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QUANTUM COMPUTATIONAL JACOBI FIELDS

HOWARD E. BRANDT

Abstract. In the Riemannian geometry of quantum computation, the
quantum evolution is described in terms of the special unitary group of
n-qubit unitary operators with unit determinant. To elaborate on several
aspects of the methodology, the Riemannian curvature, geodesic equation,
Jacobi equation, and lifted Jacobi equation on the group manifold are
explicitly derived. This is important for investigations of the global char-
acteristics of geodesic paths in the group manifold, and the determination
of optimal quantum circuits for carrying out a quantum computation.

1. Introduction

A Riemannian metric can be chosen on the manifold of the Lie Group SU(2n)
(special unitary group) of n-qubit unitary operators with unit determinant [8],
[1]-[7], [15], [22]. The traceless Hamiltonian of a quantum computational system
serves as a tangent vector to a point on the group manifold of the n-qubit unitary
transformation U , describing the time evolution of the system. The Hamiltonian
H is an element of the Lie algebra su(2n) of traceless 2n×2n Hermitian matrices
[20], [5], [6] and is taken to be tangent to the evolutionary curve e−iHtU at t = 0.
(Here and throughout, units are chosen such that Planck’s constant divided by
2π is ~ = 1.)

The Riemannian metric (inner product) 〈., .〉 is taken to be a positive definite
bilinear form 〈H, J〉 defined on tangent vectors (Hamiltonians) H and J . Fol-
lowing [8], the n-qubit Hamiltonian H can be divided into two parts P (H) and
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Q(H), where P (H) contains only one and two-body terms, and Q(H) contains
more than two-body terms. Thus:

(1.1) H = P (H) + Q(H),

in which P and Q are superoperators acting on H , and obey the following
relations:

(1.2) P + Q = I, PQ = QP = 0, P 2 = P, Q2 = Q,

where I is the identity.
The Hamiltonian can be expressed in terms of tensor products of the Pauli

matrices. The Pauli matrices are given by [18]

σ0 ≡ I ≡

[

1 0
0 1

]

, σ1 ≡ X ≡

[

0 1
1 0

]

,

σ2 ≡ Y ≡

[

0 −i
i 0

]

, σ3 ≡ Z ≡

[

1 0
0 −1

]

.

(1.3)

They are Hermitian,

(1.4) σi = σ†
i , i = 0, 1, 2, 3,

and, except for σ0, they are traceless,

(1.5) Trσi = 0, i 6= 0.

Their products are given by

(1.6) σ2
i = I,

and

(1.7) σiσj = iεijkσk, i, j, k 6= 0,

expressed in terms of the totally antisymmetric Levi-Civita symbol with ε123 = 1.
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An example of Eq. (1.1), in the case of a 3-qubit Hamiltonian, is

P (H) = x1σ1 ⊗ I ⊗ I

+ x2σ2 ⊗ I ⊗ I + x3σ3 ⊗ I ⊗ I

+ x4I ⊗ σ1 ⊗ I + x5I ⊗ σ2 ⊗ I

+ x6I ⊗ σ3 ⊗ I + x7I ⊗ I ⊗ σ1

+ x8I ⊗ I ⊗ σ2 + x9I ⊗ I ⊗ σ3

+ x10σ1 ⊗ σ2 ⊗ I + x11σ1 ⊗ I ⊗ σ2

+ x12I ⊗ σ1 ⊗ σ2 + x13σ2 ⊗ σ1 ⊗ I

+ x14σ2 ⊗ I ⊗ σ1 + x15I ⊗ σ2 ⊗ σ1

+ x16σ1 ⊗ σ3 ⊗ I + x17σ1 ⊗ I ⊗ σ3

+ x18I ⊗ σ1 ⊗ σ3 + x19σ3 ⊗ σ1 ⊗ I

+ x20σ3 ⊗ I ⊗ σ1 + x21I ⊗ σ3 ⊗ σ1

+ x22σ2 ⊗ σ3 ⊗ I + x23σ2 ⊗ I ⊗ σ3

+ x24I ⊗ σ2 ⊗ σ3 + x25σ3 ⊗ σ2 ⊗ I

+ x26σ3 ⊗ I ⊗ σ2 + x27I ⊗ σ3 ⊗ σ2

+ x28σ1 ⊗ σ1 ⊗ I + x29σ2 ⊗ σ2 ⊗ I

+ x30σ3 ⊗ σ3 ⊗ I + x31σ1 ⊗ I ⊗ σ1

+ x32σ2 ⊗ I ⊗ σ2 + x33σ3 ⊗ I ⊗ σ3

+ x34I ⊗ σ1 ⊗ σ1 + x35I ⊗ σ2 ⊗ σ2 + x36I ⊗ σ3 ⊗ σ3,

(1.8)

