RICCI CURVATURE OF QUATERNION SLANT SUBMANIFOLDS IN QUATERNION SPACE FORMS

S. S. SHUKLA AND PAWAN KUMAR RAO

Abstract

In this article, we obtain sharp estimate of the Ricci curvature of quaternion slant, bi-slant and semi-slant submanifolds in a quaternion space form, in terms of the squared mean curvature.

1. Introduction

In [15], S. Ishihara defined a quaternion manifold (or quaternion Kaehlerian manifold) as a Riemannian manifold whose holonomy group is a subgroup of $\operatorname{Sp}(1)$. It is well known that on a quaternion manifold \tilde{M}, there exists a 3 dimensional vector bundle E of tensors of type $(1,1)$ with local cross-section of almost Hermitian structures satisfying certain conditions [4]. A submanifold M in a quaternion manifold \tilde{M} is called a quaternion submanifold if each tangent space of M is carried into itself by each section of E. In [3] authors studied quaternion CR-submanifolds of quaternion manifolds. A quaternion manifold is a quaternion space form if its quaternion sectional curvatures are constant. In [17] authors established a sharp relationship between the Ricci curvature and squared mean curvature of a quaternion CR-submanifold in a quaternion space form. Slant submanifolds of Kaehler manifolds were defined by B. Y. Chen [10] and studied by several geometers [20, 23].

On the other hand, N. Papaghiuc [18] introduced a class of submanifolds in an almost Hermitian manifold, called the semi-slant submanifolds which include proper CR-submanifolds and proper slant submanifolds as particular cases. The purpose of present paper is to study quaternion slant, bi-slant and semi-slant submanifolds in a quaternion space form.

[^0]
2. Preliminaries

Let \tilde{M} be a $4 m$-dimensional Riemannian manifold with metric tensor g. Then \tilde{M} is said to be a quaternion Kaehlerian manifold, if there exists a 3dimensional vector bundle E consisting of tensors of type $(1,1)$ with local basis of almost Hermitian structures J_{1}, J_{2} and J_{3} such that
(a)

$$
\begin{gathered}
J_{1}^{2}=-I, J_{2}^{2}=-I, J_{3}^{2}=-I, \\
J_{1} J_{2}=-J_{2} J_{1}=J_{3}, J_{2} J_{3}=-J_{3} J_{2}=J_{1}, J_{3} J_{1}=-J_{1} J_{3}=J_{2},
\end{gathered}
$$

where I denotes the identity tensor field of type $(1,1)$ on \tilde{M}.
(b) for any local cross-section J of E and any vector X tangent to $\tilde{M}, \tilde{\nabla}_{X} J$ is also a local cross-section of E, where $\tilde{\nabla}$ denotes the Riemannian connection on \tilde{M}.

The condition (b) is equivalent to the following condition:
(c) there exist local 1-forms p, q and r such that

$$
\begin{gathered}
\tilde{\nabla}_{X} J_{1}=r(X) J_{2}-q(X) J_{3}, \\
\tilde{\nabla}_{X} J_{2}=-r(X) J_{1}+p(X) J_{3}, \\
\tilde{\nabla}_{X} J_{3}=q(X) J_{1}-p(X) J_{2} .
\end{gathered}
$$

Now, let X be an unit vector tangent to the quaternion manifold \tilde{M}, then $X, J_{1} X, J_{2} X$ and $J_{3} X$ form an orthonormal frame. We denote by $Q(X)$ the 4 -plane spanned by them and call $Q(X)$ the quaternion section determined by X. For any orthonormal vectors X, Y tangent to \tilde{M}, the plane $X \wedge Y$ spanned by X, Y is said to be totally real if $Q(X)$ and $Q(Y)$ are orthogonal. Any plane in a quaternion section is called a quaternion plane. The sectional curvature of a quaternion plane is called a quaternion sectional curvature. A quaternion manifold is called a quaternion space form if its quaternion sectional curvatures are equal to a constant.

