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CONTINUITY OF THE QUENCHING TIME FOR A
PARABOLIC EQUATION WITH A NONLINEAR BOUNDARY

CONDITION AND A POTENTIAL

THÉODORE K. BONI AND FIRMIN K. N’GOHISSE

Abstract. In this paper, we consider the following initial-boundary value
problem 

ut(x, t) = a(x)∆u(x, t) in Ω × (0, T ),
∂u(x,t)

∂ν = −b(x)g(u(x, t)) on ∂Ω × (0, T ),
u(x, 0) = u0(x) in Ω,

where g : (0,∞) → (0,∞) is a C1 convex, nonincreasing function,

lim
s→0+

g(s) = ∞,

∫
0

ds

g(s)
< ∞,

∆ is the Laplacian, Ω is a bounded domain in RN with smooth boundary ∂Ω,
u0 ∈ C2(Ω), u0(x) > 0, x ∈ Ω, a ∈ C0(Ω), a(x) > 0, x ∈ Ω, b ∈ C0(∂Ω),
b(x) > 0, x ∈ ∂Ω. Under some assumptions, we show that the solution
of the above problem quenches in a finite time and estimate its quenching
time. We also prove the continuity of the quenching time as a function
of u0, b and a. Finally, we give some numerical results to illustrate our
analysis.

1. Introduction

Let Ω be a bounded domain in RN with smooth boundary ∂Ω. Consider the
following initial-boundary value problem

ut(x, t) = a(x)∆u(x, t) in Ω × (0, T ),(1)

∂u(x, t)

∂ν
= −b(x)g(u(x, t)) on ∂Ω × (0, T ),(2)

u(x, 0) = u0(x) in Ω,(3)
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where g : (0,∞) → (0,∞) is a C1 convex, nonincreasing function,

lim
s→0+

g(s) = ∞,

∫
0

ds

g(s)
< ∞,

∆ is the Laplacian, u0 ∈ C2(Ω), ∆u0(x) < 0, x ∈ Ω, ∂u0(x)
∂ν

= 0, x ∈ ∂Ω,

u0(x) > 0, x ∈ Ω, a ∈ C0(Ω), a(x) > 0, x ∈ Ω, b ∈ C0(∂Ω), b(x) > 0, x ∈ ∂Ω,
ν is the exterior normal unit vector on ∂Ω.

Here (0, T ) is the maximal time interval on which the solution u of (1)-(3)
exists. The time T may be finite or infinite. When T is infinite, then we
say that the solution u exists globally. When T is finite, then the solution u
develops a singularity in a finite time, namely,

lim
t→T

umin(t) = 0,

where umin(t) = minx∈Ω u(x, t). In this last case, we say that the solution u
quenches in a finite time, and the time T is called the quenching time of the
solution u. Thus, in this paper, by virtue of the definition of the time T , we
have

u(x, t) > 0 in Ω × [0, T ).

Solutions of parabolic equations with nonlinear boundary conditions which
quench in a finite time have been the subject of investigations of many authors
(see [6], [11], [14], [27], and the references cited therein). In particular, in [6],
the problem (1)-(3) has been studied. By standard methods, it is not hard to
prove the local in time existence of a classical solution which is unique (see
[6]). Also in [6], Boni has proved that the solution of (1)-(3) quenches in a
finite time, and its quenching set is located on the boundary of the domain
Ω. In [14], Fila and Levine have considered the above problem in the case
where Ω = (0, 1), a(x) = 1, b(0) = 0, b(1) = 1, g(u) = u−p with p > 0.
They have proved that the solution u quenches in a finite time at the point
x = 1. For quenching results of other problems, one may consult the following
references [2], [3], [4], [10], [13], [24], [25], [28], [29], [31]. In the present paper,
we are interested in the dependence of the quenching time with respect to
the initial datum, the coefficient of the Laplacian and the potential. In other
words, we want to know if the quenching time as a function of the above
parameters is continuous. More precisely, let us consider the solution v of the
initial-boundary value problem below

vt(x, t) = ak(x)∆v(x, t) in Ω × (0, T h
l,k),(4)