in which ⊗ denotes the tensor product, and

Q(H) = x37σ1 ⊗ σ2 ⊗ σ3 + x38σ1 ⊗ σ3 ⊗ σ2

+ x39σ2 ⊗ σ1 ⊗ σ3 + x40σ2 ⊗ σ3 ⊗ σ1

+ x41σ3 ⊗ σ1 ⊗ σ2 + x42σ3 ⊗ σ2 ⊗ σ1

+ x43σ1 ⊗ σ1 ⊗ σ2 + x44σ1 ⊗ σ2 ⊗ σ1

+ x45σ2 ⊗ σ1 ⊗ σ1 + x46σ1 ⊗ σ1 ⊗ σ3

+ x47σ1 ⊗ σ3 ⊗ σ1 + x48σ3 ⊗ σ1 ⊗ σ1

+ x49σ2 ⊗ σ2 ⊗ σ1 + x50σ2 ⊗ σ1 ⊗ σ2

+ x51σ1 ⊗ σ2 ⊗ σ2 + x52σ2 ⊗ σ2 ⊗ σ3

+ x53σ2 ⊗ σ3 ⊗ σ2 + x54σ3 ⊗ σ2 ⊗ σ2

+ x55σ3 ⊗ σ3 ⊗ σ1 + x56σ3 ⊗ σ1 ⊗ σ3

+ x57σ1 ⊗ σ3 ⊗ σ3 + x58σ3 ⊗ σ3 ⊗ σ2

+ x59σ3 ⊗ σ2 ⊗ σ3 + x60σ2 ⊗ σ3 ⊗ σ3

+ x61σ1 ⊗ σ1 ⊗ σ1 + x62σ2 ⊗ σ2 ⊗ σ2 + x63σ3 ⊗ σ3 ⊗ σ3.

(1.9)
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Here, all possible tensor products of one and two-qubit Pauli matrix operators
on three qubits appear in P (H), and analogously, all possible tensor products
of three-qubit operators appear in Q(H). Tensor products including only the
identity are excluded because the Hamiltonian is taken to be traceless. Each of
the terms in Eqs. (1.8) and (1.9) is an 8×8 matrix. The various tensor products
of Pauli matrices such as those appearing in Eqs. (1.8) and (1.9) are referred
to as generalized Pauli matrices. In the case of an n-qubit Hamiltonian, there
are 4n−1 possible tensor products (corresponding to the dimension of SU(2n)),
and each term is a 2nx2n matrix.

The right-invariant [22], [5]–[7], [13] Riemannian metric for tangent vectors
H and J is given by [8]

(1.10) 〈H, J〉 ≡
1

2n
Tr [HP (J) + qHQ(J)] .

Here q is a large penalty parameter which taxes more than two-body terms. The
length l of an evolutionary path on the SU(2n) manifold is given by the integral
over time t from an initial time ti to a final time tf , namely,

(1.11) l =

tf
∫

ti

dt (〈H(t), H(t)〉)1/2 ,

and is a measure of the cost, in terms of quantum circuit complexity, of applying
a control Hamiltonian H(t) along the path [8].

2. Covariant derivative

In order to obtain the Levi-Civita connection, one exploits the Lie algebra
su(2n) associated with the group SU(2n). Because of the right-invariance of the
metric, if the connection is calculated at the origin, the same expression applies
everywhere on the manifold. Following [8], consider the unitary transformation

(2.1) U = e−iX

in the neighborhood of the identity I ⊂ SU(2n) with

(2.2) X = x · σ ≡
∑

σ

xσσ,

which expresses symbolically terms like those in Eqs. (1.8) and (1.9) generalized
to 2n dimensions. In Eqs. (2.1) and (2.2), X is defined using the standard
branch of the logarithm with a cut along the negative real axis. In Eq. (2.2), for
the general case of n qubits, x represents the set of real (4n−1) coefficients of the
generalized Pauli matrices σ which represent all of the n-fold tensor products.
It follows from Eq. (2.2) that the factor xσ multiplying a particular term σ is
given by

(2.3) xσ =
1

2n
Tr(Xσ).
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Next, the right-invariant metric, Eq. (1.10), in the so-called Hamiltonian rep-
resentation can be written as

(2.4) 〈H, J〉 =
1

2n
Tr[HG(J)],

in which the positive self-adjoint superoperator G is given by

(2.5) G = P + qQ.

