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A NOTE ON VARIATIONAL AND METRIZABLE

CONNECTIONS

ALENA VANŽUROVÁ

Abstract. We treat the problem of metrizability of a linear connection
in the context of the inverse problem of the calculus of variations. Partic-
ularly, we show that in a 2-dimensional manifold endowed with a nowhere
flat connection, Helmholtz conditions can be used to answer the metriz-
ability problem in terms of components of the connection. In dimM ≥ 3,
the question is open.

1. SODEs in normal form, the formalism

Let M be a (smooth) n-dimensional manifold with an atlas (Uα, (x
i)α), let

TM denote its tangent bundle with bundle projection p = pM : TM → M
and the adapted atlas (p−1(Uα), (xi, yi)α). Consider the system of SODEs for
functions t 7→ xk(t) solved to second derivatives:

(1) ẍi = f i(t, x, ẋ), i = 1, . . . , n.

Solutions to (1) are smooth curves c : R →M , c(t) = (xi(t)) defined on an open
neighborhood of 0 ∈ R, such that

(2) c̈(t) =
d2xi

dt2
= f i

(

t, x(t),
dx

dt

)

.

If such curves exist they are in fact paths (geodesics) of the so-called semispray
connection Γ on R × TM (non-linear connection in general, with components
Γi = f i). Particularly, when the functions f i in (1) are quadratic forms in
derivatives, (1) represent geodesics of a linear connection (defined on M or on
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TM). To give the geometrical setting for modelling time-dependent SODEs
(1), one possibility is to accept the following mathematical formalism. We take
an extended (n + 1)-dimensional “configuration” graph space R ×M regarded
as the fibred manifold (R ×M,π0,R) with projection π0 = pr1 : R ×M → R.
On R ×M , SODEs can be expressed locally as (1) where solutions to (1) are
curves on R ×M with the standard graph property that they never go vertical
over the fibration. Further, we consider the (2n + 1)-dimensional “evolution”
graph space E = R × TM , regarded again as fibred manifold over R, with
projection π1 onto the first component, eventually, which is more precise, the jet
prolongations of π0 up the oder two. Instead of curves in M , we use curve graphs
γ(t) = (t, c(t)), curves in R ×M , i.e. sections γ : R → R ×M of the projection
π0 = R×M → R. Note that the first and second (first, respectively) derivatives
appearing in (1) may be viewed as local fiber coordinates in the second jet
prolongation J2(R×M) (in the first jet prolongation J1(R×M), respectively) of
the fibred manifold π0. Moreover, the first jet prolongation J1π0 : J1(R×M) →
R is canonically identified with π1 : R × TM → R. Similarly, the second jet
prolongation J2π0 : J2(R×M) → R identifies with π2 : R×T 2M → R. For any
(local) section γ : R → R ×M of the fibred manifold π0 we can take its first jet
prolongation j1γ : R → J1(R×M), J1π0◦j

1γ = id, which can be regarded (after
identification) as a section of R × TM → R, and the second jet prolongation
j2γ : R → J2(R ×M), J2π0 ◦ j

2γ = id, regarded as a section of R × T 2M → R.
We also make use of the canonical jet projections π2,1 : J2(R×M) → J1(R×M),
π1,0 : J1(R×M) → J0(R×M) = R×M ; besides we have π : J1(R×M) →M ,
j1t γ 7→ γ(t).

On R × M , it is natural to consider local coordinates (t, xi), i = 1, . . . n,
adapted to the product structure, where t is the (global) coordinate on R, and
xi are local coordinates on M (t and the family of coordinates xi transform
independently). On R × TM , fiber coordinates (t, xi, yi = ẋi) adapted to the

projection are induced, with coordinate transformation ȳi = ∂ȳi

∂yj y
j . On TTM ,

adapted local coordinates (xi, yi, dxi, dyi) are used, [7].
Recall that the vector bundle of 2-velocities T 2M ⊂ TTM (i.e. of two-jets of

curves into M) is distinguished as a submanifold of the second tangent bundle
consisting of all ξ ∈ TTM such that pTM (ξ) = TpM(ξ) (a “common kernel”), or
alternatively, consisting of vectors on which the canonical involution1 s : TTM →
TTM acts as the identity map, [7]. Elements of T 2M are distinguished by
yi = dxi, and the last coordinate will be written here2 as zi; (t, xi, yi, zi) are local
fiber coordinates on R×T 2M . For jet prolongation, locally, when γ(t) = (t, c(t))