∂v(x, t)

∂ν
= −bl(x)g(v(x, t)) on ∂Ω × (0, T h

l,k),(5)

v(x, 0) = uh
0(x) in Ω,(6)

where

0 < ak(x) ≤ a(x), x ∈ Ω, lim
k→0

ak = a,



CONTINUITY OF THE QUENCHING TIME. . . 73

0 < bl(x) ≤ b(x), x ∈ ∂Ω, lim
l→0

bl = b,

uh
0(x) ≥ u0(x), x ∈ Ω, lim

h→0
uh

0 = u0.

Here (0, T h
l,k) is the maximal time interval of existence of the solution v. This

implies that

v(x, t) > 0 in Ω × [0, T h
l,k).

Set w(x, t) = ut(x, t), (x, t) ∈ Ω× [0, T ). Take the derivative in t on both sides
of (1) to obtain

wt(x, t) = a(x)∆w(x, t) in Ω × (0, T ).

In the same manner, we also have

∂w(x, t)

∂ν
= −b(x)g′(u(x, t))w(x, t) on ∂Ω × (0, T ).

Using the hypotheses ∆u0(x) < 0 in Ω, we see that w(x, 0) < 0 in Ω. We infer
from the maximum principle that w = ut < 0 in Ω× (0, T ), which implies that
∆u < 0 in Ω × (0, T ). Taking into account the fact that 0 < ak(x) ≤ a(x) in
Ω, uh

0(x) ≥ u0(x) in Ω, 0 < bl(x) ≤ b(x) on ∂Ω, we discover that

ut(x, t) − ak(x)∆u(x, t) ≤ 0 in Ω × (0, T ),

∂u(x, t)

∂ν
+ bl(x)g(u(x, t)) ≤ 0 on ∂Ω × (0, T ),

u(x, 0) ≤ v(x, 0) in Ω.

It follows from the maximum principle that v ≥ u as long as all of them
are defined. We deduce that T h

l,k ≥ T . In the present paper, under some
assumptions, we show that the solution v of (4)-(6) quenches in a finite time
T h

l,k, and the following relation holds

lim
(h,k,l)→(0,0,0)

T h
l,k = T.

Similar results have been obtained in [5], [8], [12], [16], [18], [19], [17], [20],
[21], where the authors have considered the phenomenon of blow-up (we say
that a solution blows up in a finite time if it reaches the value infinity in a
finite time). Our paper is organized as follows. In the next section, under
some assumptions, we show that the solution v of (4)-(6) quenches in a finite
time and estimate its quenching time. In the third section, we prove the
continuity of the quenching time and finally in the last section, we give some
computational results.

2. Quenching time

In this section, under some hypotheses, we show that the solution v of (4)-(6)
quenches in a finite time and estimate its quenching time.

Using an idea of Friedman and Lacey in [15], we prove the following result.
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Theorem 2.1. Let v be the solution of (4)–(6), and assume that there exists
a constant A ∈ (0, 1] such that the initial datum at (6) satisfies

(7) ak(x)∆uh
0(x) ≤ −Ag(uh

0(x)) in Ω.

Then, the solution v quenches in a finite time T h
l,k which obeys the following

estimate

T h
l,k ≤ 1

A

∫ uh
0min

0

ds

g(s)
,

where uh
0min = minx∈Ω uh

0(x).

Proof. Since (0, T h
l,k) is the maximal time interval of existence of the solution

v, our purpose is to show that T h
l,k is finite and obeys the above inequality.

Introduce the function J(x, t) defined as follows

J(x, t) = vt(x, t) + Ag(v(x, t)) in Ω × [0, T h
l,k).