Let $\tilde{M}(c)$ be a $4 m$-dimensional quaternion space form of constant quaternion sectional curvature c. The curvature tensor of $\tilde{M}(c)$ has the following expression ([15]):

$$
\begin{align*}
\tilde{R}(X, Y) Z= & \frac{c}{4}\{g(Y, Z) X-g(X, Z) Y \tag{2.1}\\
& +g\left(J_{1} Y, Z\right) J_{1} X-g\left(J_{1} X, Z\right) J_{1} Y+2 g\left(X, J_{1} Y\right) J_{1} Z \\
& +g\left(J_{2} Y, Z\right) J_{2} X-g\left(J_{2} X, Z\right) J_{2} Y+2 g\left(X, J_{2} Y\right) J_{2} Z \\
& \left.+g\left(J_{3} Y, Z\right) J_{3} X-g\left(J_{3} X, Z\right) J_{3} Y+2 g\left(X, J_{3} Y\right) J_{3} Z\right\},
\end{align*}
$$

for any vector fields X, Y, Z tangent to \tilde{M}. The equation (2.1) can be written as:

$$
\begin{align*}
\tilde{R}(X, Y) Z= & \frac{c}{4}\{g(Y, Z) X-g(X, Z) Y \tag{2.2}\\
& \left.+\sum_{i=1}^{3}\left[g\left(J_{i} Y, Z\right) J_{i} X-g\left(J_{i} X, Z\right) J_{i} Y+2 g\left(X, J_{i} Y\right) J_{i} Z\right]\right\}
\end{align*}
$$

for any vector fields X, Y, Z tangent to \tilde{M}.
Now, we recall
Definition 2.1 ([3]). Let M be a Riemannian manifold isometrically immersed in a quaternion manifold \tilde{M}. A distribution $D: p \rightarrow D_{p} \subseteq T_{p} M$ is called a quaternion distribution if we have $J_{i}(D) \subseteq D, i=1,2,3$. In other words, D is a quaternion distribution if D is carried into itself by its quaternion structure.

Definition 2.2 ([3]). A submanifold M in a quaternion manifold \tilde{M} is called a quaternion $C R$-submanifold if it admits a differentiable quaternion distribution D such that its orthogonal complementary distribution D^{\perp} is totally real, i.e., $J_{i}\left(D_{p}^{\perp}\right) \subseteq T_{p}^{\perp} M$ and D is invariant under quaternion structure, that is, $J_{i}\left(D_{p}\right) \subseteq D_{p}, i=1,2,3$, for any $p \in M$, where $T_{p}^{\perp} M$ denotes the normal space of M in \tilde{M} at p.

A submanifold M of a quaternion manifold \tilde{M} is called a quaternion submanifold if $\operatorname{dim} D_{p}^{\perp}=0$ and a totally real submanifold if $\operatorname{dim} D_{p}=0$. A quaternion CR-submanifold is said to be proper if it is neither totally real nor quaternionic.
Definition 2.3 ([10]). A submanifold M of a quaternion space form $\tilde{M}(c)$ is said to be quaternion slant submanifold if for any $p \in M$ and any $X \in T_{p} M$, the angle between $J_{i}(X), i=1,2,3$ and $T_{p} M$ is a constant $\theta \in\left[0, \frac{\pi}{2}\right]$, called the slant angle of quaternion submanifold M in $\tilde{M}(c)$.

In particular, quaternion submanifolds and totally real submanifolds of $\tilde{M}(c)$ are quaternion slant submanifolds with slant angle $\theta=0$ and $\theta=\frac{\pi}{2}$ respectively.

Definition 2.4 ([18]). A submanifold M of a quaternion space form $\tilde{M}(c)$ is called a quaternion bi-slant submanifold if there exist two orthogonal distributions D_{1} and D_{2} on M such that
(i) $T M$ admits orthogonal direct decomposition, i.e., $T M=D_{1} \oplus D_{2}$.
(ii) For any $i=1,2$, the distribution D_{i} is slant distribution with slant angle θ_{i}.

Let $4 d_{1}=\operatorname{dim} D_{1}$ and $4 d_{2}=\operatorname{dim} D_{2}$. If either d_{1} or d_{2} vanishes, the bi-slant submanifold is a slant submanifold. Thus slant submanifolds are particular cases of bi-slant submanifolds.