1Locally, s : (xi, yi, dxi, dyi) 7→ (xi, dxi, yi, dyi).
2instead of more common ẍi.
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then j1t γ = (t, c(t), dc(t)
dt

) and j2t γ = (t, c(t), dc(t)
dt

, d2c(t)
dt2

). On E, the SODEs are

dxi

dt
= yi,

dyi

dt
= f i(t, xk, yk).

The tangent bundle TM is equipped with the Liouville’s vector field ∆ ∈
X (TM) that generates the one-parameter group {ht} of homotheties on TM
(locally, ht : (xi, yi) 7→ (xi, etyi), hence coordinate expression of ∆ is yi

∂
∂yi )

and with the canonical type (1, 1) tensor field S ∈ T 1
1 (TM) that arises as a

vertical lift of type (1, 1) identity tensor field I on M , [6], and is called vertical
endomorphism on TM . In adapted local coordinates, S = ∂

∂yi ⊗ dxi; regarded

as a vector-valued 1-form, it is characterized by S
(

∂
∂xi

)

= ∂
∂yi , S

(

∂
∂yi

)

= 0.

For any w ∈ TM , KerSw = ImSw = VerwTM , and S2
w = 0. That is why it is

also called the canonical almost tangent structure on TM .
A vector field W ∈ X (TM) satisfying SW = ∆ is often called a semispray,

or second order differential equation; W is called a spray if moreover, it is ho-
mogeneous of degree 1, i.e. satisfies3 [∆,W ] = W .

The so-called (homogeneous) Grifone connection on TM is a (1, 1)-tensor

field Γ̂ on TM (or a vector-valued one-form) satisfying [8]

SΓ̂ = S, Γ̂S = −S.

If Γ̃i
k(xj , yj) are components of Γ̃ in local coordinates, the equations for geodesics

read ẍi + Γ̃i
kẋ

k = 0.

2. Tensor fields and connections related to SODEs in normal
form

Similar concepts as above can be considered on the (extended) evolution space
E = R × TM ≈ J1π0.

A semispray, or a second order differential equation field on the evolution
space E is a (global) vector field W ∈ X (J1π0) on J1π0 such that each integral
curve of the field is just the 1-jet of some section of the projection π0. Locally,
a semispray on J1π0 takes the form

(3) W =
∂

∂t
+ yi ∂

∂xi
+ Γi ∂

∂yi
.

Any system of ODEs (1) defines (locally) by (3) a semispray with Γi = f i.
A 1-form on E, ω ∈ Λ1(E), is contact if it annihilates natural lifts of curve

graphs, ω(j1γ) = 0 for any (local) section γ of π0. That is, contact forms
annihilate vector fields whose integral curves are naturally lifted from R ×M .
As a basis of the distribution of contact forms, we can take 〈ω1, . . . , ωn〉 where
ωi = dxi − yidt. In particular, ωi(W ) = 0 for any semispray W (SODE) on E.

3[ ] denotes the Fröhlicher-Nijenhius bracket [14],
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The canonical vertical endomorphism on E (arising again as a pull-back, a
vertical lift, of identity endomorphism on R×M ) is denoted by the same symbol
S. In local coordinates, using contact forms,

S =
∑

k

Vk ⊗ ωk =
∂

∂yk
⊗ (dxk − ykdt) = −∆ ⊗ dt+

∂

∂yk
⊗ dxk.

