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RICCI SOLITONS IN LORENTZIAN α-SASAKIAN
MANIFOLDS

C. S. BAGEWADI AND GURUPADAVVA INGALAHALLI

Abstract. We study Ricci solitons in Lorentzian α-Sasakian manifolds.
It is shown that a symmetric parallel second order covariant tensor in a
Lorentzian α-Sasakian manifold is a constant multiple of the metric ten-
sor. Using this it is shown that if LV g + 2S is parallel, V is a given vector
field then (g, V ) is Ricci soliton. Further, by virtue of this result Ricci
solitons for (2n + 1)-dimensional Lorentzian α-Sasakian manifolds are ob-
tained. Next, Ricci solitons for 3-dimensional Lorentzian α-Sasakian man-
ifold whose scalar curvature is constant are obtained.

1. Introduction

Ricci flow is an excellent tool for simplifying the structure of a manifold and
smooth out the topology of that manifold to make it look more symmetric. It
is defined for Riemannian manifolds of any dimension. It is a process which
deforms the metric of a Riemannian manifold analogous to the diffusion of
heat there by smoothing out the regularity in the metric. It is given by

∂g

∂t
= −2Ric g.

For example, if ds2 = e
2p(x,y)

(dx2 + dy2), then to compute the Ricci tensor and
Laplace-Beltrami operator for two dimensional Riemannian manifold we use
the differential forms method of Elie Cartan. We obtain an expression for the
Ricci flow:

∂p

∂t
= 4p =

∂2p

∂x2
+

∂2p

∂y2
.
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This is manifestly analogous to the best known of all diffusion equations, the
heat equation that is,

∂T

∂t
= 4T =

∂2T

∂x2
+

∂2T

∂y2
,

where now 4 = D2
x +D2

y is the usual Laplacian on the Euclidean plane.
Let X(t) be a time dependent family of smooth vector fields on M generated

by a family of diffeomorphisms {φt : t ∈ R} that is one parameter group of
transformations, then the relation between f : M → R and {φt : t ∈ R} is

X(φt(p))f =
df ◦ φt

dt
(p).

Let σ(t) be a smooth function of time. Since φt : M → M is a diffeomor-
phism and g(t) is a Riemannian metric on M (codomain) then by definition
of pull back φ∗

tg(t) is a metric on M (domain).
Set g̃(t) = σ(t)φ∗

t (g(t)) then we have [21]

(1.1)
∂g̃

∂t
= σ

′
(t)φ∗

t (g(t)) + σ(t)φ∗
t

∂g

∂t
+ σ(t)φ∗

t (LXg).

Suppose we have a metric g0 , a vector field Y and λ ∈ R (all independent
of time) such that

(1.2) LY g0 + 2Ric g0 + 2λg0 = 0.

If we choose g(t) = g0 , σ(t) = 1−2λt and X(t) = 1
σ(t)

Y which gives a family of

diffeomorphisms φt with φ0 identity then using (1.2) in (1.1) g̃ defined above
is a Ricci flow with g(0) = g0 that is

(1.3)
∂g̃

∂t
= −2Ric g̃.

Hence LXg0 + 2Ric g0 + 2λg0 = 0 is a solution of the Ricci flow and is known
as Ricci soliton.

Hereafter, we use the notation S instead of Ric for Ricci tensor.
Thus a Ricci soliton on a Riemannian manifold is defined by

(1.4) LXg + 2S + 2λg = 0.

It is said to be shrinking, steady or expanding according as λ < 0, λ = 0 and
λ > 0.

An η-Ricci soliton introduced in the paper [3] as a data (g, V, λ, µ) :

(1.5) LV g + 2S + 2λg + 2µη ⊗ η = 0.

1.1. Example (Hamilton Cigar Soliton). Let M = R2 and φt : R
2 → R2

defined by φt(x, y) = (e−2tx, e−2ty) forms a family of one parameter group of

diffeomorphisms. The vector fieldX generated by {φt} isX = −2
(
x ∂
∂x

+ y ∂
∂y

)
.

