CERTAIN SUBCLASSES OF UNIFORMLY STARLIKE AND CONVEX FUNCTIONS DEFINED BY CONVOLUTION

M. K. AOUF, R. M. EL-ASHWAH, AND S. M. EL-DEEB

Abstract

The aim of this paper is to obtain coefficient estimates, distortion theorems, convex linear combinations and radii of close-toconvexity, starlikeness and convexity for functions belonging to the subclass $T S_{\gamma}(f, g ; \alpha, \beta)$ of uniformly starlike and convex functions, we consider integral operators associated with functions in this class. Furthermore partial sums $f_{n}(z)$ of functions $f(z)$ in the class $T S_{\gamma}(f, g ; \alpha, \beta)$ are considered and sharp lower bounds for the ratios of real part of $f(z)$ to $f_{n}(z)$ and $f^{\prime}(z)$ to $f_{n}^{\prime}(z)$ are determined.

1. Introduction

Let S denote the class of functions of the form:

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

that are analytic and univalent in the open unit disk $U=\{z:|z|<1\}$. Let $f \in S$ be given by (1.1) and $g \in S$ be given by

$$
\begin{equation*}
g(z)=z+\sum_{k=2}^{\infty} b_{k} z^{k} \quad\left(b_{k} \geq 0\right) \tag{1.2}
\end{equation*}
$$

then the Hadamard product (or convolution) $f * g$ of f and g is defined (as usual) by

$$
\begin{equation*}
(f * g)(z)=z+\sum_{k=2}^{\infty} a_{k} b_{k} z^{k}=(g * f)(z) \tag{1.3}
\end{equation*}
$$

Following Goodman ([4] and [5]), Ronning ([9] and [10]) introduced and studied the following subclasses:

[^0](i) A function $f(z)$ of the form (1.1) is said to be in the class $S_{p}(\alpha, \beta)$ of uniformly β-starlike functions if it satisfies the condition:
\[

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}-\alpha\right\}>\beta\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \quad(z \in U) \tag{1.4}
\end{equation*}
$$

\]

where $-1 \leq \alpha<1$ and $\beta \geq 0$.
(ii) A function $f(z)$ of the form (1.1) is said to be in the class $U C V(\alpha, \beta)$ of uniformly β-convex functions if it satisfies the condition:

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\alpha\right\}>\beta\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \quad(z \in U) \tag{1.5}
\end{equation*}
$$

where $-1 \leq \alpha<1$ and $\beta \geq 0$.
It follows from (1.4) and (1.5) that

$$
\begin{equation*}
f(z) \in U C V(\alpha, \beta) \Longleftrightarrow z f^{\prime}(z) \in S_{p}(\alpha, \beta) \tag{1.6}
\end{equation*}
$$

For $-1 \leq \alpha<1,0 \leq \gamma \leq 1$ and $\beta \geq 0$, we let $S_{\gamma}(f, g ; \alpha, \beta)$ be the subclass of S consisting of functions $f(z)$ of the form (1.1) and the functions $g(z)$ of the form (1.2) and satisfying the analytic criterion:

$$
\begin{align*}
& \operatorname{Re}\left\{\frac{z(f * g)^{\prime}(z)+\gamma z^{2}(f * g)^{\prime \prime}(z)}{(1-\gamma)(f * g)(z)+\gamma z(f * g)^{\prime}(z)}-\alpha\right\} \tag{1.7}\\
& \qquad \beta\left|\frac{z(f * g)^{\prime}(z)+\gamma z^{2}(f * g)^{\prime \prime}(z)}{(1-\gamma)(f * g)(z)+\gamma z(f * g)^{\prime}(z)}-1\right|
\end{align*}
$$

Let T denote the subclass of S consisting of functions of the form:

$$
\begin{equation*}
f(z)=z-\sum_{k=2}^{\infty} a_{k} z^{k} \quad\left(a_{k} \geq 0\right) \tag{1.8}
\end{equation*}
$$

Further, we define the class $T S_{\gamma}(f, g ; \alpha, \beta)$ by

$$
\begin{equation*}
T S_{\gamma}(f, g ; \alpha, \beta)=S_{\gamma}(f, g ; \alpha, \beta) \cap T \tag{1.9}
\end{equation*}
$$