A straightforward computation reveals that

Jt − ak(x)∆J = (vt − ak(x)∆v)t

+ Ag′(v)vt − Aak(x)∆g(v) in Ω × (0, T h
l,k).

(8)

Again, by a direct calculation, it is easy to check that

∆g(v) = g′′(v)|∇v|2 + g′(v)∆v in Ω × (0, T h
l,k),

which implies that ∆g(v) ≥ g′(v)∆v in Ω × (0, T h
l,k). Using this estimate and

(8), we arrive at

Jt − ak(x)∆J ≤ (vt − ak(x)∆v)t

+ Ag′(v)(vt − ak(x)∆v) in Ω × (0, T h
l,k).

(9)

It follows from (4) that

Jt − ak(x)∆J ≤ 0 in Ω × (0, T h
l,k).

We also have

∂J

∂ν
=

(
∂v

∂ν

)
t

+ Ag′(v)
∂v

∂ν
on ∂Ω × (0, T h

l,k).

We deduce from (5) that

∂J

∂ν
= −bl(x)g′(v)vt − Abl(x)g′(v)g(v) on ∂Ω × (0, T h

l,k).

Due to the expression of J , we find that

∂J

∂ν
= −bl(x)g′(v)J on ∂Ω × (0, T h

l,k).

Finally, we get

J(x, 0) = vt(x, 0) + Ag(v(x, 0)) ≤ ak(x)∆uh
0(x) + Ag(uh

0(x)) in Ω.
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Thanks to (7), we discover that

J(x, 0) ≤ 0 in Ω.

It follows from the maximum principle that

J(x, t) ≤ 0 in Ω × (0, T h
l,k).

This estimate may be rewritten in the following manner

(10)
dv

g(v)
≤ −Adt in Ω × (0, T h

l,k).

Integrate the above inequality over (0, T h
l,k) to obtain

(11) T h
l,k ≤ 1

A

∫ v(x,0)

0

dσ

g(σ)
in x ∈ Ω,

which implies that

(12) T h
l,k ≤ 1

A

∫ uh
0min

0

dσ

g(σ)
.

Use the fact that the quantity on the right hand side of (12) is finite to complete
the rest of the proof. �
Remark 2.1. Let t0 ∈ (0, T h

l,k). Integrating the inequality (10) over (t0, T
h
l,k),

we get

T h
l,k − t0 ≤

1

A

∫ v(x,t0)

0

dσ

g(σ)
for x ∈ Ω,

which implies that

(13) T h
l,k − t0 ≤

1

A

∫ vmin(t0)

0

dσ

g(σ)
.

3. Continuity of the quenching time

In this section, under some assumptions, we show that the solution v of
(4)–(6) quenches in a finite time, and its quenching time goes to that of the
solution u of (1)–(3) when h, k and l go to zero.

Firstly, we show that the solution v approaches the solution u in Ω×[0, T−τ ]
with τ ∈ (0, T ) when h, k and l tend to zero. This result is stated in the
following theorem.

Theorem 3.1. Let u be the solution of (1)–(3). Suppose that u ∈ C2,1(Ω ×
[0, T − τ ]) and mint∈[0,T−τ ] umin(t) = α > 0 with τ ∈ (0, T ). Assume that

‖uh
0 − u0‖∞ = o(1) as h → 0,(14)

‖ak − a‖∞ = o(1) as k → 0,(15)

‖bl − b‖∞ = o(1) as l → 0.(16)
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Then, the problem (4)-(6) admits a unique solution v ∈ C2,1(Ω× [0, T h
l,k)), and

the following relation holds

sup
t∈[0,T−τ ]

‖v(·, t) − u(·, t)‖∞ = O(‖uh
0 − u0‖∞ + ‖bl − b‖∞ + ‖ak − a‖∞)

as (h, l, k) → (0, 0, 0).