Now a semispray is equivalently characterized by S(W ) = 0 and dt(W ) = 1.
Given an evolution space E for a system of equations (1), we can construct a

particular decomposition of its tangent bundle TE ≈ R × T 2M induced by the
system. In TE, there is an intrinsic vertical subbundle V (E) consisting of the
vectors tangent to the fibres of the fibration π1,0, V (E) = Kerπ1,0, and a basis

for V (E) is formed by “vertical” vector fields ∂
∂yi = Vi,

V(E) = span {
∂

∂y1
, . . . ,

∂

∂yn
}.

Take the semispray W = ∂
∂t

+ yi ∂
∂xi + f i ∂

∂yi corresponding to (1), the distri-

bution D = span {W}, and introduce the functions

Γj
i = −

1

2
Vi(f

j) = −
1

2

∂f j

∂yi
.

Consider the Lie derivative LWS. The eigenspaces corresponding to the eigen-
values 1, 0,−1 of the vector-valued 1-form LWS are just V (E), D, and H(E)

where H(E) = span {H1, . . . , Hn}, Hi = ∂
∂xi − Γj

iVi. For X (E), we have

a distinguished frame 〈Vi,W,Hi〉, with the dual co-frame 〈ψi, dt, ωi〉 where
ψi = dyi − f idt+ Γi

jω
j .

We have the decomposition

(4) J2π0 ≈ T (E) = V (E) ⊕D ⊕H(E).

Denote by PV , PD, and PH projectors to the distributions from decomposition
(4), PV + PD + PH = IE where IE is the identity type (1, 1)-tensor field on
E. The so-called Douglas tensor, or Jacobi endomorphism Φ, arises as the Lie
derivative of the horizontal projector PH by W , composed with the vertical

projector, PV ◦ LWPH . To give the local expressions, denote Bi
j = − ∂fi

∂xj and

(5) Φi
j = W

(

1

2

∂f i

∂yj

)

−
∂f i

∂xj
−

1

4

∂f i

∂yk

∂fk

∂yj
= Bi

j − Γi
kΓk

j −W
(

Γi
j

)

.

Local expressions of the projectors and the Jacobi endomorphism are

(6) PV = Vk ⊗ ψk, PD = W ⊗ dt, PH = Hk ⊗ ωk, Φ = Φi
j Vj ⊗ ωi.
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3. Connections

A general (also non-linear, or jet, eventually Ehresmann, in the complete case,
[14]) connection on a fibered bundle p : Y → X can be introduced as a section
Γ: Y → J1Y of the projection π1,0 = J1p : J1Y → Y (“a jet field”, [23, p. 146]).
It generalizes the concept of classical linear (affine) connection on a manifold.
For our purpose, we use a jet connection on J1Y , a section Γ: J1Y → J2Y of
the projection π2,1 : J2Y → J1Y , in the particular case Y := R ×M → R.

Taking into account the identifications introduced above, under a semis-
pray connection we will understand a section Γ: R × TM → R × T 2M of the
projection π2,1 : R × T 2M → R × TM , π2,1 ◦ Γ = id. In local coordinates,
(t, xi, yi, zi) ◦ Γ = (t, xi, yi,Γi) where the functions Γi(t, x, y) on R × TM are
components of Γ (under coordinate transformations, they transform similarly as
second derivatives). Geodesics (paths, integral sections) of the given semispray
connection Γ are local sections γ of π0 such that Γ◦ j1γ = j2γ holds. In adapted
coordinates, this property is expressed by a system of n second order ODEs for
components of the corresponding local curves c : (−ε, ε) →M , c(t) = (ci(t))

(7)
d2ci

dt2
= Γi

(

t, c(t),
dc

dt

)

, i = 1, . . . , n,

that is, we get just (2) with f i = Γi.

Note that each Grifone connection Γ̂ on TM induces a particular semispray
connection on R × TM if we put Γi = −Γ̂i

k(x, y)yk.