We note that:
(i) $T S_{0}\left(f, \frac{z}{(1-z)} ; \alpha, 1\right)=S_{p} T(\alpha)$ and
$T S_{0}\left(f, \frac{z}{(1-z)^{2}} ; \alpha, 1\right)=T S_{1}\left(f, \frac{z}{(1-z)} ; \alpha, 1\right)=U C T(\alpha),(-1 \leq \alpha<1)$ (see Bharati et al. [3]);
(ii) $T S_{1}\left(f, \frac{z}{(1-z)} ; 0, \beta\right)=U C T(\beta)(\beta \geq 0)$ (see Subramanian et al. [15]);
(iii) $T S_{0}\left(f, z+\sum_{k=2}^{\infty} \frac{(a)_{k-1}}{(c)_{k-1}} z^{k} ; \alpha, \beta\right)=T S(\alpha, \beta)(-1 \leq \alpha<1, \beta \geq 0, c \neq$ $0,-1,-2, \ldots$) (see Murugusundaramoorthy and Magesh $[6,7]$);
(iv) $T S_{0}\left(f, z+\sum_{k=2}^{\infty} k^{n} z^{k} ; \alpha, \beta\right)=T S(n, \alpha, \beta)\left(-1 \leq \alpha<1, \beta \geq 0, n \in N_{0}=\right.$ $N \cup\{0\}, N=\{1,2, \ldots\}$)(see Rosy and Murugusundaramoorthy [11]);
(v) $T S_{0}\left(f, z+\sum_{k=2}^{\infty}\binom{k+\lambda-1}{\lambda} z^{k} ; \alpha, \beta\right)=D(\beta, \alpha, \lambda)(-1 \leq \alpha<1, \beta \geq 0$, $\lambda>-1$) (see Shams et al. [14]);
(vi) $T S_{0}\left(f, z+\sum_{k=2}^{\infty}[1+\lambda(k-1)]^{n} z^{k} ; \alpha, \beta\right)=T S_{\lambda}(n, \alpha, \beta)(-1 \leq \alpha<1$, $\beta \geq 0, \lambda \geq 0, n \in N_{0}$) (see Aouf and Mostafa [2]);
(vii) $T S_{\gamma}\left(f, z+\sum_{k=2}^{\infty} \frac{(a)_{k-1}}{(c)_{k-1}} z^{k} ; \alpha, \beta\right)=T S(\gamma, \alpha, \beta)(-1 \leq \alpha<1, \beta \geq 0$, $0 \leq \gamma \leq 1, c \neq 0,-1,-2, \ldots$) (see Murugusundaramoorthy et al. [8]);
(viii) $T S_{\gamma}\left(f, z+\sum_{k=2}^{\infty} \Gamma_{k} z^{k} ; \alpha, \beta\right)=T S_{q}^{s}(\gamma, \alpha, \beta)$ (see Ahuja et al. [1]), where

$$
\begin{gather*}
\Gamma_{k}=\frac{\left(\alpha_{1}\right)_{k-1} \ldots\left(\alpha_{q}\right)_{k-1}}{\left(\beta_{1}\right)_{k-1 \ldots}\left(\beta_{s}\right)_{k-1}} \frac{1}{(k-1)!} \tag{1.10}\\
\left(\alpha_{i}>0, i=1, \ldots, q ; \beta_{j}>0, j=1, \ldots, s ; q \leq s+1 ; q, s \in N_{0}\right) .
\end{gather*}
$$

Also we note that

$$
\begin{align*}
& T S_{\gamma}\left(f, z+\sum_{k=2}^{\infty} k^{n} z^{k} ; \alpha, \beta\right)=T S_{\gamma}(n, \alpha, \beta) \tag{1.11}\\
& \quad=\left\{f \in T: \operatorname{Re}\left\{\frac{(1-\gamma) z\left(D^{n} f(z)\right)^{\prime}+\gamma z\left(D^{n+1} f(z)\right)^{\prime}}{(1-\gamma) D^{n} f(z)+\gamma D^{n+1} f(z)}-\alpha\right\}\right. \\
& \quad>\beta\left|\frac{(1-\gamma) z\left(D^{n} f(z)\right)^{\prime}+\gamma z\left(D^{n+1} f(z)\right)^{\prime}}{(1-\gamma) D^{n} f(z)+\gamma D^{n+1} f(z)}-1\right|, \\
& \left.\quad-1 \leq \alpha<1, \beta \geq 0, n \in N_{0}, z \in U\right\} .
\end{align*}
$$

2. Coefficient estimates

Theorem 1. A function $f(z)$ of the form (1.8) is in $T S_{\gamma}(f, g ; \alpha, \beta)$ if

$$
\begin{equation*}
\sum_{k=2}^{\infty}[k(1+\beta)-(\alpha+\beta)][1+\gamma(k-1)]\left|a_{k}\right| b_{k} \leq 1-\alpha \tag{2.1}
\end{equation*}
$$

where $-1 \leq \alpha<1, \beta \geq 0$ and $0 \leq \gamma \leq 1$.
Proof. It suffices to show that

$$
\begin{aligned}
& \beta\left|\frac{z(f * g)^{\prime}(z)+\gamma z^{2}(f * g)^{\prime \prime}(z)}{(1-\gamma)(f * g)(z)+\gamma z(f * g)^{\prime}(z)}-1\right| \\
& \quad-\operatorname{Re}\left\{\frac{z(f * g)^{\prime}(z)+\gamma z^{2}(f * g)^{\prime \prime}(z)}{(1-\gamma)(f * g)(z)+\gamma z(f * g)^{\prime}(z)}-1\right\} \leq 1-\alpha .
\end{aligned}
$$

We have

$$
\begin{aligned}
& \beta\left|\frac{z(f * g)^{\prime}(z)+\gamma z^{2}(f * g)^{\prime \prime}(z)}{(1-\gamma)(f * g)(z)+\gamma z(f * g)^{\prime}(z)}-1\right| \\
& \quad-\operatorname{Re}\left\{\frac{z(f * g)^{\prime}(z)+\gamma z^{2}(f * g)^{\prime \prime}(z)}{(1-\gamma)(f * g)(z)+\gamma z(f * g)^{\prime}(z)}-1\right\} \\
& \leq(1+\beta)\left|\frac{z(f * g)^{\prime}(z)+\gamma z^{2}(f * g)^{\prime \prime}(z)}{(1-\gamma)(f * g)(z)+\gamma z(f * g)^{\prime}(z)}-1\right| \\
& \leq \frac{(1+\beta) \sum_{k=2}^{\infty}(k-1)[1+\gamma(k-1)]\left|a_{k}\right| b_{k}}{1-\sum_{k=2}^{\infty}[1+\gamma(k-1)]\left|a_{k}\right| b_{k}} .
\end{aligned}
$$

