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A NOTE ON FEFFERMAN–STEIN TYPE
CHARACTERIZATIONS FOR CERTAIN SPACES OF

ANALYTIC FUNCTIONS ON THE UNIT DISC

MILOŠ ARSENOVIĆ AND ROMI F. SHAMOYAN

Abstract. We obtain new characterizations of Bergman and Bloch spaces
on the unit disc involving equivalent (quasi)-norms on these spaces. Our
results are in the spirit of estimates obtained by Fefferman and Stein for
Hardy spaces in Rn.

1. Introduction

We denote by H(Ω) the space of all analytic functions in a domain Ω ⊂ C,
Hp = Hp(D) denotes the classical Hardy space on the unit disc D = {z ∈ C :
|z| < 1} and Ap = Ap(D) denotes the Bergman space on D, see [3] and [6].
We set Ap

0 = {f ∈ Ap : f(0) = 0}. Also, Γα(ξ) denotes the Stolz region at
ξ ∈ T = {ξ ∈ C : |ξ| = 1} of aperture α > 1. For t > 0 and an analytic
function f(z) =

∑∞
n=0 anz

n in the unit disc the fractional derivative of f of
order t is defined by Dtf(z) =

∑∞
n=0(n+1)tanz

n, it is also analytic in D. Area
measure on D is denoted by dm. The Bloch space B, defined by

B =

{
f ∈ H(D) : ‖f‖B = sup

z∈D
|f ′(z)|(1− |z|) < ∞

}
is closely related to Carleson measures and corresponds to the endpoint case
p = 1 of Qp classes (0 < p ≤ 1), see [10]. Related spaces Bp, 1 < p < ∞, are
defined by

Bp(D) =
{
f ∈ H(D) :

∫
D
|f ′(z)|p(1− |z|)p−2dm(z) = ‖f‖pBp

< ∞
}
,

note that ‖f‖B and ‖f‖Bp are not true norms, but |f(0)|+ ‖f‖B and |f(0)|+
‖f‖BP

are norms which make respective spaces into Banach spaces.
The following result is proved by E. G. Kwon in [7]:
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Theorem 1 (see [7]). If 0 < p < ∞ and 0 ≤ β < p+2, then f ∈ H(D) belongs
to B if and only if it satisfies the following condition:
(1)

sup
a∈D

∫
D

∫
D

|f(z)− f(w)|p−β

|1− wz|4
|f ′(z)|β(1−|z|)β (1− |w|)2(1− |a|)2

|1− wa|4
dm(z)dm(w) < ∞,

in fact the above expression is equivalent to ‖f‖pB.
Similarly, if 1 < p < ∞ and 0 ≤ β < p + 2, then a function f ∈ H(D)

belongs to Bp if and only if

(2)

∫
D

∫
D

|f(w)− f(z)|p−β

|1− wz|4
|f ′(z)|β(1− |z|)βdm(z)dm(w) < ∞,

moreover, the above expression is equivalent to ‖f‖pBp
.

We relate these estimates to the so called Fefferman–Stein type characteriza-
tions. By Fefferman–Stein characterizations we mean the following relations:

(3) ‖F‖X � inf
ω∈S

‖Φ(F, ω)‖Y ,

where X and Y are (quasi)-normed subspaces of H(D), S = SF is a certain
class of measurable functions and Φ is a nonanalytic function of two variables.
This idea was used to determine the predual of Qp classes, 0 < p ≤ 1, see
[11, 12]. In certain cases the infimum in (3) is attained, see [2], especially
section 5. Using ideas from [4] and [1] the authors there extended and used
such characterizations for certain Hardy classes in Rn. Later one of the au-
thors provided a similar Fefferman–Stein type characterization for the analytic
Hardy spaces, this is the second part of the following theorem, the first part is
a classical result of N. Lusin.

Theorem 2 (see [8, 9]). Let 0 < p, t < ∞. Then, for f ∈ H(D) we have

(4) ‖f‖pHp �
∫
T

(∫
Γα(ξ)

|Dtf |2(1− |z|)2t−2dm(z)

)p/2

dξ.