Proof. The problem (4)–(6) has for each h, a unique solution v ∈ C2,1(Ω ×
[0, T h

l,k)). In the introduction of the paper, we have seen that T h
l,k ≥ T . Let

thl,k ≤ T be the greatest value of t > 0 such that

(17) ‖v(·, t) − u(·, t)‖∞ ≤ α

2
for t ∈ (0, thl,k).

Obviously, we see that ‖v(·, 0)− u(·, 0)‖∞ = ‖uh
0 − u0‖∞. Due to this fact, we

deduce from (14) and (17) that thl,k > 0 for h sufficiently small. By the triangle
inequality, we find that

vmin(t) ≥ umin(t) − ‖v(·, t) − u(·, t)‖∞ for t ∈ (0, thl,k),

which leads us to

vmin(t) ≥ α − α

2
=

α

2
for t ∈ (0, thl,k).(18)

Introduce the function e(x, t) defined as follows

(19) e(x, t) = v(x, t) − u(x, t) in Ω × [0, thl,k).

A routine computation reveals that

et − ak(x)∆e = (ak(x) − a(x))∆u in Ω × (0, thl,k),

∂e

∂ν
= −bl(x)g′(θ)e + (b(x) − bl(x))g(u) on ∂Ω × (0, thl,k),

e(x, 0) = uh
0(x) − u0(x) in Ω,

where θ is an intermediate value between u and v. Let M be such that g(α
2
) ≤

M and |∆u| ≤ M for (x, t) ∈ Ω × (0, thl,k). We deduce that

et − ak(x)∆e ≤ M‖a − ak‖∞ in Ω × (0, thl,k).

∂e

∂ν
≤ −bl(x)g′(θ)e + ‖bl − b‖∞M on ∂Ω × (0, thl,k),

e(x, 0) = uh
0(x) − u0(x) in Ω.

Let L be such that L ≥ −‖bl‖∞g′(α
2
) + M . Since the domain Ω has a smooth

boundary ∂Ω, there exists a function ρ ∈ C2(Ω) satisfying ρ(x) ≥ 0 in Ω and
∂ρ(x)

∂ν
= 1 on ∂Ω. Let K be a positive constant such that K ≥ Lak∆ϕ +

L2ak|∇ϕ|2 for x ∈ Ω. It is not hard to see that g′(α
2
) ≥ g′(θ) on ∂Ω × (0, thl,k).

Introduce the function z defined as follows

z(x, t) = e(M+K)t+Lϕ(x)(‖uh
0 − u0‖∞ + ‖bl − b‖∞ + ‖ak − a‖∞) in Ω × [0, thl,k).
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A straightforward calculation reveals that

zt − ak∆z = (M + K − Lak∆ϕ − L2ak|∇ϕ|2)z in Ω × (0, thl,k),

∂z

∂ν
= Lz on ∂Ω × (0, thl,k),

z(x, 0) ≥ e(x, 0) in Ω.

Since L ≥ −bl(x)g′(θ) + M for (x, t) ∈ ∂Ω × (0, thl,k), and K ≥ Lak∆ϕ +

L2ak|∆ϕ|2 for x ∈ Ω, we deduce that

zt − ak∆z ≥ M‖a − ak‖∞ in Ω × (0, thl,k),

∂z

∂ν
≥ −blg

′(θ)z + ‖bl − b‖∞M on ∂Ω × (0, thl,k),

z(x, 0) ≥ e(x, 0) in Ω.

It follows from the maximum principle that

z(x, t) ≥ e(x, t) in Ω × (0, thl,k).

In the same way, we also prove that

z(x, t) ≥ −e(x, t) in Ω × (0, thl,k),

which implies that

‖e(., t)‖∞ ≤ e(K+M)t+L‖ϕ‖∞(‖uh
0 − u0‖∞ + ‖bl − b‖∞ + ‖ak − a‖∞)

fort ∈ (0, thl,k).

