\infty} \frac{1-\alpha}{[k(1+\beta) - (\alpha+\beta)] [1+\gamma(k-1)] b_k} \mu_k z^k.$$

Then it follows that

(4.6)
$$\sum_{k=2}^{\infty} \frac{[k(1+\beta) - (\alpha+\beta)] [1+\gamma(k-1)] b_k}{1-\alpha} \times \frac{1-\alpha}{[k(1+\beta) - (\alpha+\beta)] [1+\gamma(k-1)] b_k} \mu_k = \sum_{k=2}^{\infty} \mu_k = 1-\mu_1 \le 1.$$

So, by Theorem 2, $f(z) \in TS_{\gamma}(f, g; \alpha, \beta)$.

Conversely, assume that the function f(z) defined by (1.8) belongs to the class $TS_{\gamma}(f, g; \alpha, \beta)$. Then

(4.7)
$$a_k \le \frac{1-\alpha}{[k(1+\beta) - (\alpha+\beta)][1+\gamma(k-1)]b_k} \quad (k\ge 2).$$

Setting

(4.8)
$$\mu_k = \frac{[k(1+\beta) - (\alpha+\beta)] [1+\gamma(k-1)] a_k b_k}{1-\alpha} \quad (k \ge 2)$$

and

(4.9)
$$\mu_1 = 1 - \sum_{k=2}^{\infty} \mu_k,$$

we can see that f(z) can be expressed in the form (4.4). This completes the proof of Theorem 6.

Corollary 3. The extreme points of the class $TS_{\gamma}(f, g; \alpha, \beta)$ are the functions $f_1(z) = z$ and

$$f_k(z) = z - \frac{1 - \alpha}{[k(1 + \beta) - (\alpha + \beta)] [1 + \gamma(k - 1)] b_k} z^k \quad (k \ge 2).$$

5. RADII OF CLOSE-TO-CONVEXITY, STARLIKENESS AND CONVEXITY

Theorem 7. Let the function f(z) defined by (1.8) be in the class $TS_{\gamma}(f, g; \alpha, \beta)$. Then f(z) is close-to-convex of order ρ ($0 \le \rho < 1$) in $|z| < r_1$, where

(5.1)
$$r_1 = \inf_{k \ge 2} \left\{ \frac{(1-\rho) \left[k(1+\beta) - (\alpha+\beta) \right] \left[1 + \gamma(k-1) \right] b_k}{k(1-\alpha)} \right\}^{\frac{1}{k-1}}.$$

The result is sharp, the extremal function being given by (2.4).

Proof. We must show that

$$\left| f'(z) - 1 \right| \le 1 - \rho \text{ for } |z| < r_1,$$

where r_1 is given by (5.1). Indeed we find from the definition (1.8) that

$$\left|f'(z) - 1\right| \le \sum_{k=2}^{\infty} ka_k \left|z\right|^{k-1}.$$

Thus

$$\left|f'(z) - 1\right| \le 1 - \rho,$$

if

(5.2)
$$\sum_{k=2}^{\infty} \left(\frac{k}{1-\rho}\right) a_k |z|^{k-1} \le 1.$$

But, by Theorem 2, (5.2) will be true if

$$\left(\frac{k}{1-\rho}\right)\left|z\right|^{k-1} \leq \frac{\left[k(1+\beta) - (\alpha+\beta)\right]\left[1+\gamma(k-1)\right]b_k}{1-\alpha},$$

that is, if

$$(5.3) \quad |z| \le \left\{ \frac{(1-\rho)\left[k(1+\beta) - (\alpha+\beta)\right]\left[1+\gamma(k-1)\right]b_k}{k(1-\alpha)} \right\}^{\frac{1}{k-1}} \quad (k \ge 2).$$

Theorem 7 follows easily from (5.3).

Theorem 7 follows easily from (5.3).

Theorem 8. Let the function f(z) defined by (1.8) be in the class $TS_{\gamma}(f,g;\alpha,\beta)$. Then f(z) is starlike of order ρ $(0 \leq \rho < 1)$ in $|z| < r_2$, where 1

(5.4)
$$r_2 = \inf_{k \ge 2} \left\{ \frac{(1-\rho) \left[k(1+\beta) - (\alpha+\beta) \right] \left[1 + \gamma(k-1) \right] b_k}{(k-\rho) \left(1-\alpha \right)} \right\}^{\frac{1}{k-1}}.$$

The result is sharp, with the extremal function f(z) given by (2.4).