This last expression is bounded above by $(1-\alpha)$ if

$$
\sum_{k=2}^{\infty}[k(1+\beta)-(\alpha+\beta)][1+\gamma(k-1)]\left|a_{k}\right| b_{k} \leq 1-\alpha
$$

and hence the proof is completed.
Theorem 2. A necessary and sufficient condition for $f(z)$ of the form (1.8) to be in the class $T S_{\gamma}(f, g ; \alpha, \beta)$ is that

$$
\begin{equation*}
\sum_{k=2}^{\infty}[k(1+\beta)-(\alpha+\beta)][1+\gamma(k-1)] a_{k} b_{k} \leq 1-\alpha \tag{2.2}
\end{equation*}
$$

Proof. In view of Theorem 1, we need only to prove the necessity. If $f(z) \in$ $T S_{\gamma}(f, g ; \alpha, \beta)$ and z is real, then

$$
\frac{1-\sum_{k=2}^{\infty} k[1+\gamma(k-1)] a_{k} b_{k} z^{k-1}}{1-\sum_{k=2}^{\infty}[1+\gamma(k-1)] a_{k} b_{k} z^{k-1}}-\alpha \geq \beta\left|\frac{\sum_{k=2}^{\infty}(k-1)[1+\gamma(k-1)] a_{k} b_{k} z^{k-1}}{1-\sum_{k=2}^{\infty}[1+\gamma(k-1)] a_{k} b_{k} z^{k-1}}\right| .
$$

Letting $z \rightarrow 1^{-}$along the real axis, we obtain the desired inequality

$$
\sum_{k=2}^{\infty}[k(1+\beta)-(\alpha+\beta)][1+\gamma(k-1)] a_{k} b_{k} \leq 1-\alpha .
$$

Corollary 1. Let the function $f(z)$ be defined by (1.8) be in the class $T S_{\gamma}(f, g ; \alpha, \beta)$. Then

$$
\begin{equation*}
a_{k} \leq \frac{1-\alpha}{[k(1+\beta)-(\alpha+\beta)][1+\gamma(k-1)] b_{k}} \quad(k \geq 2) \tag{2.3}
\end{equation*}
$$

The result is sharp for the function

$$
\begin{equation*}
f(z)=z-\frac{1-\alpha}{[k(1+\beta)-(\alpha+\beta)][1+\gamma(k-1)] b_{k}} z^{k} \quad(k \geq 2) \tag{2.4}
\end{equation*}
$$

3. Distortion theorems

Theorem 3. Let the function $f(z)$ be defined by (1.8) be in the class $T S_{\gamma}(f, g ; \alpha, \beta)$. Then for $|z|=r<1$, we have

$$
\begin{equation*}
|f(z)| \geq r-\frac{1-\alpha}{(2-\alpha+\beta)(1+\gamma) b_{2}} r^{2} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
|f(z)| \leq r+\frac{1-\alpha}{(2-\alpha+\beta)(1+\gamma) b_{2}} r^{2} \tag{3.2}
\end{equation*}
$$

provided that $b_{k} \geq b_{2}(k \geq 2)$. The equalities in (3.1) and (3.2) are attained for the function $f(z)$ given by

$$
\begin{equation*}
f(z)=z-\frac{1-\alpha}{(2-\alpha+\beta)(1+\gamma) b_{2}} z^{2} \tag{3.3}
\end{equation*}
$$

at $z=r$ and $z=r e^{i(2 k+1) \pi}(k \in Z)$.
Proof. Since for $k \geq 2$,

$$
(2-\alpha+\beta)(1+\gamma) b_{2} \leq[k(1+\beta)-(\alpha+\beta)][1+\gamma(k-1)] b_{k},
$$

using Theorem 2, we have

$$
\begin{align*}
(2-\alpha+\beta)(1+ & \gamma) b_{2} \sum_{k=2}^{\infty} a_{k} \tag{3.4}\\
& \leq \sum_{k=2}^{\infty}[k(1+\beta)-(\alpha+\beta)][1+\gamma(k-1)] a_{k} b_{k} \leq 1-\alpha
\end{align*}
$$

that is, that

$$
\begin{equation*}
\sum_{k=2}^{\infty} a_{k} \leq \frac{1-\alpha}{(2-\alpha+\beta)(1+\gamma) b_{2}} \tag{3.5}
\end{equation*}
$$

From (1.8) and (3.5), we have

$$
\begin{equation*}
|f(z)| \geq r-r^{2} \sum_{k=2}^{\infty} a_{k} \geq r-\frac{1-\alpha}{(2-\alpha+\beta)(1+\gamma) b_{2}} r^{2} \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
|f(z)| \leq r+r^{2} \sum_{k=2}^{\infty} a_{k} \leq r+\frac{1-\alpha}{(2-\alpha+\beta)(1+\gamma) b_{2}} r^{2} . \tag{3.7}
\end{equation*}
$$

This completes the proof of Theorem 3.

Theorem 4. Let the function $f(z)$ be defined by (1.8) be in the class $T S_{\gamma}(f, g ; \alpha, \beta)$. Then for $|z|=r<1$, we have

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \geq 1-{\frac{2(1-\alpha)}{(2-\alpha+\beta)(1+\gamma) b_{2}}}^{r} \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \leq 1+\frac{2(1-\alpha)}{(2-\alpha+\beta)(1+\gamma) b_{2}} r \tag{3.9}
\end{equation*}
$$

provided that $b_{k} \geq b_{2}(k \geq 2)$. The result is sharp for the function $f(z)$ given by (3.3).