Definition 2.5 ([18]). Let M be a submanifold of a quaternion space form $\tilde{M}(c)$, then we say that M is a semi-slant submanifold if there exist two orthogonal distributions D_{1} and D_{2} on M such that
(i) $T M$ admits orthogonal direct decomposition, i.e., $T M=D_{1} \oplus D_{2}$.
(ii) The distribution D_{1} is invariant by $J_{i}, i=1,2,3$, i.e., $J_{i}\left(D_{1}\right)=D_{1}$.
(iii) The distribution D_{2} is slant with respect to J_{1}, J_{2}, J_{3} with slant angle $\theta \neq 0$, i.e. for any non-zero vector $X \in D_{2}(p), p \in M$, the angle between $J_{i} X, i=1,2,3$ and tangent subspace $D_{2}(p)$ is constant, that is, it is independent of the choice of $p \in M$ and $X \in D_{2}(p)$.

Now, we also recall the following Lemma of Chen [11].
Lemma 2.1 ([11]). Let a_{1}, \ldots, a_{n}, b be $(n+1), n \geq 2$ real numbers such that

$$
\left(\sum_{i=1}^{n} a_{i}\right)^{2}=(n-1)\left(\sum_{i=1}^{n} a_{i}^{2}+b\right)
$$

Then $2 a_{1} a_{2} \geq b$ with equality holding if and only if

$$
a_{1}+a_{2}=a_{3}=\ldots=a_{n}
$$

Let M be a submanifold of a quaternion space form $\tilde{M}(c)$. We denote by g the metric tensor of $\tilde{M}(c)$ as well as that induced on M. Let ∇ be the induced connection on M. The Gauss and Weingarten formulae for M are given respectively by

$$
\begin{equation*}
\tilde{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{\nabla}_{X} V=-A_{V} X+\nabla_{X}^{\perp} V \tag{2.4}
\end{equation*}
$$

for any vector fields X, Y tangent to M and any vector field V normal to M, where h, A_{V} and ∇^{\perp} are the second fundamental form, the shape operator in the direction of V and the normal connection induced by ∇ on the normal bundle $T^{\perp} M$ respectively. The second fundamental form and the shape operator are related by

$$
\begin{equation*}
g(h(X, Y), V)=g\left(A_{V} X, Y\right) \tag{2.5}
\end{equation*}
$$

For the second fundamental form h, we define the covariant differentiation $\tilde{\nabla}$ with respect to the connection in $T M \oplus T^{\perp} M$ by

$$
\begin{equation*}
\left(\tilde{\nabla}_{X} h\right)(Y, Z)=\nabla_{X}^{\perp} h(Y, Z)-h\left(\nabla_{X} Y, Z\right)-h\left(Y, \nabla_{X} Z\right), \tag{2.6}
\end{equation*}
$$

for any vector fields X, Y, Z tangent to M.
The Gauss, Codazzi and Ricci equations for M are given by

$$
\begin{align*}
R(X, Y, Z, W)=\tilde{R}(X, Y, Z, W)+g(h(X, W), & h(Y, Z)) \tag{2.7}\\
& -g(h(X, Z), h(Y, W))
\end{align*}
$$

$$
\begin{align*}
(R(X, Y), Z)^{\perp} & =\left(\tilde{\nabla}_{X} h\right)(Y, Z)-\left(\tilde{\nabla}_{Y} h\right)(X, Z) \tag{2.8}\\
\tilde{R}(X, Y, V, \eta) & =R^{\perp}(X, Y, V, \eta)-g\left(\left[A_{V}, A_{\eta}\right] X, Y\right) \tag{2.9}
\end{align*}
$$

for any vector fields X, Y, Z, W tangent to M and V, η normal to M, where R and R^{\perp} are the curvature tensors with respect to ∇ and ∇^{\perp} respectively.