Using Eqs. (1..2) and (2.5), it follows that

(2.6) F ≡ G−1 = P + q−1Q.

A vector Y in the group tangent space can be written as

(2.7) Y =
∑

σ

yσσ

with so-called Pauli coordinates yσ. Here σ, as an index, is used to refer to
a particular tensor product appearing in the generalized Pauli matrix σ. This
index notation, used throughout, is a convenient abbreviation for the actual nu-
merical indices (e.g. in Eq. (1.8), the number 31 appearing in x31, the coefficient
of σ1 ⊗ I ⊗ σ1).

Next consider a curve passing through the origin with tangent vector Y with
components yσ = dxσ/dt. It can be shown that the covariant derivative of a
right-invariant vector field Z along the curve in the Hamiltonian representation
is given by [8],[4]

(2.8) (∇Y Z) =
i

2
{[Y, Z] + F ([Y, G(Z)] + [Z, G(Y )])},

which, because of the right-invariance of the metric, is true everywhere on the
manifold.

3. Riemann curvature

For a right-invariant vector field Z, one has after substituting

(3.1) Z =
∑

τ

zττ, Y =
∑

σ

yσσ

in Eq. (2.8),

(3.2) ∇στ =
i

2
([σ, τ ] + F ([σ, G(τ)] + [τ, G(σ)])).

Next, denoting S0 as the set containing only tensor products of the identity, and
S12 as the set of terms in the Hamiltonian containing only one and two body
terms, that is

(3.3) S0 ≡ {I ⊗ I ⊗ ...},

and

S12 = {I ⊗ I ⊗ ...σi ⊗ I.., ..}



252 HOWARD E. BRANDT

∪{I ⊗ I ⊗ ...σi ⊗ I..σj ⊗ I.., ..},(3.4)

then evidently,

(3.5) [σ, G(τ)] =

{

[σ, τ ], τ ∈ S12 ∪ S0

q[σ, τ ], τ /∈ S12 ∪ S0
,

and therefore

(3.6) F ([σ, G(τ)]) =

{

F ([σ, τ ]), τ ∈ S12 ∪ S0

qF ([σ, τ ]), τ /∈ S12 ∪ S0
.

Using Eq. (2.6) in Eq. (3.6), one obtains

(3.7) F ([σ, G(τ)]) =

{

1
q[σ,τ]

[σ, τ ], τ ∈ S12 ∪ S0
q

q[σ,τ]
[σ, τ ], τ /∈ S12 ∪ S0

,

where

(3.8) q
[σ,τ]

= 1 if [σ, τ ] = 0, q
[σ,τ]

= qλ if [σ, τ ] ∝ λ, and q
[σ,τ]

= q
[τ,σ]

,

and qλ is defined by

(3.9) qσ ≡







0, σ ∈ S0

1, σ ∈ S12

q, σ /∈ S0 ∪ S12

.

Equation (3.7) can be written as

(3.10) F ([σ, G(τ)]) =
qτ

q[σ,τ ]
[σ, τ ].

Next substituting Eq. (3.10) in Eq. (3.2), and using Eq. (3.8), one obtains

(3.11) ∇στ = icσ,τ [σ, τ ],

where

(3.12) cσ,τ =
1

2

(

1 +
qτ − qσ

q[σ,τ ]

)

.

The Riemann curvature tensor with the inner-product (metric) Eq. (2.4) is
given by [16]

(3.13) R(W, X, Y, Z) =
〈

∇W∇XY −∇X∇W Y −∇i[W,X]Y, Z
〉

,

and after substituting the vector fields,

(3.14) W =
∑

σ

wρρ, X =
∑

σ

zσσ, Y =
∑

τ

yττ, Z =
∑

µ

zµµ,

Eq. (3.13) becomes

(3.15) Rρστµ =
〈

∇ρ∇στ −∇σ∇ρτ −∇i[ρ,σ]τ, µ
〉

.

Next, for three right-invariant vector fields X , Y , and Z, one has

(3.16) 0 = ∇Y 〈X, Z〉 = 〈X,∇Y Z〉 + 〈∇Y X, Z〉 ,
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or

(3.17) 〈X,∇Y Z〉 = −〈∇Y X, Z〉 ,

and substituting Eqs. (3.14) in Eq. (3.17), one then has

(3.18) 〈σ,∇τ µ〉 = −〈∇τσ, µ〉 .

Therefore

(3.19) 〈∇ρ∇στ, µ〉 = −〈∇στ,∇ρµ〉 ,

and

(3.20) 〈∇σ∇ρτ, µ〉 = −〈∇ρτ,∇σµ〉 .