The metric g0 is obtained as g0 =
dx2+dy2

1+x2+y2
, g̃(t) = φ∗

t (g0) =
dx2+dy2

e4t+x2+y2
, Ric g0 =

2
1+x2+y2

g0, LXg0 = 4
1+x2+y2

g0. Using (1.4) we have λ = 0. Hence this Ricci
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soliton is steady and is called cigar soliton because it is a asymptotic to a flat
cylinder at infinity.

In 1923, Eisenhart [7] proved that if a positive definite Riemannian manifold
(M, g) admits a second order parallel symmetric covariant tensor other than
a constant multiple of the metric tensor, then it is reducible. In 1925, Levy
[12] has obtained the necessary and sufficient conditions for the existence of
such tensors. Recently Sharma [9] and [19] has generalized Levy’s result by
showing that a second order parallel(not necessarily symmetric and non sin-
gular) tensor on an n-dimensional (n > 2) space of constant curvature is a
constant multiple of the metric tensor. Sharma has also proved in [16] that on
a Sasakian manifold there is no nonzero parallel 2-form. In 1964, Y. Wong [23]
proved that the existence of linear connections w.r.t which given tensor fields
are parallel or recurrent. Also the parallelism of h is involved and appears in
his paper as the theory of totally geodesic maps, and∇h = 0 is equivalent with
the fact that I : (M, g) → (M,h) is a totally geodesic map. In 2007, Lovejoy
Das [5] in his paper proved that a second order symmetric parallel tensor on an
α-K-contact (α ∈ R0) manifold is a constant multiple of the associated metric
tensor and he also proved that there is no nonzero skew symmetric second
order parallel tensor on an α-Sasakian manifold.

Constantin Calin and Mircea Crasmareanu [2] have extended the Eisenhart
problem to Ricci solitons in f -Kenmotsu manifolds. They have studied the case
of f -Kenmotsu manifolds satisfying a special condition called regular and show
that a symmetric parallel tensor field of second order is a constant multiple of
the Riemannian metric. Using this result they have obtained results on Ricci
solitons concerned to f -Kenmotsu manifolds and 3-dimensional β-Kenmotsu
manifolds.

2. Basic concepts of Lorentzian α-Sasakian manifolds

A differentiable manifold of dimension (2n + 1) is called Lorentzian α-
Sasakian manifold if it admits a (1, 1) tensor field φ, a vector field ξ and
1-form η and Lorentzian metric g which satisfy on M respectively such that,

φ2 = I + η ⊗ ξ, η(ξ) = −1, η ◦ φ = 0, φξ = 0,(2.1)

g(φX, φY ) = g(X,Y ) + η(X)η(Y ), g(X, ξ) = η(X),(2.2)

∇Xξ = αφX, (∇Xη)Y = αg(φX, Y ),(2.3)

where ∇ denotes the operator of covariant differentiation with respect to the
Lorentzian metric g on M .

Further, on an Lorentzian α-Sasakian manifold M the following relations
hold:

R(X, Y )ξ = α2[η(Y )X − η(X)Y ],(2.4)

R(ξ,X)Y = α2[g(X,Y )ξ − η(Y )X],(2.5)

S(X, ξ) = 2nα2η(X),(2.6)



62 C. S. BAGEWADI AND GURUPADAVVA INGALAHALLI

Qξ = 2nα2ξ,(2.7)

S(ξ, ξ) = −2nα2,(2.8)

where α is some constant, R is the Riemannian curvature, S is the Ricci
curvature and Q is the Ricci operator given by S(X, Y ) = g(QX, Y ).

2.1. Example. We consider the 3-dimensional manifold M = {(x, y, z) ∈
R3}, where (x, y, z) are the standard co-ordinates in R3. Let {E1, E2, E3} be
linearly independent global frame field on M given by

(2.9) E1 = ez
∂

∂y
, E2 = ez(

∂

∂x
+

∂

∂y
), E3 = k

∂

∂z
.

Let g be the Riemannian metric defined by

g(E1, E2) = g(E2, E3) = g(E1, E3) = 0,

g(E1, E1) = g(E2, E2) = 1, g(E3, E3) = −1,

where g is given by

g =
1

e2z
[dx⊗ dx+ dy ⊗ dy]− 1

k2
dz ⊗ dz.