The mean curvature vector $H(p)$ at $p \in M$ is defined by

$$
\begin{equation*}
H(p)=\frac{1}{n} \sum_{i=1}^{n} h\left(e_{i}, e_{i}\right), \tag{2.10}
\end{equation*}
$$

where n denotes the dimension of M. If, we have

$$
\begin{equation*}
h(X, Y)=\lambda g(X, Y) H \tag{2.11}
\end{equation*}
$$

for any vector fields X, Y tangent to M, then M is called totally umbilical submanifold. In particular, if $h=0$ identically, M is called a totally geodesic submanifold.
We set

$$
\begin{equation*}
h_{i j}^{r}=g\left(h\left(e_{i}, e_{j}\right), e_{r}\right), i, j \in\{1, \ldots, n\}, r \in\{n+1, \ldots, 4 m\} \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\|h\|^{2}=\sum_{i, j=1}^{n} g\left(h\left(e_{i}, e_{j}\right), h\left(e_{i}, e_{j}\right)\right) . \tag{2.13}
\end{equation*}
$$

For any $p \in M$ and X tangent to M, we put

$$
\begin{equation*}
J_{i} X=P_{i} X+T_{i} X, \quad i=1,2,3 \tag{2.14}
\end{equation*}
$$

where $P_{i} X$ and $T_{i} X$ are the tangential and normal components of $J_{i} X$, respectively.

We recall that for a submanifold M in a Riemannian manifold, the relative null space of M at a point $p \in M$ is defined by

$$
N_{p}=\left\{X \in T_{p} M \mid h(X, Y)=0 \text { for all } Y \in T_{p} M\right\} .
$$

3. Quaternion slant submanifolds

In this section, we estimate the Ricci curvature of quaternion slant, bi-slant and semi-slant submanifolds of a quaternion space form.

Theorem 3.1. Let M be an n-dimensional quaternion slant submanifold of a $4 m$-dimensional quaternion space form $\tilde{M}(c)$ of constant quaternion sectional curvature c. Then
(I) For each unit vector $X \in T_{p} M$, we have

$$
\begin{equation*}
\operatorname{Ric}(X) \leq \frac{1}{4}\left\{n^{2}\|H\|^{2}+(n-1) c+6 c \cos ^{2} \theta\right\} \tag{3.1}
\end{equation*}
$$

(II) If $H(p)=0$, then an unit tangent vector X at p satisfies the equality case of (3.1) if and only if X belongs to the relative null space N_{p}.

Proof. Let $p \in M$, we choose an orthonormal basis $\left\{e_{1}, \ldots, e_{n}\right\}$ for $T_{p} M$ and $\left\{e_{n+1}, \ldots, e_{4 m}\right\}$ for the normal space $T_{p}^{\perp} M$ at p such that $e_{n}=X$ and e_{n+1} is parallel to the mean curvature vector $H(p)$.

Let M be a quaternion slant submanifold of a $4 m$-dimensional quaternion space form $\tilde{M}(c)$. Then using (2.2) and (2.14) in the equation of Gauss, we have

$$
\begin{align*}
R(X, Y, Z, W)= & \frac{c}{4}\{g(Y, Z) g(X, W)-g(X, Z) g(Y, W) \tag{3.2}\\
& +\sum_{i=1}^{3}\left[g\left(P_{i} Y, Z\right) g\left(P_{i} X, W\right)-g\left(P_{i} X, Z\right) g\left(P_{i} Y, W\right)\right. \\
& \left.\left.+2 g\left(X, P_{i} Y\right) g\left(P_{i} Z, W\right)\right]\right\} \\
& +g(h(X, W), h(Y, Z))-g(h(X, Z), h(Y, W))
\end{align*}
$$

for any vector fields X, Y, Z, W tangent to M.
Let $p \in M$ and an orthonormal basis $\left\{e_{1}, \ldots, e_{n}=X\right\}$ in $T_{p} M$. The Ricci tensor $S(X, Y)$ is given by

$$
\begin{align*}
S(X, Y)= & \sum_{j=1}^{n} R\left(e_{j}, X, Y, e_{j}\right) \tag{3.3}\\
= & \frac{c}{4}\left\{g(X, Y) g\left(e_{j}, e_{j}\right)-g\left(e_{j}, Y\right) g\left(X, e_{j}\right)\right. \\
& +\sum_{i=1}^{3}\left[g\left(P_{i} X, Y\right) g\left(P_{i} e_{j}, e_{j}\right)-g\left(P_{i} e_{j}, Y\right) g\left(P_{i} X, e_{j}\right)\right. \\
& \left.\left.+2 g\left(e_{j}, P_{i} X\right) g\left(P_{i} Y, e_{j}\right)\right]\right\} \\
& +g\left(h\left(e_{j}, e_{j}\right), h(X, Y)\right)-g\left(h\left(e_{j}, Y\right), h\left(X, e_{j}\right)\right) \\
= & \frac{c}{4}\left\{(n-1) g(X, Y)+3 \sum_{i=1}^{3} g\left(P_{i} X, P_{i} Y\right)\right\} \\
& +\sum_{j=1}^{n}\left\{g\left(h\left(e_{j}, e_{j}\right), h(X, Y)\right)-g\left(h\left(e_{j}, Y\right), h\left(X, e_{j}\right)\right)\right\} .
\end{align*}
$$