Then substituting Eqs. (3.19) and (3.20) in Eq. (3.15), and interchanging the
first and second terms, one obtains

(3.21) Rρστµ = 〈∇ρτ,∇σµ〉 − 〈∇στ,∇ρµ〉 −
〈

∇i[ρ,σ]τ, µ
〉

.

Also clearly

(3.22) ∇iY Z = i∇Y Z,

so Eq. (3.21) can also be written as

(3.23) Rρστµ = 〈∇ρτ,∇σµ〉 − 〈∇στ,∇ρµ〉 − i
〈

∇[ρ,σ]τ, µ
〉

.

Next substituting Eq. (3.11) in Eq. (3.23), one obtains the following useful form
for the Riemann curvature tensor [8]:

Rρστµ = cρ,τ cσ,µ 〈i[ρ, τ ], i[σ, µ]〉

− cσ,τcρ,µ 〈i[σ, τ ], i[ρ, µ]〉

− c[ρ,σ],τ 〈i[i[ρ, σ], τ ], µ〉 .

(3.24)

4. Geodesic equation

Next consider a curve passing through the origin with tangent vector Y hav-
ing components yσ = dxσ/dt. The covariant derivative along the curve in the
Hamiltonian representation is given by [8], [4].

(4.1) (DtZ) ≡ (∇Y Z) =
dZ

dt
+

i

2
([Y, Z] + F ([Y, G(Z)] + [Z, G(Y )])) .

(Note that the term dZ
dt in Eq. (4.1) does not appear in Eq. (2.8) because there

the vector field Z is taken to be right invariant, in which case dZ
dt = 0.) Because

of the right-invariance of the metric, Eq. (4.1) is true on the entire manifold.
Furthermore, a geodesic in SU(2n) is a curve U(t) with tangent vector H(t)
parallel transported along the curve, namely,

(4.2) DtH = 0.
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However, according to Eq. (4.1) with Y = Z = H , one has

(4.3) DtH =
dH

dt
+

i

2
([H, H ] + F ([H, G(H)] + [H, G(H)])),

which when substituting Eq. (4.2) becomes [8]

(4.4)
dH

dt
= −iF ([H, G(H)]) .

One can rewrite Eq. (4.4) using the dual [8], [4],

(4.5) L ≡ G(H) = F−1(H),

and then noting that

(4.6)
dL

dt
=

d

dt

(

F−1(H)
)

= F−1

(

dH

dt

)

.

Thus substituting Eq. (4.4) in Eq. (4.6), one obtains

(4.7)
dL

dt
= −iF−1 (F ([H, G(H)])),

or

(4.8)
dL

dt
= −i[H, G(H)],

and again using Eq. (4.5), Eq. (4.8) becomes

(4.9)
dL

dt
= −i[H, L] = i[L, H ].

Furthermore, again using Eq. (4.5) in Eq. (4.9), one obtains the sought geodesic
equation [8]:

(4.10)
dL

dt
= i[L, F (L)].

Equation (4.10) is a Lax equation, a well-known nonlinear differential matrix
equation, and L and iF (L) are Lax pairs [12], [26] [27].

5. Jacobi fields

Consider a one-parameter family of geodesics

(5.1) xj = xj(s, t),

in which the parameter s distinguishes a particular geodesic in the family, and
t is the usual curve parameter which can be taken to be time. The Riemannian
geodesic equation in a coordinate representation is given by [13]

(5.2)
∂2xj

∂t2
+ Γj

kl(s)
∂xk

∂t

∂xl

∂t
= 0,

in which the Levi Civita connection is given by,

(5.3) Γj
kl(s) =

1

2
gjm(s)(gkm,l(s) + glm,k(s) − gkl,m(s)),
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for metric gij(x(s, t)) ≡ gij(s). (Note, the geodesic equation, Eq. (4.10), on the
SU(2n) group manifold can be shown to follow from Eq. (5.2) [8], [4].)

Let xj(0, t) be the base geodesic, and define the lifted Jacobi field along the
base geodesic by [8]

(5.4) Jj(t) =
∂

∂s
xj(s, t)|s=0,

describing how the base geodesic changes as the parameter s is varied. Using a
Taylor series expansion, one has for small ∆s in the neighborhood of the base
geodesic,

(5.5) xj(∆s, t) = xj(0, t) + ∆sJj(t) + O(∆s2).