Proof. From Theorem 2 and (3.5), we have

$$
\begin{equation*}
\sum_{k=2}^{\infty} k a_{k} \leq \frac{2(1-\alpha)}{(2-\alpha+\beta)(1+\gamma) b_{2}} \tag{3.10}
\end{equation*}
$$

Since the remaining part of the proof is similar to the proof of Theorem 3, we omit the details.

4. Convex linear combinations

Theorem 5. Let $\mu_{v} \geq 0$ for $v=1,2, \ldots, l$ and $\sum_{v=1}^{l} \mu_{v} \leq 1$. If the functions $F_{v}(z)$ defined by

$$
\begin{equation*}
F_{v}(z)=z-\sum_{k=2}^{\infty} a_{k, v} z^{k} \quad\left(a_{k, v} \geq 0 ; v=1,2, \ldots, l\right) \tag{4.1}
\end{equation*}
$$

are in the class $T S_{\gamma}(f, g ; \alpha, \beta)$ for every $v=1,2, \ldots, l$, then the function $f(z)$ defined by

$$
f(z)=z-\sum_{k=2}^{\infty}\left(\sum_{v=1}^{l} \mu_{v} a_{k, v}\right) z^{k}
$$

is in the class $T S_{\gamma}(f, g ; \alpha, \beta)$
Proof. Since $F_{v}(z) \in T S_{\gamma}(f, g ; \alpha, \beta)$, it follows from Theorem 2 that

$$
\begin{equation*}
\sum_{k=2}^{\infty}[k(1+\beta)-(\alpha+\beta)][1+\gamma(k-1)] a_{k, v} b_{k} \leq 1-\alpha \tag{4.2}
\end{equation*}
$$

for every $v=1,2, \ldots, l$. Hence

$$
\begin{aligned}
& \sum_{k=2}^{\infty}[k(1+\beta)-(\alpha+\beta)][1+\gamma(k-1)]\left(\sum_{v=1}^{l} \mu_{v} a_{k, v}\right) b_{k} \\
& =\sum_{v=1}^{l} \mu_{v}\left(\sum_{k=2}^{\infty}[k(1+\beta)-(\alpha+\beta)][1+\gamma(k-1)] a_{k, v} b_{k}\right) \\
& \leq(1-\alpha) \sum_{v=1}^{l} \mu_{v} \leq 1-\alpha .
\end{aligned}
$$

By Theorem 2, it follows that $f(z) \in T S_{\gamma}(f, g ; \alpha, \beta)$.
Corollary 2. The class $T S_{\gamma}(f, g ; \alpha, \beta)$ is closed under convex linear combinations.

Theorem 6. Let $f_{1}(z)=z$ and

$$
\begin{equation*}
f_{k}(z)=z-\frac{1-\alpha}{[k(1+\beta)-(\alpha+\beta)][1+\gamma(k-1)] b_{k}} z^{k} \quad(k \geq 2) \tag{4.3}
\end{equation*}
$$

for $-1 \leq \alpha<1,0 \leq \gamma \leq 1$ and $\beta \geq 0$. Then $f(z)$ is in the class $T S_{\gamma}(f, g ; \alpha, \beta)$ if and only if it can be expressed in the form:

$$
\begin{equation*}
f(z)=\sum_{k=1}^{\infty} \mu_{k} f_{k}(z) \tag{4.4}
\end{equation*}
$$

where $\mu_{k} \geq 0$ and $\sum_{k=1}^{\infty} \mu_{k}=1$.
Proof. Assume that

$$
\begin{align*}
f(z)=\sum_{k=1}^{\infty} \mu_{k} f_{k} & (z) \tag{4.5}\\
& =z-\sum_{k=2}^{\infty} \frac{1-\alpha}{[k(1+\beta)-(\alpha+\beta)][1+\gamma(k-1)] b_{k}} \mu_{k} z^{k} .
\end{align*}
$$

Then it follows that

$$
\begin{align*}
& \sum_{k=2}^{\infty} \frac{[k(1+\beta)-(\alpha+\beta)][1+\gamma(k-1)] b_{k}}{1-\alpha} \tag{4.6}\\
& \quad \times \frac{1-\alpha}{[k(1+\beta)-(\alpha+\beta)][1+\gamma(k-1)] b_{k}} \mu_{k}=\sum_{k=2}^{\infty} \mu_{k}=1-\mu_{1} \leq 1
\end{align*}
$$

So, by Theorem 2, $f(z) \in T S_{\gamma}(f, g ; \alpha, \beta)$.

Conversely, assume that the function $f(z)$ defined by (1.8) belongs to the class $T S_{\gamma}(f, g ; \alpha, \beta)$. Then

$$
\begin{equation*}
a_{k} \leq \frac{1-\alpha}{[k(1+\beta)-(\alpha+\beta)][1+\gamma(k-1)] b_{k}} \quad(k \geq 2) . \tag{4.7}
\end{equation*}
$$

Setting

$$
\begin{equation*}
\mu_{k}=\frac{[k(1+\beta)-(\alpha+\beta)][1+\gamma(k-1)] a_{k} b_{k}}{1-\alpha} \quad(k \geq 2) \tag{4.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu_{1}=1-\sum_{k=2}^{\infty} \mu_{k} \tag{4.9}
\end{equation*}
$$

we can see that $f(z)$ can be expressed in the form (4.4). This completes the proof of Theorem 6 .