Proof. It is sufficient to show that

$$\left| \frac{zf'(z)}{f(z)} - 1 \right| \le 1 - \rho \text{ for } |z| < r_2,$$

where r_2 is given by (5.4). Indeed we find, again from the definition (1.8) that

$$\left|\frac{zf'(z)}{f(z)} - 1\right| \le \frac{\sum_{k=2}^{\infty} (k-1)a_k |z|^{k-1}}{1 - \sum_{k=2}^{\infty} a_k |z|^{k-1}}.$$

Thus

$$\left|\frac{zf'(z)}{f(z)} - 1\right| \le 1 - \rho$$

if

(5.5)
$$\sum_{k=2}^{\infty} \frac{(k-\rho)a_k |z|^{k-1}}{(1-\rho)} \le 1.$$

But, by Theorem 2, (5.5) will be true if

$$\frac{(k-\rho)|z|^{k-1}}{(1-\rho)} \le \frac{[k(1+\beta) - (\alpha+\beta)][1+\gamma(k-1)]b_k}{(1-\alpha)}$$

that is, if

(5.6)
$$|z| \leq \left\{ \frac{(1-\rho) \left[k(1+\beta) - (\alpha+\beta)\right] \left[1+\gamma(k-1)\right] b_k}{(k-\rho) (1-\alpha)} \right\}^{\frac{1}{k-1}} (k \geq 2).$$

Theorem 8 follows easily from (5.6).

Theorem 8 follows easily from (5.6).

Corollary 4. Let the function f(z) defined by (1.8) be in the class $TS_{\gamma}(f, g; \alpha, \beta)$. Then f(z) is convex of order ρ ($0 \le \rho < 1$) in $|z| < r_3$, where

1

(5.7)
$$r_3 = \inf_{k \ge 2} \left\{ \frac{(1-\rho) \left[k(1+\beta) - (\alpha+\beta) \right] \left[1 + \gamma(k-1) \right] b_k}{k \left(k - \rho \right) \left(1 - \alpha \right)} \right\}^{\frac{1}{k-1}}$$

The result is sharp, with the extremal function f(z) given by (2.4).

6. A FAMILY OF INTEGRAL OPERATORS

In view of Theorem 2, we see that $z - \sum_{k=2}^{\infty} d_k z^k$ is in $TS_{\gamma}(f, g; \alpha, \beta)$ as long as $0 \le d_k \le a_k$ for all k. In particular, we have

Theorem 9. Let the function f(z) defined by (1.8) be in the class $TS_{\gamma}(f, g; \alpha, \beta)$ and c be a real number such that c > -1. Then the function F(z) defined by

(6.1)
$$F(z) = \frac{c+1}{z^c} \int_0^z t^{c-1} f(t) dt \quad (c > -1)$$

also belongs to the class $TS_{\gamma}(f, g; \alpha, \beta)$.

Proof. From the represtation (6.1) of F(z), it follows that

$$F(z) = z - \sum_{k=2}^{\infty} d_k z^k,$$

where

$$d_k = \left(\frac{c+1}{c+k}\right)a_k \le a_k \ (k \ge 2).$$

On the other hand, the converse is not true. This leads to a radius of univalence result. $\hfill \Box$

Theorem 10. Let the function $F(z) = z - \sum_{k=2}^{\infty} a_k z^k$ $(a_k \ge 0)$ be in the class $TS_{\gamma}(f, g; \alpha, \beta)$, and let c be a real number such that c > -1. Then the function f(z) given by (6.1) is univalent in $|z| < R^*$, where

(6.2)
$$R^{\star} = \inf_{k \ge 2} \left\{ \frac{(c+1) \left[k(1+\beta) - (\alpha+\beta) \right] \left[1 + \gamma(k-1) \right] b_k}{k \left(c+k \right) \left(1-\alpha \right)} \right\}^{\frac{1}{k-1}}.$$

The result is sharp.