4. The Inverse Problem

Under a first order Lagrangian on (R×M,π0,R) we understand a π1-horizontal4

n-form λ on R × TM . Locally, λ = Ldt where L(t, xk, yk) is (an analytic, or at
least C2) function on R × TM , called a Lagrangian function on R × TM . The
mappings L→ Ei(L) = d

dt
∂L
∂yi −

∂L
∂xi are sometimes referred to as Euler-Lagrange

operators corresponding to L, and

(8)

(

d

dt

∂L

∂yi
−
∂L

∂xi

)

(t, x(t), ẋi(t)) = 0

are Euler-Lagrange equations (along parametrized curves), in fact necessary con-

ditions for curves γ to be extremals of I(γ) =
∫ b

a
L(t, x(t), ẋ(t)) dt. It appears in

many branches of physics that the solution of some problems can be simplified if
the basic equations can be expressed in terms of a variational principle5. So it is
important to know which systems of fields or forces can be treated by Lagrange’s
method.

4Recall that a vector field ξ on R×TM is π1-vertical if Tπ1(ξ) = 0. A q-form η on R×TM

is π1-horizontal if for any π1-vertical ξ on R × TM , iξη = 0 holds.
5Hamilton’s principle in mechanics and Fermat’s principle in optics are well-known

examples.
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The strong inverse problem of Lagrangian dynamics (of the calculus of vari-
ations) is to give necessary and sufficient conditions for the given second order
differential equations Ei

(

t, xk, ẋk, ẍk
)

= 0, i = 1, . . . , n (“as they stand”) to be
the Euler-Lagrange equations for some (regular) Lagrangian function, that is, to
characterize Euler-Lagrange operators, [1] (technics of the variational bicomplex
are used at present). The first investigation of this question is due to H. von
Helmholtz [11] who found necessary integrability conditions for the second order
ordinary differential operator Ei. That is why the conditions are referred to as
the Helmholtz-type conditions in the present, although their (local) sufficiency
has been proved a bit later by A. Mayer [17].

On the other hand, the so-called weak inverse problem, also referred to as a
variational multiplier problem or variational integrating factors problem means
something a bit different. According to [10], Euler-Lagrange expressions Ei(L)
may contain second derivatives only linearly. Therefore without loss of gen-
erality, Euler-Lagrange equations can be written (i, j, k range over 1, . . . , n)
gij(t, x

k, ẋk) · ẍj + hi = 0, the second derivatives are put in evidence. We say
that Euler-Lagrange equations are normally expressed when they read6

(9) gij

(

ẍj − f j
)

= 0,

eventually gij ẍ
j + hi = 0. Now we can formulate the variational multiplier

problem as follows. We ask when the solutions of a system ẍj − f i = 0 are the
solutions of Ei(L) = 0 for some L (when we can rearrange the given equations so
that they become Euler-Lagrange equations), more precisely, we should decide
when there exist a non-degenerate functional matrix (gij(t, x

k, yk)) and a (regu-
lar) Lagrangian function L(t, xk, yk) on R × TM such that

(10)
∑

j

gijEj =
d

dt

∂L

∂ẋi
−
∂L

∂xi
= Ei(L).

If the answer is affirmative we should find all such pairs ((gij), L). In terms of
the functions f i, the corresponding Helmholtz conditions are given explicitely
as follows ([2]). There should exist functions gij such that

det(gij) 6= 0, gij = gji,
∂gij

∂yk
=
∂gik

∂yj
,

d

dt
(gij) +

1

2

∂fk

∂yj
gik +

1

2

∂fk

∂yi
gjk = 0,(H)

gik

[

d

dt

∂fk

∂yj
− 2

∂fk

∂xj
−

1

2

∂fs

∂yj

∂fk

∂ys

]

= gjk

[

d

dt

∂fk

∂yi
− 2

∂fk

∂xi
−

1

2

∂fs

∂yi

∂fk

∂ys

]

.

6Here gij(t, x, y), hi(t, x, y) = −gijfj , fj(t, x, y) can be viewed as functions on R × TM .



