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ON S-3 LIKE FOUR-DIMENSIONAL FINSLER SPACES

M. K. GUPTA AND P. N. PANDEY

ABSTRACT. In 1977, M. Matsumoto and R. Miron [9] constructed an or-
thonormal frame for an n-dimensional Finsler space, called ‘Miron frame’.
The present authors [1, 2, 3, 10, 11] discussed four-dimensional Finsler
spaces equipped with such frame. M. Matsumoto [7, 8] proved that in
a three-dimensional Berwald space, all the main scalars are h-covariant
constants and the h-connection vector vanishes. He also proved that in a
three-dimensional Finsler space satisfying T-condition, all the main scalars
are functions of position only and the v-connection vector vanishes [6, 7].
The purpose of the present paper is to generalize these results for an S-3
like four-dimensional Finsler space.

1. PRELIMINARIES

Let M* be a four-dimensional smooth manifold and F'* = (M%, L) be a four-
dimensional Finsler space equipped with a metric function L(z,y) on M*. The
normalized supporting element, the metric tensor, the angular metric tensor
and Cartan tensor are defined by [; = @L, 9ij = %@@LQ, hij = LéiéjL and
Cijr = %3kgij respectively. The torsion vector C? is defined by % = C;kgjk.
Throughout this paper, we use the symbols d; and d; for 8/dy" and 9/dx’
respectively. The Cartan connection in the Finsler space is given as CT' =
( j?k, G;, j’k) The h- and v-covariant derivatives of a covariant vector X;(x,y)
with respect to the Cartan connection are given by

(1.1) Xij; = 0;Xi — (OnX;)G) — Fj; X,
and
(1.2) Xil; = 0;X; — C[; X,..
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The Miron frame for a four-dimensional Finsler space is constructed by the
unit vectqrs (e’l), 612), eg), e;)). The first vector ezl) is the normz‘ﬂizedlsupporting
element [* and the second €y 18 the normalized torsion vector m* = C*/¢, where ¢
is the length of the torsion vector C*. The third eg) = n’ and the fourth efl) =

are constructed by the method of Matsumoto and Miron [9]. With respect to
this frame, the scalar components of an arbitrary tensor T are defined by

(1.3) Top = T;ea)ie/]g).
From this, we get
(1.4) T} = Tapelyep);,

where summation convention is also applied to Greek indices. The scalar com-
ponents of the metric tensor g,; are ¢, - Therefore we get

(1.5) 9i; = Lil; +m;m; +nn; +pp;.

Let H 5, and V)5 /L be scalar components of the h- and v-covariant deriva-
tives efx)lj and efx)\ ; respectively of the vectors efl), then

(1.6) €0y = Haypy€5)€4);5
and
(1.7) Legylj = Viaypy €564,

Ha) Gy and Va) 5, are called h- and v-connection scalars respectively and are
positively homogeneous of degree 0 in y.
Orthogonality of the Miron frame yields

Hoypy = —Hpyoqy and Voyg, = =V .

Also we have H, ), =0 and V)5 =5, — 0501, [7].
Now we define Finsler vector fields :

hy = Hyzoeyyis Ji = Huyoyeoyir Ki = Hayany5
and

U; = ‘/2)3767)1'7 Ui = V4)2767)i7 w; = V3)4'yew)i‘
The vector fields h;, j;, k; are called h-connection vectors and the vector fields u,,
v;, w,; are called v-connection vectors. The scalars H2)3w H )27 H 3)4~ and ‘/2)37,
1/4)27, V3) 4 Are considered as the scalar components h., j., k, and u., v, w,
of the h- and v-connection vectors respectively with respect to the orthonormal
frame.

Let C(w7 are the scalar components of LC’ijk then

(18) LCZ]kJ = Caﬁ,yea)ieﬁ)je,y)k.
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The main scalars of a four-dimensional Finsler space are given by [1, 3, 11]
Caog = A, Cgz3 = B, Cyyy =C, Uspp =D,
Csg3 =FE, Cypg =F, Cy33 =G, Cygy = H.