Corollary 3. The extreme points of the class $T S_{\gamma}(f, g ; \alpha, \beta)$ are the functions $f_{1}(z)=z$ and

$$
f_{k}(z)=z-\frac{1-\alpha}{[k(1+\beta)-(\alpha+\beta)][1+\gamma(k-1)] b_{k}} z^{k} \quad(k \geq 2) .
$$

5. Radii of close-to-convexity, starlikeness and convexity

Theorem 7. Let the function $f(z)$ defined by (1.8) be in the class $T S_{\gamma}(f, g ; \alpha, \beta)$. Then $f(z)$ is close-to-convex of order $\rho(0 \leq \rho<1)$ in $|z|<r_{1}$, where

$$
\begin{equation*}
r_{1}=\inf _{k \geq 2}\left\{\frac{(1-\rho)[k(1+\beta)-(\alpha+\beta)][1+\gamma(k-1)] b_{k}}{k(1-\alpha)}\right\}^{\frac{1}{k-1}} . \tag{5.1}
\end{equation*}
$$

The result is sharp, the extremal function being given by (2.4).
Proof. We must show that

$$
\left|f^{\prime}(z)-1\right| \leq 1-\rho \text { for }|z|<r_{1}
$$

where r_{1} is given by (5.1). Indeed we find from the definition (1.8) that

$$
\left|f^{\prime}(z)-1\right| \leq \sum_{k=2}^{\infty} k a_{k}|z|^{k-1} .
$$

Thus

$$
\left|f^{\prime}(z)-1\right| \leq 1-\rho,
$$

if

$$
\begin{equation*}
\sum_{k=2}^{\infty}\left(\frac{k}{1-\rho}\right) a_{k}|z|^{k-1} \leq 1 \tag{5.2}
\end{equation*}
$$

But, by Theorem 2, (5.2) will be true if

$$
\left(\frac{k}{1-\rho}\right)|z|^{k-1} \leq \frac{[k(1+\beta)-(\alpha+\beta)][1+\gamma(k-1)] b_{k}}{1-\alpha},
$$

that is, if

$$
\begin{equation*}
|z| \leq\left\{\frac{(1-\rho)[k(1+\beta)-(\alpha+\beta)][1+\gamma(k-1)] b_{k}}{k(1-\alpha)}\right\}^{\frac{1}{k-1}}(k \geq 2) \tag{5.3}
\end{equation*}
$$

Theorem 7 follows easily from (5.3).
Theorem 8. Let the function $f(z)$ defined by (1.8) be in the class $T S_{\gamma}(f, g ; \alpha, \beta)$. Then $f(z)$ is starlike of order $\rho(0 \leq \rho<1)$ in $|z|<r_{2}$, where

$$
\begin{equation*}
r_{2}=\inf _{k \geq 2}\left\{\frac{(1-\rho)[k(1+\beta)-(\alpha+\beta)][1+\gamma(k-1)] b_{k}}{(k-\rho)(1-\alpha)}\right\}^{\frac{1}{k-1} .} \tag{5.4}
\end{equation*}
$$

The result is sharp, with the extremal function $f(z)$ given by (2.4).
Proof. It is sufficient to show that

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leq 1-\rho \text { for }|z|<r_{2}
$$

where r_{2} is given by (5.4). Indeed we find, again from the definition (1.8) that

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leq \frac{\sum_{k=2}^{\infty}(k-1) a_{k}|z|^{k-1}}{1-\sum_{k=2}^{\infty} a_{k}|z|^{k-1}}
$$

Thus

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leq 1-\rho
$$

if

$$
\begin{equation*}
\sum_{k=2}^{\infty} \frac{(k-\rho) a_{k}|z|^{k-1}}{(1-\rho)} \leq 1 . \tag{5.5}
\end{equation*}
$$

But, by Theorem 2, (5.5) will be true if

$$
\frac{(k-\rho)|z|^{k-1}}{(1-\rho)} \leq \frac{[k(1+\beta)-(\alpha+\beta)][1+\gamma(k-1)] b_{k}}{(1-\alpha)}
$$

that is, if

$$
\begin{equation*}
|z| \leq\left\{\frac{(1-\rho)[k(1+\beta)-(\alpha+\beta)][1+\gamma(k-1)] b_{k}}{(k-\rho)(1-\alpha)}\right\}^{\frac{1}{k-1}}(k \geq 2) \tag{5.6}
\end{equation*}
$$

Theorem 8 follows easily from (5.6).

Corollary 4. Let the function $f(z)$ defined by (1.8) be in the class $T S_{\gamma}(f, g ; \alpha, \beta)$. Then $f(z)$ is convex of order $\rho(0 \leq \rho<1)$ in $|z|<r_{3}$, where

$$
\begin{equation*}
r_{3}=\inf _{k \geq 2}\left\{\frac{(1-\rho)[k(1+\beta)-(\alpha+\beta)][1+\gamma(k-1)] b_{k}}{k(k-\rho)(1-\alpha)}\right\}^{\frac{1}{k-1}} \tag{5.7}
\end{equation*}
$$

The result is sharp, with the extremal function $f(z)$ given by (2.4).