The scalar curvature τ is given by

$$
\begin{equation*}
\tau=\sum_{l=1}^{n} S\left(e_{l}, e_{l}\right)=\frac{c}{4}\left\{n(n-1)+12 n \cos ^{2} \theta\right\}+n^{2}\|H\|^{2}-\|h\|^{2} . \tag{3.4}
\end{equation*}
$$

We put

$$
\begin{equation*}
\epsilon=\tau-\frac{n^{2}}{2}\|H\|^{2}-\frac{c}{4}\left\{n(n-1)+12 n \cos ^{2} \theta\right\} . \tag{3.5}
\end{equation*}
$$

Then from equations (3.4) and (3.5), we get

$$
\begin{equation*}
n^{2}\|H\|^{2}=2\left(\epsilon+\|h\|^{2}\right) \tag{3.6}
\end{equation*}
$$

With respect to above orthonormal basis, the equation (3.6) takes the form

$$
\begin{equation*}
\left(\sum_{i=1}^{n} h_{i i}^{n+1}\right)^{2}=2\left\{\epsilon+\sum_{i=1}^{n}\left(h_{i i}^{n+1}\right)^{2}+\sum_{i \neq j}\left(h_{i i}^{n+1}\right)^{2}+\sum_{r=n+2}^{4 m} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2}\right\} . \tag{3.7}
\end{equation*}
$$

If we set $a_{1}=h_{11}^{n+1}, a_{2}=\sum_{i=2}^{n-1} h_{i i}^{n+1}$ and $a_{3}=h_{n n}^{n+1}$, then (3.7) becomes

$$
\begin{align*}
\left(\sum_{i=1}^{3} a_{i}\right)^{2}=2\left\{\epsilon+\sum_{i=1}^{3} a_{i}^{2}+\sum_{i \neq j}\left(h_{i j}^{n+1}\right)^{2}+\right. & \sum_{r=n+2}^{4 m} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2} \tag{3.8}\\
& \left.-\sum_{2 \leq \alpha \neq \beta \leq n-1} h_{\alpha \alpha}^{n+1} h_{\beta \beta}^{n+1}\right\}
\end{align*}
$$

Thus a_{1}, a_{2}, a_{3} satisfy the Lemma 2.1 of Chen for $(n=3)$, i.e.,

$$
\left(\sum_{i=1}^{3} a_{i}\right)^{2}=2\left(b+\sum_{i=1}^{3} a_{i}^{2}\right) .
$$

So, we have $2 a_{1} a_{2} \geq b$, with equality holding if and only if $a_{1}+a_{2}=a_{3}$.
In the case under consideration, this implies that equation (3.8) becomes

$$
\begin{equation*}
\sum_{1 \leq \alpha \neq \beta \leq n-1} h_{\alpha \alpha}^{n+1} h_{\beta \beta}^{n+1} \geq \epsilon+2 \sum_{i<j}\left(h_{i i}^{n+1}\right)^{2}+\sum_{r=n+2}^{4 m} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2}, \tag{3.9}
\end{equation*}
$$

or equivalently

$$
\begin{align*}
\frac{n^{2}}{2}\|H\|^{2} & +\frac{c}{4}\left[n(n-1)+12 n \cos ^{2} \theta\right] \tag{3.10}\\
& \geq \tau-\sum_{1 \leq \alpha \neq \beta \leq n-1} h_{\alpha \alpha}^{n+1} h_{\beta \beta}^{n+1}+2 \sum_{i<j}\left(h_{i j}^{n+1}\right)^{2}+\sum_{r=n+2}^{4 m} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2} .
\end{align*}
$$