Here xj(∆s, t) satisfies the geodesic equation with the metric gij(∆s). Operating

on the geodesic equation, Eq. (5.2) with ∂s ≡ ∂
∂s and substituting Eqs. (5.4)

and (5.5), one obtains for ∆s → 0,

0 =
∂2

∂t2
Lim
∆s→0

∆sJj(t)

∆s

+ Γj
kl,m(s)|s=0 Lim

∆s→0

∆sJm(t)

∆s

∂xk

∂t

∂xl

∂t
+ ∂sΓ

j
kl(s)|s=0

∂xk

∂t

∂xl

∂t

+ Γj
kl(0)

{

∂

∂t

(

Lim
∆s→0

∆sJk(t)

∆s

)

∂xl

∂t
+

∂xk

∂t

∂

∂t
Lim
∆s→0

∆sJ l(t)

∆s

}

,

(5.6)

in which gij(0) ≡ gij is the base metric and Γj
kl(0) ≡ Γj

kl is the base connection.
Equation (5.6) then becomes

0 =
∂2Jj(t)

∂t2
+ Γj

kl,m(s)|s=0J
m(t)

∂xk

∂t

∂xl

∂t

+ ∂sΓ
j
kl(s)|s=0

∂xk

∂t

∂xl

∂t
+ Γj

kl

(

∂Jk

∂t

∂xl

∂t
+

∂xk

∂t

∂J l

∂t

)

.

(5.7)

Taking account of dummy indices summed over, it is clearly true that

(5.8) −Γj
lqΓ

q
ik

∂xi

∂t

∂xl

∂t
Jk + Γj

kpΓ
p
mn

∂xk

∂t

∂xm

∂t
Jn = 0.

One also has

(5.9) −Γj
ik,l

∂xi

∂t

∂xl

∂t
Jk + Γj

kp,m

∂xm

∂t

∂xk

∂t
Jp = 0.

Also, using the geodesic equation, Eq. (5.2), one has

(5.10) Γj
kp

∂2xk

∂t2
Jp = −Γj

kpΓ
k
iq

∂xi

∂t

∂xq

∂t
Jp,

or renaming dummy indices on the right hand side, it follows that

(5.11) Γj
kp

∂2xk

∂t2
Jp + Γj

qkΓq
il

∂xi

∂t

∂xl

∂t
Jk = 0.
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Next adding Eqs. (5.7)-(5.9) and (5.11), one obtains

0 =
∂2Jj(t)

∂t2
+ Γj

kl,mJm(t)
∂xk

∂t

∂xl

∂t

+ ∂sΓ
j
kl(s)|s=0

∂xk

∂t

∂xl

∂t
+ Γj

kl

(

∂Jk

∂t

∂xl

∂t
+

∂xk

∂t

∂J l

∂t

)

− Γj
lqΓ

q
lk

∂xi

∂t

∂xl

∂t
Jk + Γj

kpΓ
p
mn

∂xk

∂t

∂xm

∂t
Jn

− Γj
ik,l

∂xi

∂t

∂xl

∂t
Jk + Γj

kp,m

∂xm

∂t

∂xk

∂t
Jp

+ Γj
kp

∂2xk

∂t2
Jp + Γj

qkΓq
il

∂xi

∂t

∂xl

∂t
Jk,

(5.12)

or equivalently,

∂2Jj(t)

∂t2
= − Γj

kl,m

∂xk

∂t

∂xl

∂t
Jm + Γj

lqΓ
q
ik

∂xi

∂t

∂xl

∂t
Jk

− Γj
kpΓ

p
mn

∂xk

∂t

∂xm

∂t
Jn − Γj

qkΓq
il

∂xi

∂t

∂xl

∂t
Jk

+ Γj
ik,l

∂xi

∂t

∂xl

∂t
Jk − Γj

kp

∂2xk

∂t2
Jp

− Γj
kl

(

∂Jk

∂t

∂xl

∂t
+

∂xk

∂t

∂J l

∂t

)

− ∂sΓ
j
kl(s)|s=0

∂xk

∂t

∂xl

∂t
− Γj

kp,m

∂xm

∂t

∂xk

∂t
Jp.

(5.13)

Rearranging terms, then

∂2Jj(t)

∂t2
= Γj

ik,l

∂xi

∂t

∂xl

∂t
Jk − Γj

kl,m

∂xk

∂t

∂xl

∂t
Jm + Γj

lqΓ
q
ik

∂xi

∂t

∂xl

∂t
Jk

− Γj
kpΓ

p
mn

∂xk

∂t

∂xm

∂t
Jn − Γj

kp,m

∂xm

∂t

∂xk

∂t
Jp − Γj

kp

∂2xk

∂t2
Jp

− Γj
kl

∂xk

∂t

∂J l

∂t
− Γj

kl

∂xl

∂t

∂Jk

∂t

− Γj
qkΓq

il

∂xi

∂t

∂xl

∂t
Jk − ∂sΓ

j
kl(s)|s=0

∂xk

∂t

∂xl

∂t
.