6. A family of integral operators

In view of Theorem 2, we see that $z-\sum_{k=2}^{\infty} d_{k} z^{k}$ is in $T S_{\gamma}(f, g ; \alpha, \beta)$ as long as $0 \leq d_{k} \leq a_{k}$ for all k. In particular, we have

Theorem 9. Let the function $f(z)$ defined by (1.8) be in the class $T S_{\gamma}(f, g ; \alpha, \beta)$ and c be a real number such that $c>-1$. Then the function $F(z)$ defined by

$$
\begin{equation*}
F(z)=\frac{c+1}{z^{c}} \int_{0}^{z} t^{c-1} f(t) d t \quad(c>-1) \tag{6.1}
\end{equation*}
$$

also belongs to the class $T S_{\gamma}(f, g ; \alpha, \beta)$.
Proof. From the represtation (6.1) of $F(z)$, it follows that

$$
F(z)=z-\sum_{k=2}^{\infty} d_{k} z^{k}
$$

where

$$
d_{k}=\left(\frac{c+1}{c+k}\right) a_{k} \leq a_{k}(k \geq 2)
$$

On the other hand, the converse is not true. This leads to a radius of univalence result.
Theorem 10. Let the function $F(z)=z-\sum_{k=2}^{\infty} a_{k} z^{k}\left(a_{k} \geq 0\right)$ be in the class $T S_{\gamma}(f, g ; \alpha, \beta)$, and let c be a real number such that $c>-1$. Then the function $f(z)$ given by (6.1) is univalent in $|z|<R^{\star}$, where

$$
\begin{equation*}
R^{\star}=\inf _{k \geq 2}\left\{\frac{(c+1)[k(1+\beta)-(\alpha+\beta)][1+\gamma(k-1)] b_{k}}{k(c+k)(1-\alpha)}\right\}^{\frac{1}{k-1}} . \tag{6.2}
\end{equation*}
$$

The result is sharp.
Proof. From (6.1), we have

$$
f(z)=\frac{z^{1-c}\left[z^{c} F(z)\right]^{\prime}}{(c+1)}=z-\sum_{k=2}^{\infty}\left(\frac{c+k}{c+1}\right) a_{k} z^{k}(c>-1) .
$$

In order to obtain the required result, it suffices to show that

$$
\left|f^{\prime}(z)-1\right|<1 \text { wherever }|z|<R^{\star}
$$

where R^{\star} is given by (6.2). Now

$$
\left|f^{\prime}(z)-1\right| \leq \sum_{k=2}^{\infty} \frac{k(c+k)}{(c+1)} a_{k}|z|^{k-1}
$$

Thus $\left|f^{\prime}(z)-1\right|<1$ if

$$
\begin{equation*}
\sum_{k=2}^{\infty} \frac{k(c+k)}{(c+1)} a_{k}|z|^{k-1}<1 . \tag{6.3}
\end{equation*}
$$

But Theorem 2 confirms that

$$
\begin{equation*}
\sum_{k=2}^{\infty} \frac{[k(1+\beta)-(\alpha+\beta)][1+\gamma(k-1)] a_{k} b_{k}}{1-\alpha} \leq 1 \tag{6.4}
\end{equation*}
$$

Hence (6.3) will be satisfied if

$$
\frac{k(c+k)}{(c+1)}|z|^{k-1}<\frac{[k(1+\beta)-(\alpha+\beta)][1+\gamma(k-1)] b_{k}}{(1-\alpha)},
$$

that is, if

$$
\begin{equation*}
|z|<\left[\frac{(c+1)[k(1+\beta)-(\alpha+\beta)][1+\gamma(k-1)] b_{k}}{k(c+k)(1-\alpha)}\right]^{\frac{1}{k-1}}(k \geq 2) \tag{6.5}
\end{equation*}
$$

Therefore, the function $f(z)$ given by (6.1) is univalent in $|z|<R^{\star}$. Sharpness of the result follows if we take

$$
\begin{equation*}
f(z)=z-\frac{(c+k)(1-\alpha)}{[k(1+\beta)-(\alpha+\beta)][1+\gamma(k-1)] b_{k}(c+1)} z^{k}(k \geq 2) \tag{6.6}
\end{equation*}
$$

7. Partial sums

Following the earlier works by Silverman [12] and Siliva [13] on partial sums of analytic functions, we consider in this section partial sums of functions in the class $T S_{\gamma}(f, g ; \alpha, \beta)$ and obtain sharp lower bounds for the ratios of real part of $f(z)$ to $f_{n}(z)$ and $f^{\prime}(z)$ to $f_{n}^{\prime}(z)$.

Theorem 11. Define the partial sums $f_{1}(z)$ and $f_{n}(z)$ by

$$
f_{1}(z)=z \text { and } f_{n}(z)=z+\sum_{k=2}^{n} a_{k} z^{k}, \quad(n \in N \backslash\{1\}) .
$$

Let $f(z) \in T S_{\gamma}(f, g ; \alpha, \beta)$ be given by (1.1) and satisfies the condition (2.2) and

$$
c_{k} \geq \begin{cases}1, & k=2,3, \ldots, n \tag{7.1}\\ c_{n+1}, & k=n+1, n+2, \ldots\end{cases}
$$

where, for convenience,

$$
\begin{equation*}
c_{k}=\frac{[k(1+\beta)-(\alpha+\beta)][1+\gamma(k-1)] b_{k}}{1-\alpha} . \tag{7.2}
\end{equation*}
$$

Then

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f(z)}{f_{n}(z)}\right\}>1-\frac{1}{c_{n+1}}(z \in U ; n \in N) \tag{7.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f_{n}(z)}{f(z)}\right\}>\frac{c_{n+1}}{1+c_{n+1}} \tag{7.4}
\end{equation*}
$$

Proof. For the coefficients c_{k} given by (7.2) it is not difficult to verify that

$$
\begin{equation*}
c_{k+1}>c_{k}>1 \tag{7.5}
\end{equation*}
$$

Therefore we have

$$
\begin{equation*}
\sum_{k=2}^{n}\left|a_{k}\right|+c_{n+1} \sum_{k=n+1}^{\infty}\left|a_{k}\right| \leq \sum_{k=2}^{\infty} c_{k}\left|a_{k}\right| \leq 1 \tag{7.6}
\end{equation*}
$$