A NOTE ON VARIATIONAL AND METRIZABLE CONNECTIONS 389

5. Helmholtz-type conditions

The solution of the problem is still open, the answer (formulated in terms
of the given functions) is known only in particular cases (e.g. equations for
geodesics of a pseudo-Riemannian space, or Finsler space, respectively, are al-
ways variational in weak sense), despite of the fact that many authors interested
in the problem gave various necessary and sufficient Helmholtz-type conditions.
(There are many different ways of deriving the Helmholtz conditions, and their
concrete form for a given system might varry from author to author.) If the
system of SODEs takes the general form

(11) Ei

(

t, xk, ẋk, ẍk
)

= 0, i = 1, . . . , n

we have the following necessary and sufficient conditions [10]:

Theorem 5.1. A set of functions Ei : R×T 2M → R, i = 1, . . . , n take the form
of Euler-Lagrange operators of some first order Lagrangian λ = Ldt on R×TM
if and only if the following conditions are satisfied identically7 in any adapted
chart:

∂Ei

∂zk
−
∂Ek

∂zi
= 0,(12)

∂Ei

∂yk
+
∂Ek

∂yi
=

d

dt

(

∂Ei

∂zk
+
∂Ek

∂zi

)

,(13)

∂Ei

∂xk
−
∂Ek

∂xi
=

1

2

d

dt

(

∂Ei

∂yk
−
∂Ek

∂yi

)

.(14)

The Helmholtz conditions for the system (1), (9), consisting of a mixture
of algebraic and differential conditions, appear in some form in [4] and can be
written (following Sarlet’s matrix notation, [22]) as follows:

(15)
∂gij

∂yk
=
∂gik

∂yj
, g = gT , W (g) = gΓ + ΓT g, gΦ = ΦT g.

We suppose det(gij) 6= 0. In components, the last three conditions from (15)
read

gij = gji, W (gij) = −
1

2

(

gik

∂fk

∂yj
+
∂fk

∂yi
gkj

)

, gikΦk
j = Φk

i gkj .

To express existence conditions for a multiplier in terms of the given functions
f i only (e.g. to eliminate the multiplier g from (15)) is the hard problem. In
dimension n = 2, a complete answer for the inverse problem in the real analytic
class was given by Jesse Douglas in [4], and reinterpreted in [3] geometrically.
Very briefly, the Douglas’s cases I–IV are distinguished according to how many
of the tensors from {I,Φ,∇Φ,∇2Φ} are linearly independent of the previous
onces (here ∇ denotes the so-called dynamical covariant derivative).

7Here(xi, yi, zi) denote local coordinates on T 2M , see section 2.
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6. The metrizability of linear connections

The Fundamental Lemma of (pseudo-) Riemannian geometry states that
given a (non-degenerate) metric g on M there is a unique connection ∇ on M
that is symmetric and “compatible” with the metric in the sense that the metric
is covariantly constant with respect to the connection, ∇g = 0 (geometrically,
the scalar product is preserved under parallel transport). Such a connection is
called Riemannian, or Levi-Civita.

The metrizability problem is the “reverse” question: given a connection ∇
on M , find necessary and sufficient conditions for ∇ (formulated in terms of
the given connection) to be just the Levi-Civita connection of some metric,
eventually find all such metrics. A system of integrability conditions was given
in [5], cf. [26], many particular answers are known, an equivalent formulation
in terms of geodesic mappings can be given [19], and a system of differential
equations that controls (locally) this question was found in [18]. But even this
problem is far from being completely solved.

Note that a manifold (M,∇) endowed with a linear connection with com-
ponents Γk

ij (particularly, any Riemannian manifold (M, g) with the canoni-
cal Levi-Civita connection) determines a special semispray connection on the
fibered manifold π1 with components as quadratic forms in the first deriva-
tives, Γi = −Γi

jk(x)ẋj ẋk. The graphs of geodesics of (M,∇) coincide just with
geodesics of Γ.

Remark that if the curvature tensor is distinct from 0 in one point then from
continuity, it is does not vanish on an open neighborhood. The union of non-flat
regions is open. On flat regions, the connection is always metrizable.