Let us show that thl,k = T . Suppose that thl,k < T . From (17), we obtain

α

2
= ‖v(·, thl,k) − u(·, thl,k)‖∞

≤ e(K+M)T+L‖ϕ‖∞(‖uh
0 − u0‖∞ + ‖bl − b‖∞ + ‖ak − a‖∞).

Since the term on the right hand side of the above inequality goes to zero as h
k, and l go to zero, we deduce that α

2
≤ 0, which is impossible. Consequently,

thl,k = T . �

Now, we are in a position to prove the main result of the paper.

Theorem 3.2. Suppose that the problem (1)–(3) has a solution u which
quenches in a finite time at the time T and u ∈ C2,1(Ω × [0, T )). Assume
that the conditions (14), (15) and (16) are valid. Under the assumption of
Theorem 2.1, the problem (4)-(6) admits a unique solution v which quenches
in a finite time T h

l,k, and the following relation holds

lim
(h,k,l)→(0,0,0)

T h
l,k = T.
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Proof. Let 0 < ε < T/2. There exists ρ > 0 such that

(20)
1

A

∫ y

0

dσ

g(σ)
≤ ε

2
, 0 ≤ y ≤ ρ.

Since u quenches in a finite time T , there exists T0 ∈ (T − ε
2
, T ) such that

0 < umin(t) <
ρ

2
for t ∈ [T0, T ).

Set T1 = T0+T
2

. It is not hard to see that

umin(t) > 0 for t ∈ [0, T2].

From Theorem 3.1, the problem (4)–(6) admits a unique solution v, and we
get

‖v(·, t) − u(·, t)‖∞ <
ρ

2
for t ∈ [0, T1],

which implies that ‖v(·, T1) − u(·, T1)‖∞ ≤ ρ
2
. An application of the triangle

inequality leads us to

vmin(T1) ≤ ‖v(·, T1) − u(·, T1)‖∞ + umin(T1) ≤
ρ

2
+

ρ

2
= ρ.

Invoking Theorem 2.1, we see that v quenches at the time T h
l,k. On the other

hand, we have proved in the introduction of the paper that T h
l,k ≥ T . We infer

from Remark 2.1 and (19) that

0 ≤ T h
l,k − T = T h

l,k − T1 + T1 − T ≤ 1

A

∫ vmin(T1)

0

dσ

g(σ)
+

ε

2
≤ ε.

�

4. Numerical results

In this section, we give some computational experiments to confirm the
theory given in the previous section. We consider the radial symmetric solution
of the following initial-boundary value problem

ut = a(x)∆u in B × (0, T ),

∂u

∂ν
= −b(x)u−p on S × (0, T ),

u(x, 0) = u0(x) in B,

where B = {x ∈ RN ; ‖x‖ < 1}, S = {x ∈ RN ; ‖x‖ = 1}. The above problem
may be rewritten in the following form

ut = a(r)

(
urr +

N − 1

r
ur

)
, r ∈ (0, 1), t ∈ (0, T ),(21)

ur(0, t) = 0, ur(1, t) = −b(u(1, t))−p, t ∈ (0, T ),(22)

u(r, 0) = ϕ(r), r ∈ [0, 1].(23)
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Here, we take p = 1, ϕ(r) = 1 − r2

3
+ ε(1 + cos(πr)), a(r) = 2 + sin(πr) − εr2,

b = 1 − ε, with ε ∈ [0, 1]. We start by the construction of some adaptive
schemes as follows. Let I be a positive integer and let h = 1/I. Define the
grid xi = ih, 0 ≤ i ≤ I, and approximate the solution u of (20)-(22) by the

solution U
(n)
h = (U

(n)
0 , . . . , U

(n)
I )T of the following explicit scheme

U
(n+1)
0 − U

(n)
0

∆tn
= Na(x0)

2U
(n)
1 − 2U

(n)
0

h2
,

U
(n+1)
i − U

(n)
i

∆tn
= a(xi)