Next, let s > 0 and 0 < p < 2. Then, for f ∈ H(D), we have
(5)∫

T

(∫
Γα(ξ)

|f ′(z)|2dm(z)

)p/2

dξ � inf
ω∈S1

(∫
D
|f ′(z)|s(1− |z|)s−1dm(z)

ω(z)

)p/2

,

where

S1 =

{
ω ≥ 0 : ‖ sup

Γα(ξ)

ω(z)(1− |z|)2−s|f ′(z)|2−s‖
L

p
2−p (T)

< 1

}
.

Here we show that similar results are true for Bloch and Bergman spaces Ap
0

in the unit disc. An interesting problem would be to obtain similar results for
Qp or other BMOA-type spaces in the unit disc.
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2. Main results

In this section we state and prove the main results of this paper. They are
analogous to the previously obtained results on Fefferman–Stein characteri-
zations of Hardy spaces in Rn and our proofs heavily rely on the mentioned
results of E. G. Kwon.

Theorem 3. Let 1 < α < 2, 1/α+ 1/α′ = 1 and p ≥ α′. Then for F ∈ H(D)
with F (0) = 0 we have

‖F‖p
Ap

0
� inf

ω∈S2

(∫
D
|F ′(z)|αωα(z)dm(z)

)1/α

,

where

S2 =

{
ω ≥ 0 :

∫
D
|F ′(z)|(p−1)α′

ω−α′
(z)(1− |z|)pα′

dm(z) ≤ 1

}
.

Proof. Here we use the following result from [10], Chapter 2: If F ∈ H(D) and
F (0) = 0, then

(6)

∫
D
|F (z)|pdm(z) �

∫
D
|F (z)|p−β|F ′(z)|β(1− |z|)βdm(z),

where 0 < p < ∞, 0 ≤ β < p+2. Taking β = p and applying Hölder inequality
we obtain

‖F‖p
Ap

0
≤

(∫
D
|F ′(z)|αωα(z)dm(z)

)1/α

×

×
(∫

D
|F ′(z)|(p−1)α′

ω−α′
(z)(1− |z|)pα′

dm(z)

)1/α′

and this gives one estimate stated in Theorem 3. It is of some interest to
note that this estimate is true for all 1 < α < ∞. Now we prove the reverse
estimate by choosing a special admissible test function in S2. We can assume
‖F‖Ap

0
= 1 and set

ω̃(z) =
|F ′(z)|p/α(1− |z|)1+p/α

|F (z)|
, z ∈ D.

A straightforward calculation shows that∫
D
|F ′(z)|(p−1)α′

(1−|z|)pα′
ω̃−α′

(z)dm(z) =

∫
D
|F ′(z)|p−α′

(1−|z|)p−α′ |F (z)|α′
dm(z).

Now (6), with β = p − α′, tells us that the last expression is comparable to
‖F‖p

Ap
0
and therefore bounded by C = Cp,α > 0. Hence ω = C1/α′

ω̃ ∈ S2 and
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we have∫
D
|F ′(z)|αωα(z)dm(z) = C

∫
D
|F ′(z)|αω̃α(z)dm(z)

= C

∫
D
|F ′(z)|p+α|F (z)|−α(1− |z|)p+αdm(z).

The last integral is, by (6) with β = p+ α < p+ 2, bounded from above by a
constant depending only on p and α and this ends the proof of Theorem 3. �

To simplify formulation of our next theorem we introduce, for a ∈ D,

dµa(z, w) =
(1− |w|)2(1− |a|)2dm(z)dm(w)

|1− zw|4|1− wa|4
.

Theorem 4. Let 1 < α < 2, 1/α + 1/α′ = 1 and p ≥ α′. Then we have, for
F ∈ H(D) with F (0) = 0

(7) ‖F‖B � inf
ω∈S3

sup
a∈D

(∫
D

∫
D
ωα(z, w)|F ′(z)|αdµa(z, w)

)1/α

,

where
(8)

S3 =

{
ω ≥ 0 : sup

a∈D

∫
D

∫
D
|F ′(z)|α′(p−1)ω−α′

(z, w)(1− |z|)pα′
dµa(z, w) ≤ 1

}
.