(5.14)

Noting that for the Levi-Civita connection, one has

(5.15) Γj
qp = Γj

pq,
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and renaming dummy indices, Eq. (5.14) becomes

∂2Jj

∂t2
=
(

Γj
ik,l − Γj

il,k + Γj
lqΓ

q
ik − Γj

kpΓ
p
li

) ∂xi

∂t

∂xl

∂t
Jk

− Γj
kp,m

∂xm

∂t

∂xk

∂t
Jp − Γj

kp

∂2xk

∂t2
Jp − Γj

kl

∂xk

∂t

∂J l

∂t

− Γj
pk

∂xk

∂t

(

∂Jp

∂t
+ Γp

mn

∂xm

∂t
Jn

)

− ∂sΓ
j
kl(s)|s=0

∂xk

∂t

∂xl

∂t
.

(5.16)

Next, using the expression for the covariant derivative, one has

D2Jj

Dt2
=

∂

∂t

(

DJj

Dt

)

+ Γj
kp

∂xk

∂t

DJp

Dt

=
∂

∂t

(

∂Jj

∂t
+ Γj

kp

∂xk

∂t
Jp

)

+ Γj
kp

∂xk

∂t

DJp

Dt
,

(5.17)

or

D2Jj

Dt2
=

∂2Jj

∂t2
+ Γj

kp,m

∂xm

∂t

∂xk

∂t
Jp + Γj

kp

∂2xk

∂t2
Jp + Γj

kp

∂xk

∂t

∂Jp

∂t

+ Γj
kp

∂xk

∂t

(

∂Jp

∂t
+ Γp

mn

∂xm

∂t
Jn

)

.

(5.18)

Also it is known that the Riemann curvature tensor is given by [16]

(5.19) Rj
ikl = Γj

il,k − Γj
ik,l + Γj

kpΓ
p
li − Γj

lqΓ
q
ik.

Substituting Eqs. (5.16) and (5.19) in Eq. (5.18), one obtains the so-called lifted
Jacobi equation [8],

(5.20)
D2Jj

Dt2
+ Rj

ikl

∂xi

∂t

∂xl

∂t
Jk + ∂sΓ

j
kl(s)|s=0

∂xk

∂t

∂xl

∂t
= 0.

This equation is useful for investigations of the global behavior of geodesics and
their extrapolation to nonvanishing values of the parameter s [8].

For gij independent of s, one has

(5.21) ∂sΓ
j
kl(s)|s=0 = 0,

the last term of Eq. (5.20) is then vanishing, and one obtains the standard Jacobi
equation for the Jacobi vector Jj [13],

(5.22)
D2Jj

Dt2
+ Rj

ikl

∂xi

∂t

∂xl

∂t
Jk = 0.

Equation (5.22) is also known as the equation of geodesic deviation [24],[16],
measuring the local convergence or divergence of neighboring geodesics, and it
is useful in the determination of possible geodesic conjugate points [13], [8].

Next consider the factor in the last term of the lifted Jacobi equation, Eq.
(5.20),

(5.23) Lj
kl ≡ ∂sΓ

j
kl(s)|s=0.
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Substituting Eq. (5.3) in Eq. (5.23), one has

(5.24) Lj
kl ≡

{

∂s

[

1

2
gjm(s)(gkm,l(s) + glm,k(s) − gkl,m(s)

]}

|s=0

,

or equivalently,

(5.25) Lj
kl ≡

∂gjm(s)

∂s |s=0
Γmkl +

1

2
gjm(g′km,l + g′lm,k − g′kl,m),

in which

(5.26) g′km ≡ ∂sgkm(s)|s=0.

Next, the covariant derivative of g′km is given by [16]

(5.27) g′km;l = g′km,l − g′kiΓ
i
ml − g′miΓ

i
kl.

Then substituting Eq. (5.27) in Eq. (5.25) and using Eq. (5.15), one obtains

Lj
kl ≡

∂gjm(s)

∂s |s=0
Γmkl +

1

2
gjm(g′km;l + g′kiΓ

i
ml + g′miΓ

i
kl

+ g′lm;k + g′liΓ
i
mk + g′miΓ

i
kl

− g′kl;m − g′kiΓ
i
lm − g′liΓ

i
km),

(5.28)

or

Lj
kl ≡

1

2
gjm(g′km;l + g′lm;k − g′kl;m)

+
∂gjm(s)

∂s |s=0
Γmkl + gjmg′miΓ

i
kl.(5.29)

Next, one notes that

(5.30) (gjmgmi)
′ = (δj

i )
′ = 0,

and therefore

(5.31) gjm(0)

(

∂

∂s
gmi(s)

)

|s=0

= −

(

∂gjm(s)

∂s

)

|s=0

gmi(0).