If ∇ is a symmetric8 linear connection on an n-manifold M then equations
for geodesics (parametrized by arc length) ∇ċċ = 0 take in local coordinates the
well-known form

(16) ẍi + Γi
jk(x)ẋj ẋk = 0,

the most familiar particular subcase of (1) with f i(x, y) = −Γi
jk(x)yjyk. The

question, when does there exist a multiplier g(x) (depending on positions only,
with det(gij(x)) 6= 0 for any x ∈ M) that makes the system (16) variational,
comes quite naturally, [15], [16]. If this is the case then the system (16) is
equivalent to

(17) gij(ẍ
j + Γj

rs(x)ẋ
r ẋs) = 0.

8Without loss of generality, we can suppose that the connection is torsion-free, Γi
jk

(x) =

Γi
kj

(x), since the antisymmetric part of the connection has no influence on the form of the

autoparallel equations for geodesics.
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Using the notation and constructs introduced above we find in our case

Γ = (Γi
j(x, y)) = (Γi

js(x)y
s), W (Γi

j) =

(

(
∂Γi

js

∂xr
− Γi

jkΓk
rs)y

rys

)

,

(Bi
j) =

(

∂Γi
rs

∂xr
yrys

)

,
(

Γi
kΓk

j

)

=
(

Γi
krΓ

k
js

)

yrys.

The components of the Jacobi endomorphism Φ are

(18) Φi
j(x, y) = Ri

hjk(x)yhyk = −
∑

h<k

Ri
(hk)jy

hyk

where

Ri
hjk =

∂Γi
kh

∂xj
−
∂Γi

jh

∂xk
+
∑

s

(

Γi
jsΓ

s
kh − Γi

ksΓ
s
jh

)

are components of the Riemann curvature tensor9 R of ∇. So suppose there
exists a solution g(x) to the Helmholtz conditions (15). The first condition
holds trivially, and we are assuming symmetry of g; the third condition reads
∂gij

∂xh y
h = (gisΓ

s
jh+gjsΓ

s
ih)yh which is equivalent to10 ∇g = 0. Hence we checked:

Proposition 6.1. If there is a (local) solution g(x) to the Helmholtz conditions
(15) for (1) then g is a (local) metric compatible with ∇, and ∇ is just the
Levi-Civita connection for the pseudo-Riemannian manifold (M, g).

Moreover, if we introduce the curvature tensor in type (0, 4) by R̃(X,Y, Z,W ) =
g(W,R(X,Y )Z), with components Rihjk = gisR

s
hjk, the last condition from (15)

is just Rihkjy
hyk = Rjhiky

hyk, or equivalently Ri(hk)j = Rj(hk)i.

Remark 6.1. A similar problem can be formulated for Finsler case, [15] etc. From
(15), a complete hierarchy of algebraic equations on the variational multiplier
(and hence on the Riemannian metric) cen be obtained, involving the covariant
derivatives of the Jacobi endomorphism and the curvature tensor, [20].

7. Variational connections

We say that a linear connection ∇(Γi
jk) on M is variational in the restrictive

sense, in short restrictively variational if there exists a (Lagrangian) function11

L : R × TM → R and a non-singular type (0, 2) tensor field g : M → T 0
2 (M) on

M such that with respect to any local fibre chart, the functions

(19) −Ei(x, y, z) = gik(x)(zk + Γk
rs(x)y

rys), i = 1, . . . , n

9R(X, Y )Z = [∇X ,∇Y ]Z −∇[X,Y ]Z for X, Y, Z ∈ X (M), R
“

∂
∂xj , ∂

∂xk

”

∂

∂xh = Ri
hjk

∂
∂xi .