We also have C3yy = —(D + E), Cyyy = —(F + G) and

(1.9) A+ B+ C = Le.

L¢ is called the unified main scalar.
Taking h-covariant differentiation of (1.4), we get

(1.10) Tk = (0kTap)enyep); + Tapenyrea); + Tapeo)Ca)iin

where 0, = 0, — G, 8}. If T,.5., are scalar components of T%, , i.e.
k? 18»7 j|k‘

(111) T;”ﬂ = Taﬁ7»ye7;)€ﬁ)j€,y)k,
then we obtain
(1.12) Tapr = OrTap)edy + TusHyyay + TapHu gy

Similarly, if T, 3., are scalar components of LT;|,€ , i.e.

(1.13) LT[ = Tapn€h€5)€)ks

then we get

(1.14) Tapny = L(a'kTaﬁ)es) + Ty Viyary + TapViypy-

The scalar components 1,3, and T4g;, are respectively called h- and v-scalar
derivatives of scalar components T3 of T'.

2. T-CONDITION
The tensor Th;ji. defined by
(2.1) Thijk = LChijlk + Chijle + Chirly + Chijli + Chijln,

is called T-tensor in a Finsler space. It is completely symmetric in its indices.
A Finsler space is said to satisfy T-condition if the T-tensor T},;, vanishes
identically.

We are concerned with the tensor Chj|x. From (1.8) and (1.13), it follows
that

LQChij\k + LChijly = Caﬂ'y;éea)heﬁ)iefy)jeé)kv
which implies
(2.2) L2Chijli = (Capyis — Capr015)€ayns)i€y)iCok:
Therefore the scalar components T, 3,5 of LT}, are given by

Topys = Capryis + 01aC8ys + 618Cays + 017Caps-
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From Thijklk = 0, we have Ty5,1 = 0. Thus the surviving components Ty
are only

(2.3) Togys = Caprss @ By 7, 6=2,3,4.
Using (1.14), the explicit forms of Cy3,;5 are obtained as follows:
(a) Caza,5 = A5 — 3Dug + 3F vy,
b) Ca33.,56 = B.s + (2D — E)us + Gvs — 2Hwy,
¢) Cosa;s = Cis + (D + E)us — (3F + G)vs + 2Hwy,
) C322:6 = D.s + (A —2B)us + 2Hvs — Fwg,
e) Cssz.s = E.5 + 3Busy — 3Gwy,
(2.4) f) Cia22:56 = F.'s —2Hugs — (A — 2C)vs + Dwy,
g) Cazs.s = G5 + 2Hus — Bvg + (2D + 3E)wy,
h) Cog4.5 = Hs + (F — G)us — (2D + 3E)vs + (B — C)wy,
i) Cs44.,6 = —D.5 — E.s + Cug — 2Hvs + (F + 3G)ws,
5) Crass = —F5 — G5 — 3Cv5 — (3D + 3E)w,
L k) Cigyis = —Cps,

where A ; = L(ékA)eg). From (1.9) and (2.4), we get

=9

Ca22;56 + Ca33.5 + Coaas = Ay + Bs+ Cs = (A+ B+ C) s = (Lc) 4,
(2.5) C322;5 + C333:5 + Csaa;5 = L ug,

Ca22:5 + Ca33:5 + Caaa.5 = —LC v5.
Thus from (2.3), (2.4) and (2.5), we have

Theorem 2.1. In a four-dimensional Finsler space satisfying T-condition, the
v-connection vectors u,; and v; vanish identically. Also main scalar A and the
unified main scalar L¢ are v-covariant constants (functions of position only).
Furthermore, if v-connection vector w; vanishes then all the main scalars are
functions of position only.