Proof. From (6.1), we have

$$f(z) = \frac{z^{1-c} \left[z^c F(z) \right]'}{(c+1)} = z - \sum_{k=2}^{\infty} \left(\frac{c+k}{c+1} \right) a_k z^k \left(c > -1 \right).$$

65

In order to obtain the required result, it suffices to show that

$$\left| f'(z) - 1 \right| < 1$$
 wherever $|z| < R^{\star}$,

where R^{\star} is given by (6.2). Now

$$\left|f'(z) - 1\right| \le \sum_{k=2}^{\infty} \frac{k(c+k)}{(c+1)} a_k \left|z\right|^{k-1}.$$

Thus $\left|f'(z) - 1\right| < 1$ if

(6.3)
$$\sum_{k=2}^{\infty} \frac{k(c+k)}{(c+1)} a_k \left| z \right|^{k-1} < 1.$$

But Theorem 2 confirms that

(6.4)
$$\sum_{k=2}^{\infty} \frac{[k(1+\beta) - (\alpha+\beta)] [1+\gamma(k-1)] a_k b_k}{1-\alpha} \le 1.$$

Hence (6.3) will be satisfied if

$$\frac{k(c+k)}{(c+1)} |z|^{k-1} < \frac{[k(1+\beta) - (\alpha+\beta)] [1+\gamma(k-1)] b_k}{(1-\alpha)},$$

that is, if

(6.5)
$$|z| < \left[\frac{(c+1)\left[k(1+\beta)-(\alpha+\beta)\right]\left[1+\gamma(k-1)\right]b_k}{k(c+k)(1-\alpha)}\right]^{\frac{1}{k-1}} \quad (k \ge 2).$$

Therefore, the function f(z) given by (6.1) is univalent in $|z| < R^*$. Sharpness of the result follows if we take

(6.6)
$$f(z) = z - \frac{(c+k)(1-\alpha)}{[k(1+\beta) - (\alpha+\beta)][1+\gamma(k-1)]b_k(c+1)} z^k \ (k \ge 2).$$

7. PARTIAL SUMS

Following the earlier works by Silverman [12] and Siliva [13] on partial sums of analytic functions, we consider in this section partial sums of functions in the class $TS_{\gamma}(f, g; \alpha, \beta)$ and obtain sharp lower bounds for the ratios of real part of f(z) to $f_n(z)$ and f'(z) to $f'_n(z)$.

Theorem 11. Define the partial sums $f_1(z)$ and $f_n(z)$ by

$$f_1(z) = z \text{ and } f_n(z) = z + \sum_{k=2}^n a_k z^k, \quad (n \in N \setminus \{1\}).$$

Let $f(z) \in TS_{\gamma}(f, g; \alpha, \beta)$ be given by (1.1) and satisfies the condition (2.2) and

,

(7.1)
$$c_k \ge \begin{cases} 1, & k = 2, 3, \dots, n, \\ c_{n+1}, & k = n+1, n+2, \dots \end{cases}$$

where, for convenience,

(7.2)
$$c_k = \frac{[k(1+\beta) - (\alpha+\beta)][1+\gamma(k-1)]b_k}{1-\alpha}.$$

Then

(7.3)
$$\operatorname{Re}\left\{\frac{f(z)}{f_n(z)}\right\} > 1 - \frac{1}{c_{n+1}} \ (z \in U; \ n \in N)$$

and

(7.4)
$$\operatorname{Re}\left\{\frac{f_n(z)}{f(z)}\right\} > \frac{c_{n+1}}{1+c_{n+1}}.$$

Proof. For the coefficients c_k given by (7.2) it is not difficult to verify that (7.5) $c_{k+1} > c_k > 1.$

Therefore we have

(7.6)
$$\sum_{k=2}^{n} |a_k| + c_{n+1} \sum_{k=n+1}^{\infty} |a_k| \le \sum_{k=2}^{\infty} c_k |a_k| \le 1.$$

By setting

(7.7)
$$g_1(z) = c_{n+1} \left\{ \frac{f(z)}{f_n(z)} - \left(1 - \frac{1}{c_{n+1}}\right) \right\} = 1 + \frac{c_{n+1} \sum_{k=n+1}^{\infty} a_k z^{k-1}}{1 + \sum_{k=2}^{n} a_k z^{k-1}}$$

and applying (7.6), we find that

(7.8)
$$\left|\frac{g_1(z)-1}{g_1(z)+1}\right| \le \frac{c_{n+1}\sum_{k=n+1}^{\infty}|a_k|}{2-2\sum_{k=2}^{n}|a_k|-c_{n+1}\sum_{k=n+1}^{\infty}|a_k|}.$$