Multiplying both sides of Eq. (5.31) by Γi
kl, one obtains

(5.32) gjmg′miΓ
i
kl = −

(

∂gjm(s)

∂s

)

|s=0

Γmkl,

so that Eq. (5.29) reduces to

(5.33) Lj
kl ≡

1

2
gjm(g′km;l + g′lm;k − g′kl;m).

Finally then combining Eqs. (5.20), (5.23) and (5.33), one obtains

(5.34)
D2Jj

Dt2
+ Rj

ikl

∂xi

∂t

∂xl

∂t
Jk +

1

2
gjm(g′km;l + g′lm;k − g′kl;m)

∂xk

∂t

∂xl

∂t
= 0.
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Next define the vector field,

(5.35) Cj ≡
1

2
gjm(g′km;l + g′lm;k − g′kl;m)

∂xk

∂t

∂xl

∂t
,

which is independent of the Jacobi field Jj . Equivalently, by symmetry, Eq. (5.35)
can also be written as

(5.36) Cj ≡
1

2
gjm(2g′km;l − g′kl;m)

∂xk

∂t

∂xl

∂t
.

Substituting Eq. (5.35) in Eq. (5.34), one obtains the second-order differential
equation,

(5.37)
D2Jj

Dt2
+ Rj

ikl

∂xi

∂t

∂xl

∂t
Jk + Cj = 0,

the so-called ‘lifted Jacobi equation’ [8]. Nielsen and Dowling used the lifted
Jacobi equation, Eq. (5.37), to deform geodesics from the value q = 1 for the
penalty parameter to much larger values, and this enabled them to define a so-
called ‘geodesic derivative’ and to deform a geodesic as the penalty parameter
is varied without changing the fixed values U = 1 and U = Uf of the initial and
final unitary transformation corresponding to a quantum computation [8].

Proceeding to solve the lifted Jacobi equation, Eq. (5.37), one first rewrites
Eq. (5.18) as

D2Jj

Dt2
=

∂2Jj

∂t2
+ 2Γj

kp

∂xk

∂t

∂Jp

∂t
+ Γj

kp,m

∂xm

∂t

∂xk

∂t
Jp + Γj

kp

∂2xk

∂t2
Jp

+ Γj
kp

∂xk

∂t
Γp

mn

∂xm

∂t
Jn,

(5.38)

and renaming dummy indices in the last term, then

D2Jj

Dt2
=

∂2Jj

∂t2
+

(

2Γj
kp

∂xk

∂t

)

∂Jp

∂t

+

(

Γj
kp,m

∂xm

∂t

∂xk

∂t
+ Γj

kp

∂2xk

∂t2
+ Γj

kq

∂xk

∂t
Γq

mp

∂xm

∂t

)

Jp,

(5.39)

or equivalently

(5.40)
D2Jj

Dt2
=

∂2Jj

∂t2
+ Aj

p

∂Jp

∂t
+

(

3
∑

n=1

(n)Bj
p

)

Jp

where

(5.41) Aj
p ≡

(

2Γj
kp

∂xk

∂t

)

,

and

(5.42) (1)Bj
p ≡ Γj

kp,m

∂xm

∂t

∂xk

∂t
,
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(5.43) (2)Bj
p ≡ Γj

kp

∂2xk

∂t2
,

(5.44) (3)Bj
p ≡ Γj

kq

∂xk

∂t
Γq

mp

∂xm

∂t
.

Next Eq. (5.37) can written as

(5.45)
D2Jj

Dt2
+ (4)Bj

pJ
p + Cj = 0,

where

(5.46) (4)Bj
p ≡ Rj

ipl

∂xi

∂t

∂xl

∂t
.

Next substituting Eq. (5.45) in Eq. (5.40), one obtains

(5.47)
∂2Jj

∂t2
+ Aj

p

∂Jp

∂t
+ Bj

pJ
p + Cj = 0,

where

(5.48) Bj
p =

4
∑

n=1

(n)Bj
p.

Next define the column vectors

(5.49) J ≡
[

Jj
]

,

(5.50) C ≡
[

Cj
]

,

and the matrices

(5.51) A ≡
[

Aj
p

]

,

(5.52) B ≡
[

Bj
p

]

=

[

4
∑

n=1

(n)Bj
p.