(
U

(n)
i+1 − 2U

(n)
i + U

(n)
i−1

h2
+

(N − 1)

ih

U
(n)
i+1 − U

(n)
i−1

2h

)
,

1 ≤ i ≤ I − 1,

U
(n+1)
I − U

(n)
I

∆tn
= a(xI)

(
2U

(n)
I−1 − 2U

(n)
I

h2
+ (N − 1)

U
(n)
I − U

(n)
I−1

h

)
− 2b

h
(U

(n)
I )−p,

U
(0)
i = ϕ(xi), 0 ≤ i ≤ I,

where n ≥ 0. In order to permit the discrete solution to reproduce the prop-
erties of the continuous one when t approaches the real quenching time T , we
need to adapt the size of the time step so that we choose

∆tn = min{(1 − h2)h2

4N
, h2(U

(n)
hmin)p+1}

with U
(n)
hmin = min0≤i≤I U

(n)
i . Let us notice that the restriction on the time

step ensures the positivity of the discrete solution. We also approximate the

solution u of (20)-(22) by the solution U
(n)
h of the implicit scheme below

U
(n+1)
0 − U

(n)
0

∆tn
= Na(x0)

2U
(n+1)
1 − 2U

(n+1)
0

h2
,

U
(n+1)
i − U

(n)
i

∆tn

= a(xi)

(
U

(n+1)
i+1 − 2U

(n+1)
i + U

(n+1)
i−1

h2
+

(N − 1)

ih

U
(n+1)
i+1 − U

(n+1)
i−1

2h

)
,

1 ≤ i ≤ I − 1,

U
(n+1)
I − U

(n)
I

∆tn
= a(xI)

(
2U

(n+1)
I−1 − 2U

(n+1)
I

h2
+ (N − 1)

U
(n+1)
I − U

(n+1)
I−1

h

)

− 2b

h
(U

(n)
I )−p−1U

(n+1)
I ,

U
(0)
i = ϕ(xi), 0 ≤ i ≤ I,
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where n ≥ 0. As in the case of the explicit scheme, here, we also pick

∆tn = h2(U
(n)
hmin)p+1.

Let us again remark that for the above implicit scheme, the existence and
positivity of the discrete solution are also guaranteed using standard methods

(see, for instance [7]). It is not hard to see that urr(0, t) = limr→0
ur(r,t)

r
. Hence,

if r = 0, then we note that

ut(0, t) = Na(x0)urr(0, t), t ∈ (0, T ).

This observation has been taken into account in the construction of our schemes
at the first node x0. We need the following definition.

Definition 4.1. We say that the discrete solution U
(n)
h of the explicit scheme

or the implicit scheme quenches in a finite time if limn→∞ U
(n)
hmin = 0, and the

series
∑∞

n=0 ∆tn converges. The quantity
∑∞

n=0 ∆tn is called the numerical

quenching time of the discrete solution U
(n)
h .

In the following tables, in rows, we present the numerical quenching times,
the numbers of iterations n, the CPU times and the orders of the approxima-
tions corresponding to meshes of 16, 32, 64, 128. We take for the numerical
quenching time tn =

∑n−1
j=0 ∆tj which is computed at the first time when

∆tn = |tn+1 − tn| ≤ 10−16.

The order (s) of the method is computed from

s =
log((T4h − T2h)/(T2h − Th))

log(2)
.
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Numerical experiments for p = 1, N = 2.

First case: ε = 0.

I tn n CPU time s
16 0.055111 208 1 -
32 0.053755 671 3 -
64 0.053345 2377 18 1.73
128 0.053225 8937 132 1.79

Table 1. Numerical quenching times, numbers of iterations, CPU
times (seconds) and orders of the approximations obtained with the
explicit Euler method

I tn n CPU time s
16 0.055551 209 1 -
32 0.053879 673 4 -
64 0.053378 2379 24 1.74
128 0.053233 8940 751 1.79

Table 2. Numerical quenching times, numbers of iterations, CPU
times (seconds) and orders of the approximations obtained with the
implicit Euler method

Second case: ε = 1/10.