By setting
(7.7) $g_{1}(z)=c_{n+1}\left\{\frac{f(z)}{f_{n}(z)}-\left(1-\frac{1}{c_{n+1}}\right)\right\}=1+\frac{c_{n+1} \sum_{k=n+1}^{\infty} a_{k} z^{k-1}}{1+\sum_{k=2}^{n} a_{k} z^{k-1}}$
and applying (7.6), we find that

$$
\begin{equation*}
\left|\frac{g_{1}(z)-1}{g_{1}(z)+1}\right| \leq \frac{c_{n+1} \sum_{k=n+1}^{\infty}\left|a_{k}\right|}{2-2 \sum_{k=2}^{n}\left|a_{k}\right|-c_{n+1} \sum_{k=n+1}^{\infty}\left|a_{k}\right|} \tag{7.8}
\end{equation*}
$$

Now

$$
\left|\frac{g_{1}(z)-1}{g_{1}(z)+1}\right| \leq 1
$$

if

$$
\sum_{k=2}^{n}\left|a_{k}\right|+c_{n+1} \sum_{k=n+1}^{\infty}\left|a_{k}\right| \leq 1
$$

From the condition (2.2), it is sufficient to show that

$$
\sum_{k=2}^{n}\left|a_{k}\right|+c_{n+1} \sum_{k=n+1}^{\infty}\left|a_{k}\right| \leq \sum_{k=2}^{\infty} c_{k}\left|a_{k}\right|
$$

which is equivalent to

$$
\begin{equation*}
\sum_{k=2}^{n}\left(c_{k}-1\right)\left|a_{k}\right|+\sum_{k=n+1}^{\infty}\left(c_{k}-c_{n+1}\right)\left|a_{k}\right| \geq 0 \tag{7.9}
\end{equation*}
$$

which readily yields the assertion (7.3) of Theorem 11. In order to see that

$$
\begin{equation*}
f(z)=z+\frac{z^{n+1}}{c_{n+1}} \tag{7.10}
\end{equation*}
$$

gives sharp result, we observe that for $z=r e^{\frac{i \pi}{n}}$ that $\frac{f(z)}{f_{n}(z)}=1+\frac{z^{n}}{c_{n+1}} \rightarrow$ $1-\frac{1}{c_{n+1}}$ as $z \rightarrow 1^{-}$. Similarly, if we take

$$
\begin{equation*}
g_{2}(z)=\left(1+c_{n+1}\right)\left\{\frac{f_{n}(z)}{f(z)}-\frac{c_{n+1}}{1+c_{n+1}}\right\}=1-\frac{\left(1+c_{n+1}\right) \sum_{k=n+1}^{\infty} a_{k} z^{k-1}}{1+\sum_{k=2}^{\infty} a_{k} z^{k-1}} \tag{7.11}
\end{equation*}
$$

and making use of (7.6), we can deduce that

$$
\begin{equation*}
\left|\frac{g_{2}(z)-1}{g_{2}(z)+1}\right| \leq \frac{\left(1+c_{n+1}\right) \sum_{k=n+1}^{\infty}\left|a_{k}\right|}{2-2 \sum_{k=2}^{n}\left|a_{k}\right|-\left(1-c_{n+1}\right) \sum_{k=n+1}^{\infty}\left|a_{k}\right|} \tag{7.12}
\end{equation*}
$$

which leads us immediately to the assertion (7.4) of Theorem 11.
The bound in (7.4) is sharp for each $n \in N$ with the extremal function $f(z)$ given by (7.10). The proof of Theorem 11 is thus complete.
Theorem 12. If $f(z)$ of the form (1.1) satisfies the condition (2.2). Then

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f^{\prime}(z)}{f_{n}^{\prime}(z)}\right\} \geq 1-\frac{n+1}{c_{n+1}} \tag{7.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f_{n}^{\prime}(z)}{f^{\prime}(z)}\right\} \geq \frac{c_{n+1}}{n+1+c_{n+1}} \tag{7.14}
\end{equation*}
$$

where c_{k} defined by (7.2) and satisfies the condition

$$
c_{k} \geq \begin{cases}k, & \text { if } k=2,3, \ldots, n, \tag{7.15}\\ \frac{c_{n+1}}{n+1} k, & \text { if } k=n+1, n+2, \ldots\end{cases}
$$

The results are sharp with the function $f(z)$ given by (7.10).

Proof. By setting

$$
\begin{align*}
g(z) & =\frac{c_{n+1}}{n+1}\left\{\frac{f^{\prime}(z)}{f_{n}^{\prime}(z)}-\left(1-\frac{n+1}{c_{n+1}}\right)\right\} \\
& =\frac{1+\frac{c_{n+1}}{n+1} \sum_{k=n+1}^{\infty} k a_{k} z^{k-1}+\sum_{k=2}^{n} k a_{k} z^{k-1}}{1+\sum_{k=2}^{n} k a_{k} z^{k-1}} \tag{7.16}\\
& =1+\frac{\frac{c_{n+1}}{n+1} \sum_{k=n+1}^{\infty} k a_{k} z^{k-1}}{1+\sum_{k=2}^{n} k a_{k} z^{k-1}}
\end{align*}
$$

Then

$$
\begin{equation*}
\left|\frac{g(z)-1}{g(z)+1}\right| \leq \frac{\frac{c_{n+1}}{n+1} \sum_{k=n+1}^{\infty} k\left|a_{k}\right|}{2-2 \sum_{k=2}^{n} k\left|a_{k}\right|-\frac{c_{n+1}}{n+1} \sum_{k=n+1}^{\infty} k\left|a_{k}\right|} \tag{7.17}
\end{equation*}
$$