Now

$$\left|\frac{g_1(z)-1}{g_1(z)+1}\right| \le 1$$

if

$$\sum_{k=2}^{n} |a_k| + c_{n+1} \sum_{k=n+1}^{\infty} |a_k| \le 1.$$

From the condition (2.2), it is sufficient to show that

$$\sum_{k=2}^{n} |a_k| + c_{n+1} \sum_{k=n+1}^{\infty} |a_k| \le \sum_{k=2}^{\infty} c_k |a_k|$$

which is equivalent to

(7.9)
$$\sum_{k=2}^{n} (c_k - 1) |a_k| + \sum_{k=n+1}^{\infty} (c_k - c_{n+1}) |a_k| \ge 0,$$

which readily yields the assertion (7.3) of Theorem 11. In order to see that

(7.10)
$$f(z) = z + \frac{z^{n+1}}{c_{n+1}}$$

gives sharp result, we observe that for $z = re^{\frac{i\pi}{n}}$ that $\frac{f(z)}{f_n(z)} = 1 + \frac{z^n}{c_{n+1}} \rightarrow 1 - \frac{1}{c_{n+1}}$ as $z \to 1^-$. Similarly, if we take

$$(7.11) \quad g_2(z) = (1 + c_{n+1}) \left\{ \frac{f_n(z)}{f(z)} - \frac{c_{n+1}}{1 + c_{n+1}} \right\} = 1 - \frac{(1 + c_{n+1}) \sum_{k=n+1}^{\infty} a_k z^{k-1}}{1 + \sum_{k=2}^{\infty} a_k z^{k-1}}$$

and making use of (7.6), we can deduce that

(7.12)
$$\left|\frac{g_2(z)-1}{g_2(z)+1}\right| \le \frac{(1+c_{n+1})\sum_{k=n+1}^{\infty}|a_k|}{2-2\sum_{k=2}^n|a_k|-(1-c_{n+1})\sum_{k=n+1}^\infty|a_k|}$$

which leads us immediately to the assertion (7.4) of Theorem 11.

The bound in (7.4) is sharp for each $n \in N$ with the extremal function f(z) given by (7.10). The proof of Theorem 11 is thus complete.

Theorem 12. If f(z) of the form (1.1) satisfies the condition (2.2). Then

(7.13)
$$\operatorname{Re}\left\{\frac{f'(z)}{f'_{n}(z)}\right\} \ge 1 - \frac{n+1}{c_{n+1}},$$

and

(7.14)
$$\operatorname{Re}\left\{\frac{f'_{n}(z)}{f'(z)}\right\} \ge \frac{c_{n+1}}{n+1+c_{n+1}}$$

where c_k defined by (7.2) and satisfies the condition

(7.15)
$$c_k \ge \begin{cases} k, & \text{if } k = 2, 3, \dots, n, \\ \frac{c_{n+1}}{n+1}k, & \text{if } k = n+1, n+2, \dots \end{cases}$$

The results are sharp with the function f(z) given by (7.10).

Proof. By setting

(7.16)
$$g(z) = \frac{c_{n+1}}{n+1} \left\{ \frac{f'(z)}{f'_n(z)} - \left(1 - \frac{n+1}{c_{n+1}}\right) \right\}$$
$$= \frac{1 + \frac{c_{n+1}}{n+1} \sum_{k=n+1}^{\infty} ka_k z^{k-1} + \sum_{k=2}^{n} ka_k z^{k-1}}{1 + \sum_{k=2}^{n} ka_k z^{k-1}}$$
$$= 1 + \frac{\frac{c_{n+1}}{n+1} \sum_{k=n+1}^{\infty} ka_k z^{k-1}}{1 + \sum_{k=2}^{n} ka_k z^{k-1}}.$$

Then

(7.17)
$$\left|\frac{g(z)-1}{g(z)+1}\right| \le \frac{\frac{c_{n+1}}{n+1}\sum_{k=n+1}^{\infty}k|a_k|}{2-2\sum_{k=2}^nk|a_k| - \frac{c_{n+1}}{n+1}\sum_{k=n+1}^{\infty}k|a_k|}.$$

Now

$$\left|\frac{g(z)-1}{g(z)+1}\right| \le 1,$$

if

(7.18)
$$\sum_{k=2}^{n} k |a_k| + \frac{c_{n+1}}{n+1} \sum_{k=n+1}^{\infty} k |a_k| \le 1,$$

since the left hand side of (7.18) is bounded above by $\sum_{k=2}^{\infty} c_k |a_k|$ if

(7.19)
$$\sum_{k=2}^{n} (c_k - k) |a_k| + \sum_{k=n+1}^{\infty} (c_k - \frac{c_{n+1}}{n+1}k) |a_k| \ge 0$$

and the proof of (7.13) is complete.