The (φ, ξ, η) is given by

η =
1

k
dz, ξ = E3 = k

∂

∂z
, φE1 = −E1, φE2 = −E2, φE3 = 0.

The linearity property of φ and g yields that

η(E3) = −1, φ2U = U + η(U)E3, g(φU, φW ) = g(U,W ) + η(U)η(W ),

for any vector fields U,W on M . By definition of Lie bracket, we have

[E1, E2] = 0, [E1, E3] = −kE1, [E2, E3] = −kE2.

Let ∇ be Levi-Civita connection with respect to the above metric g given by
Koszul formula

(2.10) 2g(∇
X
Y, Z) = X(g(Y, Z)) + Y (g(Z,X))− Z(g(X, Y ))

− g(X, [Y, Z])− g(Y, [X,Z]) + g(Z, [X, Y ]).

Then

∇E1E1 = −kE3, ∇E1E2 = 0, ∇E1E3 = −kE1,

∇E2E1 = 0, ∇E2E2 = −kE3, ∇E2E3 = −kE2,

∇E3E1 = 0, ∇E3E2 = 0, ∇E3E3 = 0.

(2.11)

The tangent vectors X and Y to M are expressed as linear combination of
E1, E2, E3, that is X =

∑3
i=1 aiEi and Y =

∑3
i=1 biEi where ai, bi(i = 1, 2, 3)

are scalars. Clearly (φ, ξ, η, g) and X, Y satisfy equations (2.1), (2.2) and (2.3)
with α = k. Thus M is a Lorentzian α-Sasakian manifold.
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Definition 1. Let M be a Riemannian manifold with metric g, ξ an unitary
vector field, η the 1-form dual to ξ. Further, let h a symmetric tensor field
of (0, 2)-type on M which we suppose to be parallel with respect to ∇ that is
∇h = 0. Applying the Ricci identity [16]

∇2h(X, Y ;Z,W )−∇2h(X, Y ;W,Z) = 0,(2.12)

we obtain the relation [16]:

h(R(X, Y )Z,W ) + h(Z,R(X, Y )W ) = 0,(2.13)

then by taking Z = W = ξ in (2.13) it reduces to

A[η(Y )h(X, ξ)− η(X)h(Y, ξ)] = 0,(2.14)

where A 6= 0 is some scalar function thenM is called regular (that isM
(2n+1)
A (ξ)

is called regular if A 6= 0).

3. Parallel symmetric second order tensors and Ricci solitons
in Lorentzian α-Sasakian manifolds

Fix h a symmetric tensor field of (0, 2)-type which we suppose to be parallel
with respect to ∇ that is ∇h = 0. Applying the Ricci identity [16] in (2.12)
we obtain (2.13). Replacing Z = W = ξ in (2.13) and using (2.4) and by the
symmetry of h, we have

2α2[η(Y )h(X, ξ)− η(X)h(Y, ξ)] = 0.(3.1)

Put X = ξ in (3.1), we have

2α2[η(Y )h(ξ, ξ) + h(Y, ξ)] = 0.(3.2)

Since 2α2 6= 0, by definition (1) Lorentzian α-Sasakian manifold is regular.
By (3.2), we have

h(Y, ξ) = −η(Y )h(ξ, ξ).(3.3)

Differentiating (3.3) covariantly with respect to X, we have

(∇Xh)(Y, ξ) + h(∇XY, ξ) + h(Y,∇Xξ) =(3.4)

− [(∇Xη)(Y ) + η(∇XY )]h(ξ, ξ)

− η(Y )[(∇Xh)(ξ, ξ) + 2h(∇Xξ, ξ)].

By using (2.2), (2.3) and (3.3), we have

−h(Y, φX) = g(Y, φX)h(ξ, ξ),(3.5)

we deduce the above equation then we have

h(X, Y ) = −g(X, Y )h(ξ, ξ),(3.6)

which together with the standard fact that the parallelism of h implies the
h(ξ, ξ) is a constant and via (3.3) yields the following:

Theorem 3.1. A symmetric parallel second order covariant tensor in a regular
Lorentzian α-Sasakian manifolds is a constant multiple of the metric tensor.
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Corollary 1. A locally Ricci symmetric (∇S = 0) regular Lorentzian α-
Sasakian manifolds is an Einstein manifold.