10It means that components of g are related to components of the connection by the well-
known formula Γℓ

ik
= 1

2
gℓj

`

∂kgij + ∂igjk − ∂jgki

´

.
11sufficiently differentiable, at least C2
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coincide with Euler-Lagrange expressions Ei(L) of L. Note that g is not a priori
supposed to be symmetric (g could be a “generalized metric” in the sense of
Eisenhart), but we find that symmetry follows in this case. The relationship
between restrictive variationality and metrizability for a linear connection on M
can be expressed as follows (cf. [15]):

Theorem 7.1. Given a manifold (M,∇) with linear connection, the following
conditions are equivalent:

(i) ∇ is variational in the restrictive sense;

(ii) the symmetric part ∇̃ of ∇ is metrizable;
(iii) there is a non-singular symmetric type (0, 2) tensor field g on M such

that

Γ̃i
jk =

1

2
giℓ

(

∂gjℓ

∂xk
+
∂gkℓ

∂xj
−
∂gjk

∂xℓ

)

;

Γ̃i
jk are components of the (symmetric) connection ∇̃, and giℓ are components

of the tensor g∗ dual to g in a natural pairing;
(iv) there is a non-singular symmetric type (0, 2) tensor field g on M such

that the equations gik(x)(zk + Γk
rs(x)y

rys) = 0 are variational.

Proof. By definition, (i) ⇔ (iv); (ii) ⇔ (iii) is classical: if a symmetric ∇̃ is

metrizable with a compatible metric g then ∇̃ is just the Levi-Civita connection
of the (M, g); ∇̃g = 0 is equivalent to the formula in (iii) for any symmetric

connection. (i) ⇔ (ii): let ∇ be a linear connection on M , Γ̃i
jk = Γ̃i

kj being

components of its metrizable symmetric part ∇̃, with compatible metric g. Let
us introduce (global) function L(x, y) = 1

2gx(y, y), y ∈ TxM by local coordinate

expressions L = 1
2grs(x)y

rys. We evaluate the corresponding expressions Ei(L)
and verify that they obey the Helmholtz conditions; hence L is a Lagrangian
function:

(20) Ei(L) = −
(

gisz
s + Γ̃irsy

rys
)

= −
(

gisz
s + giℓΓ̃

ℓ
rsy

rys
)

with 2Γ̃irs = 2giℓΓ̃
ℓ
rs = ∂sgir +∂rgis −∂igrs; due to symmetry of g, ∇̃g = 0, and

(20),

(21)
∂Ei

∂zk
−
∂Ek

∂zi
= −gisδ

s
k + gksδ

s
i = −gik + gki = 0;

∂Ei

∂uk
+
∂Ek

∂yi
−
d

dt

(

∂Ei

∂zk
+
∂Ek

∂zi

)

= 2

(

Γ̃iks + Γ̃kis +
∂gki

∂xs

)

ys = 2(∇̃g)

(

∂

∂xi
,
∂

∂xj
; ys ∂

∂xj

)

= 0;

(22)

(23)
∂Ei

∂xk
=
∂gis

∂xk
zs +

(

∂2gis

∂xk∂xr
−

1

2

∂2grs

∂xk∂xr

)

yrys,
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and finally (14). Hence (12)–(14) hold. Vice versa, if the connection is variational
in the restrictive sense, then the Helmholtz conditions are satisfied, and the
symmetry of g follows according to (12); (13) together with (12) give ∇̃g = 0; if

g is symmetric and covariantly constant with respect to ∇̃g then (14) gives no
new condition. Hence (i) ⇒ (ii), which completes the proof. �

Given a system of SODE’s of a particular form (16) we can sometimes use
Theorem 7.1 for deciding whether the system is (locally) derivable from a La-
grangian: Γk

rs(x) are viewed as components of a symmetric linear connection
∇ in some neighborhood U ⊂ R

n; if ∇ is (locally) metrizable, gij(x) (with
det(gij(x)) 6= 0 at any x ∈ U) being components of some non-degenerate metric
g compatible with ∇ on U then the system (16) is equivalent to the system (17),
hence the functions gik(x) are the desired variational multipliers.

On the other hand, given a system of SODE’s (17), if there are Lagrange
multipliers independent of time and velocities then they are just components of
a metric with geodesics given exactly by (16).

8. Metrizability in dimension two

For (M2,∇), a kind of answer to metrizability question can be obtained from
the Helmholtz conditions for nowhere flat regions.