To prove the result (7.14), define the function g(z) by

$$g(z) = \left(\frac{n+1+c_{n+1}}{n+1}\right) \left\{ \frac{f'_n(z)}{f'(z)} - \frac{c_{n+1}}{n+1+c_{n+1}} \right\}$$
$$= 1 - \frac{\left(1 + \frac{c_{n+1}}{n+1}\right) \sum_{k=n+1}^{\infty} ka_k z^{k-1}}{1 + \sum_{k=2}^{\infty} ka_k z^{k-1}},$$

and making use of (7.19), we deduce that

$$\left|\frac{g(z)-1}{g(z)+1}\right| \le \frac{\left(1+\frac{c_{n+1}}{n+1}\right)\sum_{k=n+1}^{\infty} k |a_k|}{2-2\sum_{k=2}^{n} k |a_k| - \left(1+\frac{c_{n+1}}{n+1}\right)\sum_{k=n+1}^{\infty} k |a_k|} \le 1,$$

which leads us immediately to the assertion (7.14) of Theorem 12.

69

References

- O. P. Ahuja, G. Murugusundaramoorthy, and N. Magesh. Integral means for uniformly convex and starlike functions associated with generalized hypergeometric functions. *JIPAM. J. Inequal. Pure Appl. Math.*, 8(4):Article 118, 9, 2007.
- [2] M. K. Aouf and A. O. Mostafa. Some properties of a subclass of uniformly convex functions with negative coefficients. *Demonstratio Math.*, 41(2):353–370, 2008.
- [3] R. Bharati, R. Parvatham, and A. Swaminathan. On subclasses of uniformly convex functions and corresponding class of starlike functions. *Tamkang J. Math.*, 28(1):17–32, 1997.
- [4] A. W. Goodman. On uniformly convex functions. Ann. Polon. Math., 56(1):87–92, 1991.
- [5] A. W. Goodman. On uniformly starlike functions. J. Math. Anal. Appl., 155(2):364–370, 1991.
- [6] G. Murugusundaramoorthy and N. Magesh. A new subclass of uniformly convex functions and a corresponding subclass of starlike functions with fixed second coefficient. *JIPAM. J. Inequal. Pure Appl. Math.*, 5(4):Article 85, 10 pp. (electronic), 2004.
- [7] G. Murugusundaramoorthy and N. Magesh. Linear operators associated with a subclass of uniformly convex functions. *IJPAMS*, 3(1):113–125, 2006.
- [8] G. Murugusundaramoorthy, T. Rosy, and K. Muthunagai. Carlson-Shaffer operator and their applications to certain subclass of uniformly convex functions. *Gen. Math.*, 15(4):131–143, 2007.
- [9] F. Rønning. On starlike functions associated with parabolic regions. Ann. Univ. Mariae Curie-Skłodowska Sect. A, 45:117–122 (1992), 1991.
- [10] F. Rønning. Uniformly convex functions and a corresponding class of starlike functions. Proc. Amer. Math. Soc., 118(1):189–196, 1993.
- [11] T. Rosy and G. Murugusundaramoorthy. Fractional calculus and their applications to certain subclass of uniformly convex functions. Far East J. Math. Sci. (FJMS), 15(2):231–242, 2004.
- [12] S. Shams, S. R. Kulkarni, and J. M. Jahangiri. Classes of uniformly starlike and convex functions. Int. J. Math. Math. Sci., (53-56):2959–2961, 2004.
- [13] H. Silverman. Partial sums of starlike and convex functions. J. Math. Anal. Appl., 209(1):221–227, 1997.
- [14] E. M. Silvia. On partial sums of convex functions of order α . Houston J. Math., 11(3):397–404, 1985.
- [15] K. G. Subramanian, G. Murugusundaramoorthy, P. Balasubrahmanyam, and H. Silverman. Subclasses of uniformly convex and uniformly starlike functions. *Math. Japon.*, 42(3):517–522, 1995.

Received June 28, 2009.

Department of Mathematics, Faculty of Science, University of Mansoura, Mansoura 33516, Egypt *E-mail address*: mkaouf127@yahoo.com

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE AT DAMIETTA, UNIVERSITY OF MANSOURA, NEW DAMIETTA 34517, EGYPT *E-mail address*: r_elashwah@yahoo.com

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE AT DAMIETTA, UNIVERSITY OF MANSOURA, NEW DAMIETTA 34517, EGYPT *E-mail address*: shezaeldeeb@yahoo.com