]

.

Then Eq. (5.47) becomes

(5.53)
∂2J

∂t2
+ A

∂J

∂t
+ BJ + C = 0.

Next defining the column vector

(5.54) K ≡

[

J1

J2

]

≡

[

J
∂J
∂t

]

,

then Eq. (5.53) is equivalent to

(5.55)
∂K

∂t
≡

[

0 I
−B −A

]

K −

[

0
C

]

.
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The homogeneous part of Eq. (5.55) with C = 0 is equivaalent to the Jacobi
equation, Eq. (5.22), and is given by

(5.56)
∂K0

∂t
≡ MK0,

where the matrix M is given by

(5.57) M ≡

[

0 I
−B(t) −A(t)

]

,

in which the time dependence of A and B is indicated explicitly. The solution to
the Jacobi equation, Eq. (5.56), is given in terms of the time-ordered exponential
[9],[25] namely,

(5.58) K0(t) =



I +

∞
∑

n=1

1

n!

t
∫

0

dt1..

t‘
∫

0

dtnT (M(t1)...M(tn))



K0(0),

in which T denotes the time ordering operator. Thus, Eq. (5.58) gives the Jacobi
field and can be expressed formally as

(5.59) K0(t) = T exp





t
∫

0

dt′M(t′)



K0(0),

or defining the operator

(5.60) Et ≡ T exp





t
∫

0

dt′M(t′)



 = I+
∞
∑

n=1

1

n!

t
∫

0

dt1..

t
∫

0

dtnT (M(t1)...M(tn)),

Eq. (5.59) can be written as

(5.61) K0(t) = EtK0(0),

Also, it follows from Eq. (5.60 ) that

∂Et

∂t
= M(t) +

∞
∑

n=2

1

n!
n

t
∫

0

dt1..

t
∫

0

dtn−1T (M(t1)...M(tn−1)M(t))

= M(t) + M(t)

∞
∑

n=2

1

(n − 1)!

t
∫

0

dt1..

t
∫

0

dtn−1T (M(t1)...M(tn−1))

= M(t)



I +

∞
∑

n=1

1

n!

t
∫

0

dt1..

t
∫

0

dtnT (M(t1)...M(tn))



 ,(5.62)

or equivalently then substituting Eq. (5.60), one obtains

(5.63)
∂Et

∂t
= M(t)Et.
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Next, it follows that the solution to the inhomogeneous equation, Eq. (5.55)
is given by

(5.64) K(t) = EtK(0) − Et

t
∫

0

drE−1
r

[

0
C(r)

]

,

This is the lifted Jacobi field. To see that Eq, (5.64) solves the inhomogeneous
equation, Eq. (5.55), note that using Eqs. (5.64) and (5.63) one has

∂K(t)

∂t
=

∂Et

∂t
K(0) −

∂Et

∂t

t
∫

0

drE−1
r

[

0
C(r)

]

− EtE
−1
t

[

0
C(t)

]

= M(t)EtK(0) − M(t)Et

t
∫

0

drE−1
r

[

0
C(r)

]

−

[

0
C(t)

]

.

(5.65)

Next substituting Eqs. (5.61), (5.64) and (5.57) in Eq. (5.65), then

∂K(t)

∂t
= M(t)EtK(0) + M(t)K(t) − M(t)EtK(0) −

[

0
C(t)

]

=

[

0 I
−B(t) −A(t)

]

K(t) −

[

0
C(t)

]

,

(5.66)

and thus Eq. (5.55) is in fact satisfied by Eq. (5.64).

6. Conclusion

In this expository work, the Riemann curvature, geodesic equation, and lifted
Jacobi equation on the manifold of the SU(2n) group of n-qubit unitary opera-
tors with unit determinant were explicitly derived using the Lie algebra su(2n).
The Riemann curvature is given by Eqs. (3.24), (3.12), (3.8), and (3.9). The
geodesic equation is given by Eqs. (4.10) and (4.5). The Jacobi equation and
its solution are given by Eqs. (5.22) and (5.58), respectively. The lifted Jacobi
equation is given by Eqs. (5.37), (5.36), and (3.24), and the solution is given by
Eq. (5.64) together with the supporting equations, Eqs. (5.57), (5.60), (5.49)-
(5.52), (5.54), (5.36), (5.41), (5.48), (5.42)-(5.44), and (5.46).These equations
are germane to investigations of the global characteristics of geodesic paths [3],
[13] and minimal complexity quantum circuits [8], [18], [4].
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