Using again the equation of Gauss, we have

$$
\begin{align*}
\tau- & \sum_{1 \leq \alpha \neq \beta \leq n-1} h_{\alpha \alpha}^{n+1} h_{\beta \beta}^{n+1}+2 \sum_{i<j}\left(h_{i j}^{n+1}\right)^{2}+\sum_{r=n+2}^{4 m} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2} \tag{3.11}\\
= & 2 S\left(e_{n}, e_{n}\right)+\frac{c}{4}\left[(n-1)(n-2)+12(n-1) \cos ^{2} \theta\right] \\
& +2 \sum_{i<n}\left(h_{i n}^{n+1}\right)^{2}+\sum_{r=n+2}^{4 m}\left\{\left(h_{n n}^{r}\right)^{2}+2 \sum_{i=1}^{n-1}\left(h_{i n}^{r}\right)^{2}+\left(\sum_{j=1}^{n-1} h_{j j}^{r}\right)^{2}\right\},
\end{align*}
$$

where S is the Ricci tensor of M.

Combining (3.10) and (3.11), we obtain

$$
\begin{align*}
& \frac{n^{2}}{2}\|H\|^{2}+\frac{c}{4}\left[2(n-1)+12 \cos ^{2} \theta\right] \tag{3.12}\\
& \quad \geq 2 S\left(e_{n}, e_{n}\right)+2 \sum_{i<n}\left(h_{i n}^{n+1}\right)^{2}+\sum_{r=n+2}^{4 m}\left\{\sum_{i=1}^{n}\left(h_{i n}^{r}\right)^{2}+\left(\sum_{j=1}^{n-1} h_{j j}^{r}\right)^{2}\right\} .
\end{align*}
$$

Thus, we have

$$
\operatorname{Ric}(X) \leq \frac{1}{4}\left\{n^{2}\|H\|^{2}+(n-1) c+6 c \cos ^{2} \theta\right\}
$$

which proves (3.1).
(II) Assume $H(p)=0$. Equality holds in (3.1) if and only if

$$
\begin{equation*}
h_{1 n}^{r}=\ldots=h_{n-1, n}^{r}=0, \quad h_{n n}^{r}=\sum_{i=1}^{n-1} h_{i i}^{r}, r \in\{n+1, \ldots, 4 m\} . \tag{3.13}
\end{equation*}
$$

Then $h_{i n}^{r}=0, \forall i \in\{1, \ldots, n\}, r \in\{n+1, \ldots, 4 m\}$, i.e. X belongs to the relative null space N_{p}.

Theorem 3.2. Let M be an n-dimensional quaternion bi-slant submanifold of a 4m-dimensional quaternion space form $\tilde{M}(c)$ of constant quaternion sectional curvature c. Then
(I) For each unit vector $X \in T_{p} M$, if
(a) X is tangent to D_{1}, we have

$$
\begin{equation*}
\operatorname{Ric}(X) \leq \frac{1}{4}\left\{n^{2}\|H\|^{2}+(n-1) c+6 c \cos ^{2} \theta_{1}\right\} \tag{3.14}
\end{equation*}
$$

and
(b) X is tangent to D_{2}, we have

$$
\begin{equation*}
\operatorname{Ric}(X) \leq \frac{1}{4}\left\{n^{2}\|H\|^{2}+(n-1) c+6 c \cos ^{2} \theta_{2}\right\} \tag{3.15}
\end{equation*}
$$

(II) If $H(p)=0$, then an unit tangent vector X at p satisfies the equality case of (3.14) and (3.15) if and only if X belongs to the relative null space N_{p}.
Proof. Let $p \in M$, we choose an orthonormal basis $\left\{e_{1}, \ldots, e_{n}\right\}$ for $T_{p} M$ and $\left\{e_{n+1}, \ldots, e_{4 m}\right\}$ for the normal space $T_{p}^{\perp} M$ at p such that $e_{n}=X$ and e_{n+1} is parallel to the mean curvature vector $H(p)$.