I tn n CPU time s
16 0.074882 261 1 -
32 0.073512 863 3 -
64 0.073094 3110 22 1.72
128 0.072970 11808 194 1.75

Table 3. Numerical quenching times, numbers of iterations, CPU
times (seconds) and orders of the approximations obtained with the
explicit Euler method

I tn n CPU time s
16 0.075398 262 1 -
32 0.073654 865 4 -
64 0.073131 3112 35 1.74
128 0.073002 11810 220 2.01

Table 4. Numerical quenching times, numbers of iterations, CPU
times (seconds) and orders of the approximations obtained with the
implicit Euler method
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Third case: ε = 1/50.

I tn n CPU time s
16 0.058519 217 1 -
32 0.057148 705 3 -
64 0.056733 2504 19 1.72
128 0.056611 9434 138 1.77

Table 5. Numerical quenching times, numbers of iterations, CPU
times (seconds) and orders of the approximations obtained with the
explicit Euler method

I tn n CPU time s
16 0.058961 218 1 -
32 0.057272 706 4 -
64 0.056733 2504 19 1.74
128 0.056642 9434 156 2.03

Table 6. Numerical quenching times, numbers of iterations, CPU
times (seconds) and orders of the approximations obtained with the
implicit Euler method

Fourth case: ε = 1/100.

I tn n CPU time s
16 0.056783 218 1 -
32 0.055419 688 2 -
64 0.055007 2439 18 1.73
128 0.054886 9181 129 1.77

Table 7. Numerical quenching times, numbers of iterations, CPU
times (seconds) and orders of the approximations obtained with the
explicit Euler method

I tn n CPU time s
16 0.057224 214 1 -
32 0.055543 689 4 -
64 0.055040 2441 29 1.74
128 0.054903 9185 152 1.88

Table 8. Numerical quenching times, numbers of iterations, CPU
times (seconds) and orders of the approximations obtained with the
implicit Euler method
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Fifth case: ε = 1/1000.

I tn n CPU time s
16 0.055276 208 1 -
32 0.053919 673 3 -
64 0.053508 2483 17 1.72
128 0.053388 8961 107 1.78

Table 9. Numerical quenching times, numbers of iterations, CPU
times (seconds) and orders of the approximations obtained with the
explicit Euler method

I tn n CPU time s
16 0.055715 210 1 -
32 0.054042 674 4 -
64 0.053541 2385 28 1.74
128 0.053397 8965 129 1.80

Table 10. Numerical quenching times, numbers of iterations, CPU
times (seconds) and orders of the approximations obtained with the
implicit Euler method

Remark 4.1. If we consider the problem (20)-(22) in the case where ε ∈ (0, 1),
then we observe from Tables 1 to 10 that if ε is small enough, then the nu-
merical quenching time is close to that of the solution of (20)-(22) in the case
where ε = 0. This computational result confirms the theory established in the
previous section.

In Figures 1–8, we also give some plots to illustrate our analysis. In the
figures we see that the discrete solution quenches in a finite, and the quenching
occurs at the last node.
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Département de Mathématiques et Informatiques,
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Figure 1. Evolution of discrete solution, ε = 0
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Figure 2. Evolution of discrete solution, ε = 1/10
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Figure 3. Profile of the approximation of u(r, 0), ε = 0
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Figure 4. Profile of the approximation of u(r, T/2), ε = 0
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Figure 5. Profile of the approximation of u(r, T ), where T is
the quenching time ε = 0
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Figure 6. Profile of the approximation of u(r, 0), ε = 1/10
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Figure 7. Profile of the approximation of u(r, T/2), ε = 1/10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9
  

node 

ap
pr

ox
im

at
io

n 
of

 u
(r

,T
)

Figure 8. Profile of the approximation of u(r, T ), where T is
the quenching time, ε = 1/10