Remark: The following statements for Lorentzian α-Sasakian manifolds are
equivalent. The manifold is

(i) Einstein
(ii) locally Ricci symmetric
(iii) Ricci semi-symmetric that is R · S = 0.

The implication (i) =⇒ (ii) =⇒ (iii) is trivial. Now we prove the implication
(iii) =⇒ (i) and R · S = 0 means exactly (2.13) with replaced h by S that is

(R(X,Y ) · S)(U, V ) = −S(R(X, Y )U, V )− S(U,R(X,Y )V ).(3.7)

Considering R · S = 0 and putting X = ξ in equation (3.7), we have

S(R(ξ, Y )U, V ) + S(U,R(ξ, Y )V ) = 0.(3.8)

By using (2.5) and (2.6), we obtain

(3.9) 2nα4g(Y, U)η(V )− α2η(U)S(Y, V ) + 2nα4g(Y, V )η(U)

− α2η(V )S(U, Y ) = 0.

Again by putting U = ξ in the above equation and by using (2.1), (2.2) and
(2.6), we obtain

S(Y, V ) = 2nα2g(Y, V ).(3.10)

In conclusion:

Proposition 1. A Ricci semi-symmetric regular Lorentzian α-Sasakian man-
ifolds is Einstein.

We close this section with applications of our Theorem to Ricci solitons:

Corollary 2. Suppose that on a regular Lorentzian α-Sasakian manifolds the
(0, 2)-type field LV g + 2S is parallel where V is a given vector field. Then
(g, V ) yield a Ricci soliton. In particular, if the given regular Lorentzian α-
Sasakian manifold is Ricci-semi symmetric with LV g parallel, we have the same
conclusion.

Proof. Follows from Theorem 3.1 and Corollary 1. �

Naturally, two situations appear regarding the vector field V : V ∈ Span ξ
and V ⊥ ξ but the second class seems far too complex to analyse in practice.
For this reason it is appropriate to investigate only the case V = ξ.

We are interested in expressions for Lξg+2S. A straightforward computation
gives

(Lξg)(X, Y ) = 2αg(φX, Y ).(3.11)
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The metric g is called η-Einstein if there exists two real functions a and b
such that the Ricci tensor of g is

S(X,Y ) = ag(X, Y ) + bη(X)η(Y ).(3.12)

Let ei = 1, 2, . . . , (2n + 1) be an orthonormal basis of the tangent space at
any point of the manifold. Then putting X = Y = ei in (3.12) and taking
summation over i then we get

r = (2n+ 1)a− b.(3.13)

Again putting X = Y = ξ in (3.12) then by using (2.1), (2.2) and (2.8), we
have

−a+ b = −2nα2,(3.14)

from (3.13) and (3.14), we obtain the values of a and b

a =
r

2n
− α2, b =

r

2n
− (2n+ 1)α2.

Substituting the values of a and b in (3.12), we have

S(X, Y ) =
[ r

2n
− α2

]
g(X,Y ) +

[ r

2n
− (2n+ 1)α2

]
η(X)η(Y ).(3.15)

The above equation shows that Lorentzian α-Sasakian manifold is η-Einstein.
For (2n+ 1)-dimensional Lorentzian α-Sasakian manifolds, we have

h(X,Y ) = (Lξg)(X, Y ) + 2S(X,Y ).(3.16)

Then in (3.16) substituting the values of (3.11) and (3.15), we have

(3.17) h(X,Y ) = 2αg(φX, Y ) +
[ r
n
− 2α2

]
g(X, Y )

+
[ r
n
− 2(2n+ 1)α2

]
η(X)η(Y ).