In dimension two, the curvature tensor of a (symmetric) linear connection is
completely determined by its Ricci tensor; here we take12

Ric(X,Z) = trace(Y 7→ R(X,Y )Z), Rhj = Ric

(

∂

∂xj
,
∂

∂xh

)

=
∑

s
Rs

hjs.

Since Ri
hjj = 0 we get Ri

hjk = δi
kRhj − δi

jRhk. Particularly, R = 0 if and only if
Ric = 0.

On a Riemannian 2-manifold (M2, g), the sectional curvature is reduced to
Gaussian curvature K = R1212/ det(gij), and Ri

hjk = K(δi
jghk − δi

kghj) holds

[21]. We find immediately Ric = −K · g (in fact, Rhj = ΣsR
s
hjs = K(δs

jghs −

δs
sghj)=−Kghj). Hence the Ricci tensor is proportional to the metric tensor, and

(M2, g) is always an Einstein space [21]. Introducing Ri
j = gisRsj (where gij are

components of the dual tensor to g in natural pairing) and the scalar curvature
̺ = trace Ric = Rs

s = grsRrs we can write13 Ric = − 1
2̺·g; K = ̺ = 0 iff Ric = 0.

Ric is recurrent if and only if R is recurrent. For a nowhere flat (M2, g), the
Ricci tensor is symmetric, recurrent and non-degenerate, det |Rij | 6= 0. Hence
by “Riemannian” arguments (cf. [24]), for (local) (pseudo-)Riemannian metriz-
ability of a nowhere flat symmetric connection on M2, symmetry, recurrency
and non-degeneracy of Ric are necessary conditions, and they are also sufficient.

12The alternative possibility, used frequently, differs by sign.
13Remark that neither ̺ nor K are available for an arbitrary linear connection.
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An analogous answer (for n = 2) comes also from the Helmholtz conditions as
follows.

Assume there is a solution g(x) to (15) for the equations (16) in dimension
2. Then by Prop. 6.1, g is a metric compatible with ∇. On non-flat parts of

M2, gij = −
2Rij

̺
, so the second Helmholtz condition means symmetry of Ric,

the third one can be equivalently written as

−
∂

∂xh
(ln |̺(x)|) ·Rij = ∇hRij

which means ∇Ric = ω ⊗ Ric, recurrency, where ω = ωhdx
h is the 1-form with

local components ωh = ∂
∂xh (− ln |̺(x)|). That is, locally, ω = df for the function

f = − ln |̺|. Let us analyze the fourth condition: if we assume symmetry of g
we get a single condition

(24) g11Φ
1
2 + g12(Φ

2
2 − Φ1

1) − g22Φ
2
1 = 0

where

Φ1
1 = −R12y

1y2 −R22(y
2)2, Φ1

2 = R12(y
1)2 +R22y

1y2,

Φ2
2 = −R11(y

1)2 −R21y
1y2, Φ2

1 = R11y
1y2 +R21(y

2)2.

Since (24) should hold for all y1, y2 we find an equivalent homogeneous system
of three linear algebraic equations in three unknowns g11, g12, g22,

R12g11 −R11g12 = 0,

R22g11 + (R12 −R21)g12 −R11g22 = 0,

R22g12 −R21g22 = 0.

(25)

The system (25) was analyzed in [24], [28] (there exists a non-trivial solution iff
the determinant of its matrix vanishes, (R12 − R21) · det(Rij) = 0). If Ric is
already assumed to be symmetric the system is simplified, the solution is one-
dimensional if R(x) 6= 0, g11 : g12 : g22 = R11 : R12 : R22, and three-parameter
whenever R = 0 holds.

Theorem 8.1. For a now-where flat symmetric linear connection ∇ on a two-
manifold, the following conditions are equivalent:

(i) There exists a solution (local solution, respectively) g(x) to the Helmholtz
condition (H).

(ii) ∇ is (locally) metrizable.
(iii) The Ricci tensor is non-degenerate, symmetric, and there exists a closed

(exact, respectively) 1-form ω such that ∇Ric = ω ⊗ Ric holds.
(iv) ∇ is (locally) variational in the restrictive sense.
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