Now

$$
\left|\frac{g(z)-1}{g(z)+1}\right| \leq 1
$$

if

$$
\begin{equation*}
\sum_{k=2}^{n} k\left|a_{k}\right|+\frac{c_{n+1}}{n+1} \sum_{k=n+1}^{\infty} k\left|a_{k}\right| \leq 1 \tag{7.18}
\end{equation*}
$$

since the left hand side of (7.18) is bounded above by $\sum_{k=2}^{\infty} c_{k}\left|a_{k}\right|$ if

$$
\begin{equation*}
\sum_{k=2}^{n}\left(c_{k}-k\right)\left|a_{k}\right|+\sum_{k=n+1}^{\infty}\left(c_{k}-\frac{c_{n+1}}{n+1} k\right)\left|a_{k}\right| \geq 0 \tag{7.19}
\end{equation*}
$$

and the proof of (7.13) is complete.
To prove the result (7.14), define the function $g(z)$ by

$$
\begin{aligned}
g(z) & =\left(\frac{n+1+c_{n+1}}{n+1}\right)\left\{\frac{f_{n}^{\prime}(z)}{f^{\prime}(z)}-\frac{c_{n+1}}{n+1+c_{n+1}}\right\} \\
& =1-\frac{\left(1+\frac{c_{n+1}}{n+1}\right) \sum_{k=n+1}^{\infty} k a_{k} z^{k-1}}{1+\sum_{k=2}^{\infty} k a_{k} z^{k-1}}
\end{aligned}
$$

and making use of (7.19), we deduce that

$$
\left|\frac{g(z)-1}{g(z)+1}\right| \leq \frac{\left(1+\frac{c_{n+1}}{n+1}\right) \sum_{k=n+1}^{\infty} k\left|a_{k}\right|}{2-2 \sum_{k=2}^{n} k\left|a_{k}\right|-\left(1+\frac{c_{n+1}}{n+1}\right) \sum_{k=n+1}^{\infty} k\left|a_{k}\right|} \leq 1
$$

which leads us immediately to the assertion (7.14) of Theorem 12.

References

[1] O. P. Ahuja, G. Murugusundaramoorthy, and N. Magesh. Integral means for uniformly convex and starlike functions associated with generalized hypergeometric functions. JIPAM. J. Inequal. Pure Appl. Math., 8(4):Article 118, 9, 2007.
[2] M. K. Aouf and A. O. Mostafa. Some properties of a subclass of uniformly convex functions with negative coefficients. Demonstratio Math., 41(2):353-370, 2008.
[3] R. Bharati, R. Parvatham, and A. Swaminathan. On subclasses of uniformly convex functions and corresponding class of starlike functions. Tamkang J. Math., 28(1):17-32, 1997.
[4] A. W. Goodman. On uniformly convex functions. Ann. Polon. Math., 56(1):87-92, 1991.
[5] A. W. Goodman. On uniformly starlike functions. J. Math. Anal. Appl., 155(2):364-370, 1991.
[6] G. Murugusundaramoorthy and N. Magesh. A new subclass of uniformly convex functions and a corresponding subclass of starlike functions with fixed second coefficient. JIPAM. J. Inequal. Pure Appl. Math., 5(4):Article 85, 10 pp. (electronic), 2004.
[7] G. Murugusundaramoorthy and N. Magesh. Linear operators associated with a subclass of uniformly convex functions. IJPAMS, 3(1):113-125, 2006.
[8] G. Murugusundaramoorthy, T. Rosy, and K. Muthunagai. Carlson-Shaffer operator and their applications to certain subclass of uniformly convex functions. Gen. Math., 15(4):131-143, 2007.
[9] F. Rønning. On starlike functions associated with parabolic regions. Ann. Univ. Mariae Curie-Sktodowska Sect. A, 45:117-122 (1992), 1991.
[10] F. Rønning. Uniformly convex functions and a corresponding class of starlike functions. Proc. Amer. Math. Soc., 118(1):189-196, 1993.
[11] T. Rosy and G. Murugusundaramoorthy. Fractional calculus and their applications to certain subclass of uniformly convex functions. Far East J. Math. Sci. (FJMS), 15(2):231-242, 2004.
[12] S. Shams, S. R. Kulkarni, and J. M. Jahangiri. Classes of uniformly starlike and convex functions. Int. J. Math. Math. Sci., (53-56):2959-2961, 2004.
[13] H. Silverman. Partial sums of starlike and convex functions. J. Math. Anal. Appl., 209(1):221-227, 1997.
[14] E. M. Silvia. On partial sums of convex functions of order α. Houston J. Math., 11(3):397-404, 1985.
[15] K. G. Subramanian, G. Murugusundaramoorthy, P. Balasubrahmanyam, and H. Silverman. Subclasses of uniformly convex and uniformly starlike functions. Math. Japon., 42(3):517-522, 1995.

Department of Mathematics,
Faculty of Science,
University of Mansoura,
Mansoura 33516, Egypt
E-mail address: mkaouf127@yahoo.com
Department of Mathematics, Faculty of Science at Damietta,
University of Mansoura,
New Damietta 34517, Egypt
E-mail address: r_elashwah@yahoo.com
Department of Mathematics,
Faculty of Science at Damietta,
University of Mansoura,
New Damietta 34517, Egypt
E-mail address: shezaeldeeb@yahoo.com

[^0]: 2000 Mathematics Subject Classification. 30C45.
 Key words and phrases. Analytic, univalent, uniformly, convolution, partial sums.