Differentiating the above equation (3.17) with respect to Z then we have

(∇Zh)(X, Y ) =(3.18)

2(Zα)g(φX, Y ) +

[
∇Zr

n
− 4α(Zα)

]
g(X, Y )

+

[
∇Zr

n
− 4(2n+ 1)α(Zα))

]
η(X)η(Y ) + 2αg((∇Zφ)X, Y )

+
[ r
n
− 2(2n+ 1)α2

]
{αg(X,φZ)η(Y ) + αg(Y, φZ)η(X)},

by substituting Z = ξ and X = Y ∈ (Span ξ)⊥ in the above equation, we have

∇ξr = 0,(3.19)

provided h is parallel. Thus r is constant scalar, then we state that:

Proposition 2. An η-Einstein Lorentzian α-Sasakian Ricci soliton (g, ξ, λ)
with constant scalar curvature r is shrinking.
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Proof. From equation (1.4) and (3.16), we have

h(X, Y ) = −2λg(X, Y ).

Putting X = Y = ξ in the above equation, we have

h(ξ, ξ) = 2λ.(3.20)

Now considering (3.17), that is

h(X, Y ) = 2αg(φX, Y ) +
[ r
n
− 2α2

]
g(X, Y ) +

[ r
n
− 2(2n+ 1)α2

]
η(X)η(Y ).

Putting X = Y = ξ in the above equation, we have

h(ξ, ξ) = −4nα2.(3.21)

By equating (3.20) and (3.21), we have

λ = −2nα2.(3.22)

This shows that λ < 0 that is the Ricci soliton in (2n + 1)-dimensional
Lorentzian α-Sasakian is shrinking. �

We compute an expression for Ricci tensor for 3-dimensional Lorentzian
α-Sasakian manifold as follows: The curvature tensor for 3-dimensional Rie-
mannian manifold is given by

(3.23) R(X,Y )Z = g(Y, Z)QX − g(X,Z)QY + S(Y, Z)X − S(X,Z)Y

− r

2
[g(Y, Z)X − g(X,Z)Y ],

put Z = ξ in the above equation that is in (3.23) and by using (2.2), (2.4) and
(2.6), we obtain[r

2
− α2

]
[η(Y )X − η(X)Y ] = η(Y )QX − η(X)QY.(3.24)

Again put Y = ξ in the equation (3.24) and by using (2.1) and (2.7), we have

QX =
[r
2
− α2

]
X +

[r
2
− 3α2

]
η(X)ξ(3.25)

and

S(X, Y ) =
[r
2
− α2

]
g(X, Y ) +

[r
2
− 3α2

]
η(X)η(Y ),(3.26)

where r is the scalar curvature and α is a constant.
For a 3-dimensional Lorentzian α-Sasakian manifolds, we obtain

h(X,Y ) = (Lξg)(X,Y ) + 2S(X, Y ).(3.27)

By using (3.11) and (3.26) in (3.27), we have

h(X,Y ) = 2αg(φX, Y ) + [r − 2α2]g(X, Y ) + [r − 6α2]η(X)η(Y ).(3.28)

Differentiating the above equation with respect to Z then we have

(∇Zh)(X,Y ) =(3.29)

2(Zα)g(φX, Y ) + 2αg((∇Zφ)X,Y ) + [∇Zr − 4α(Zα)]g(X,Y )
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+ [∇Zr − 6(2α(Zα))]η(X)η(Y ) + (r − 6α2)[αg(X,φZ)η(Y )

+ αg(Y, φZ)η(X)].

Substituting Z = ξ, X = Y ∈ (Span ξ)⊥ in (3.29) then we have

∇ξr = 0,(3.30)

provided h is parallel. Thus r is constant scalar, then we state that:

Proposition 3. A Ricci soliton (g, ξ, λ) in 3-dimensional Lorentzian α-Sasakian
manifold with constant scalar curvature r is shrinking.

Proof. From equation (1.4) and (3.27), we have

h(X, Y ) = −2λg(X, Y ).

Putting X = Y = ξ in the above equation, we have

h(ξ, ξ) = 2λ.(3.31)

Now considering (3.28), that is

h(X,Y ) = 2αg(φX, Y ) + [r − 2α2]g(X, Y ) + [r − 6α2]η(X)η(Y ).

Putting X = Y = ξ in the above equation, we have

h(ξ, ξ) = −4α2.(3.32)

By equating (3.31) and (3.32), we have

λ = −2α2.(3.33)

This shows that λ < 0 that is the Ricci soliton in 3-dimensional Lorentzian
α-Sasakian is shrinking. �
Acknowledgement. The authors are grateful to the referee in revising the
paper.
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