Proof. Let F ∈ B, setting β = p in (1) we obtain for arbitrary ω ∈ S3:

‖F‖B ≤C sup
a∈D

∫
D

∫
D

|F ′(z)|p(1− |z|)p

|1− wz|4
(1− |w|)2(1− |a|)2

|1− wa|4
dm(z)dm(w)

=C sup
a∈D

∫
D

∫
D
|F ′(z)|ω(z, w)|F ′(z)|p−1ω−1(z, w)(1− |z|)pdµa(z, w)

≤C sup
a∈D

(∫
D

∫
D
|F ′(z)|αωα(z, w)dµa(z, w)

)1/α

×

× sup
a∈D

(∫
D

∫
D
|F ′(z)|α′(p−1)ω−α′

(z, w)(1− |z|)pα′
dµa(z, w)

)1/α′

≤C sup
a∈D

(∫
D

∫
D
|F ′(z)|αωα(z, w)dµa(z, w)

)1/α

.

Taking infimum over all ω ∈ S3 one obtains an estimate of ‖F‖B in terms of
the right hand side in (7). Now we turn to the reverse estimate, we can assume
‖F‖B = 1. Taking

(9) ω̃(z, w) =
|F ′(z)|p/α(1− |z|) p+α

α

|f(z)− f(w)|
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one obtains by an easy calculation and relation (1) with β = p− α′

sup
a∈D

∫
D

∫
D
|F ′(z)|α′(p−1)ω−α′

(z, w)(1− |z|)pα′
dµa(z, w) =

= sup
a∈D

∫
D

∫
D
|F ′(z)|p−α′|f(z)− f(w)|α′

(1− |z|)p−α′
dµa(z, w) � ‖F‖pB.

As in the proof of the previous theorem this means that ω = Cω̃ is in S3,
where C = Cp,α > 0. With this choice of ω we have

sup
a∈D

∫
D

∫
D
|F ′(z)|αωα(z, w)dµa(z, w) =

= Cα sup
a∈D

∫
D

∫
D
|F ′(z)|p+α(1− |z|)p+α|f(z)− f(w)|−αdµa(z, w)

� ‖F‖pB = 1,

where we used (1) with β = p+ α. This ends the proof of Theorem 4. �

This theorem has a counterpart for Bp spaces. It is convenient to introduce
a measure dµ(z, w) = |1− wz|−4dm(z)dm(w).

Theorem 5. Let 1 < p < ∞, 1 < α < 2, 1/α + 1/α′ = 1 and p ≥ α′. Then
we have, for F ∈ H(D) with F (0) = 0:

(10) ‖F‖Bp � inf
ω∈S4

(∫
D

∫
D
ωα(z, w)|F ′(z)|αdµ(z, w)

)1/α

,

where

S4 =

{
ω ≥ 0 :

∫
D

∫
D
|F ′(z)|α′(p−1)ω−α′

(z, w)(1− |z|)pα′
dµ(z, w) ≤ 1

}
.

Proof. The proof of this theorem parallels the proof of the previous one.
Namely we use (2) with β = p to obtain, for arbitrary ω ∈ S4,

‖F‖pBp
�
∫
D

∫
D
|F ′(z)|ω(z, w)|F ′(z)|p−1(1− |z|)pω−1(z, w)dµ(z, w)

≤
(∫

D

∫
D
|F ′(z)|αωα(z, w)dµ(z, w)

)1/α

×

×
(∫

D

∫
D
|F ′(z)|α′(p−1)ω−α′

(z, w)(1− |z|)α′pdµ(z, w)

)1/α′

≤
(∫

D

∫
D
|F ′(z)|αωα(z, w)dµ(z, w)

)1/α

.

In proving the reverse estimate one can use the same test function as in (9),
the role of condition (1) is taken by condition (2). We leave details to the
reader. �
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