3. BERWALD SPACE

A Berwald space is characterized by Cp;j;r = 0. From (1.8) and (1.11), it
follows that

(3.1) LChijik = Capr,6€0)n€3)i€4)€6)k

where C 5. 5 are given by

Capy,s = (5kCa67)6§) + CH/BWHM)CHS + CamHu)B5 + CaﬁuHu)75'



ON S-3 LIKE FOUR-DIMENSIONAL FINSLER SPACES 309

The explicit forms of C,3.,s are obtained as follows:

a) Cagas =A 5 — 3Dhs + 3Fjs,

b) Cosss =B s+ (2D — E)hs + Gjs — 2Hky,

c) Coaas =C 5+ (D + E)hs — (3F + G)js + 2Hks,
d) Csa9.5 =D 5 + (A — 2B)hs + 2H js — Fk,

e) Css3,6 =F 5 + 3Bhs — 3Gk;,

(3.2) ) Cuzz.s =F 5 — 2Hhs — (A — 2C)js + Dk,

9) Cuzz.s =G s+ 2Hhs — Bjs + (2D + 3E)k;,

h) Cosas =H s + (F — G)hs — (2D + 3E)js + (B — C)ks,
) Csgus =—Ds—Es+ Chs —2Hjs + (F + 3G)ks,
J) Caaas =—F5— G5 —3Cj; — (3D + 3E)ks,

k) Cigy,s =0.

\

From (1.9) and (3.2), we get

C322,5 + C333,5 + C3aa.5 = (A+ B + C)hs = Lchy,
(3.3) Ca22.5 + Cuzz,s + Craas = —(A+ B+ C)js = — Lcjs,
Ca22,56+Ca335+Couss =(As+Bs+Cs)=(A+B+C);.

Thus from (3.2) and (3.3), we have:

Theorem 3.1 ([11]). In a four-dimensional Berwald space, the h-connection
vectors h; and j; vanish identically. Also main scalar A and the unified main
scalar L¢ are h-covariant constants. Furthermore, if h-connection vector k; van-
ishes then all the main scalars are h-covariant constants.

4. v-CURVATURE TENSOR

The v-curvature tensor is defined by

(4-1) Shijk = C;;kcijr

- Cicjczk:r
The scalar components S, 5. 5 of LQShijk are given by

(4.2) L2Shz’jk = Sa675ea)heﬁ)ie~y)j€6)k‘
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Since Sy, ;. 1s skew-symmetric in h and ¢ as well as j and k and Sy, ;. = S0, = 0,
the surviving independent components of .S, s are only six, which are given by
Sagag = C23,Clz2 — C22,,Cpzs = D* + B> + H* — AB — DE — FG,
Sa424 = C24,,Cria2 — C22,,Cpas = 2F* + H* + C* + D* — AC + DE + FG,
S3434 = C34,Clu34 — C33,Coaq = H*> + 2G* + D* + 2E? + 3DE — BC + FG,
Sa334 = C24,Clzz — C23,Cp34 = BF +2EH 4+ CG — BG,
S9434 = C24,Cp34 — Co3,Cpas = 2FH +2GH —2CD — CE + BD + BE,
So324 = C24,,Cl103 — Co2,Cpzs = 2FD + BH + CH — AH — DG + EF.

A Finsler space F(n > 4) is called S-3 like, if there exists a scalar S such
that the curvature tensor Sj;j, of F™ is written in the form

Let us consider a four-dimensional S-3 like Finsler space. Then
L?Syin = S(hnjhix — harhi)
= S[(mym; +npn; + pyp;)(m;my +n;ny + ppy)
— (mymy, + nypny + pppg) (mymy; +nn; + p;p;)]
= S[(mpn; —mny)(mny, —myn;) + (myp; — m;py) (M), — mep;)
+ (npp; — ipp) 0Py — ;)]
This implies that the scalar components are
Sozaz = 5, S2zs =0, Sozza =0, Sogoq4 =S5, So434 =0, S3434 =S5,

M. Matsumoto [5] proved that the v-curvature S of an S-3 like Finsler space
is function of position only. Therefore in S-3 like four-dimensional Finsler space,
six functions D? + B?2 4+ H?> — AB — DE — FG, 2F? + H?> + C? + D? — AC +
DE + FG, H? +2G? + D?> 4+ 2E? + 3DFE — BC + FG, BF +2EH + CG — BG,
2FH+2GH—-2CD—-CE+BD+BFEand 2FD+BH+CH—-AH— DG+ EF are
functions of position only. In view of theorem 2.1 and equation (1.9), functions A
and A+ B+ C are functions of position only in a four-dimensional Finsler space
satisfying T-condition. Thus, in an S-3 like Finsler space satisfying T-condition,
eight functions A, A+ B+C, D>*+B?+H?-AB—-DE—-FG,2F?+H?*4+C?+D?—
AC+DE+FG, H2+2G?+D?+2E?>4+3DE—~BC+FG, BF+2EH+CG— BG,
2FH+2GH —-2CD—-CE+BD+BE and2FD+BH+CH — AH - DG+ EF
are functions of position only. These eight functions are clearly independent and
therefore the main scalars A, B,C, D, E,F,G and H are functions of position
only. Thus, we have:

Theorem 4.1. In an S-3 like four-dimensional Finsler space satisfying T-
condition, all the main scalars are functions of position only.
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It is clear from (2.4) that if all the main scalars are functions of position only
in a Finsler space satisfying 7T-condition, then the v-connection vectors u,,v;,
and w; vanish. This leads to:

Theorem 4.2. In an S-3 like four-dimensional Finsler space satisfying T-

condition, the v-connection vectors u;,v;, and w; vanish tdentically.

A Landsberg space is characterized by Cj;jjx = Chax|j- H. Yasuda [12] proved
that in an S-3 like Landsberg space, the v-curvature S is constant. In view
of this result, in an S-3 like four-dimensional Landsberg space, six independent
functions D?>+ B2+ H? - AB—DE—FG, 2F?+ H?>+C?+D? - AC+DE+FG,
H?42G?+D?+2FE?*+3DE—-BC+FG, BF+2EH+CG—BG,2FH +2GH —
2CD—-CE+BD+ BE and 2FD+ BH +CH — AH — DG + EF are constants.
Since every Berwald space is a Landsberg space, these six functions are constant
in an S-3 like Berwald space. From theorem 3.1 and equation (1.9), functions A
and A + B + C are h-covariant constants in a four-dimensional Berwald space.
Therefore in an S-3 like Berwald space, eight independent functions A, A+B+C,
D? + B>+ H?> — AB — DE — FG, 2F? + H> + C? + D? — AC + DE + FQG,
H? +2G? + D? + 2E? + 3DE — BC + FG, BF + 2EH + CG — BG, 2FH +
2GH —2CD - CE+ BD + BE and 2FD + BH +~CH — AH — DG + EF are
h-covariant constants and therefore the main scalars A, B, C, D, E, F, G and
H are h-covariant constants.

Thus, we have:

Theorem 4.3. In an S5-8 like four-dimensional Berwald space, all the main
scalars are h-covariant constants.

It is clear from (3.2) that if all the main scalars are h-covariant constants in
a Berwald space, then the h-connection vectors h;, j; and k; vanish.
This leads to:

Theorem 4.4. In an S-3 like four-dimensional Berwald space, the h-connection
vectors h;, j; and k; vanish identically.

In view of theorems 4.1, 4.2, 4.3 and 4.4, we can say

Theorem 4.5. In an S-3 like four-dimensional Berwald space satisfying T-
condition, all the main scalars are constants and the h- and v-connection vectors
vanish.

F. Ikeda [4] proved that a Landsberg space satisfying T-condition is a Berwald
space. Thus, we may conclude:

Theorem 4.6. In an S-3 like four-dimensional Landsberg space satisfying T-
condition, all the main scalars are constants and the h- and v-connection vectors
vanish.
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