From the equation of Gauss, the scalar curvature τ is given by

$$
\begin{align*}
& \tau=\sum_{l=1}^{n} S\left(e_{l}, e_{l}\right) \tag{3.16}\\
& \quad=\frac{c}{4}\left\{n(n-1)+12\left(d_{1} \cos ^{2} \theta_{1}+d_{2} \cos ^{2} \theta_{2}\right)\right\}+n^{2}\|H\|^{2}-\|h\|^{2} .
\end{align*}
$$

We put

$$
\begin{equation*}
\epsilon=\tau-\frac{n^{2}}{2}\|H\|^{2}-\frac{c}{4}\left\{n(n-1)+12\left(d_{1} \cos ^{2} \theta_{1}+d_{2} \cos ^{2} \theta_{2}\right)\right\} . \tag{3.17}
\end{equation*}
$$

Then from equations (3.16) and (3.17), we get

$$
\begin{equation*}
n^{2}\|H\|^{2}=2\left(\epsilon+\|h\|^{2}\right) . \tag{3.18}
\end{equation*}
$$

With respect to above orthonormal basis, the equation (3.18) takes the form

$$
\begin{equation*}
\left(\sum_{i=1}^{n} h_{i i}^{n+1}\right)^{2}=2\left\{\epsilon+\sum_{i=1}^{n}\left(h_{i i}^{n+1}\right)^{2}+\sum_{i \neq j}\left(h_{i i}^{n+1}\right)^{2}+\sum_{r=n+2}^{4 m} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2}\right\} . \tag{3.19}
\end{equation*}
$$

If we set $a_{1}=h_{11}^{n+1}, a_{2}=\sum_{i=2}^{n-1} h_{i i}^{n+1}$ and $a_{3}=h_{n n}^{n+1}$, then (3.19) becomes

$$
\begin{align*}
\left(\sum_{i=1}^{3} a_{i}\right)^{2}=2\left\{\epsilon+\sum_{i=1}^{3} a_{i}^{2}+\sum_{i \neq j}\left(h_{i j}^{n+1}\right)^{2}\right. & +\sum_{r=n+2}^{4 m} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2} \tag{3.20}\\
& \left.-\sum_{2 \leq \alpha \neq \beta \leq n-1} h_{\alpha \alpha}^{n+1} h_{\beta \beta}^{n+1}\right\} .
\end{align*}
$$

Thus a_{1}, a_{2}, a_{3} satisfy the Lemma 2.1 of Chen for $(n=3)$, i.e.,

$$
\left(\sum_{i=1}^{3} a_{i}\right)^{2}=2\left(b+\sum_{i=1}^{3} a_{i}^{2}\right) .
$$

So, we have $2 a_{1} a_{2} \geq b$, with equality holding if and only if $a_{1}+a_{2}=a_{3}$.
In the case under consideration, this implies that equation (3.20) becomes

$$
\begin{equation*}
\sum_{1 \leq \alpha \neq \beta \leq n-1} h_{\alpha \alpha}^{n+1} h_{\beta \beta}^{n+1} \geq \epsilon+2 \sum_{i<j}\left(h_{i i}^{n+1}\right)^{2}+\sum_{r=n+2}^{4 m} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2}, \tag{3.21}
\end{equation*}
$$

or equivalently

$$
\begin{align*}
\frac{n^{2}}{2}\|H\|^{2} & +\frac{c}{4}\left[n(n-1)+12\left(d_{1} \cos ^{2} \theta_{1}+d_{2} \cos ^{2} \theta_{2}\right)\right] \tag{3.22}\\
& \geq \tau-\sum_{1 \leq \alpha \neq \beta \leq n-1} h_{\alpha \alpha}^{n+1} h_{\beta \beta}^{n+1}+2 \sum_{i<j}\left(h_{i j}^{n+1}\right)^{2}+\sum_{r=n+2}^{4 m} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2} .
\end{align*}
$$

Now, we consider two cases:
(a) If X is tangent to D_{1}, we have
(3.23) $\tau-\sum_{1 \leq \alpha \neq \beta \leq n-1} h_{\alpha \alpha}^{n+1} h_{\beta \beta}^{n+1}+2 \sum_{i<j}\left(h_{i j}^{n+1}\right)^{2}+\sum_{r=n+2}^{4 m} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2}$

$$
\begin{aligned}
& =2 S\left(e_{n}, e_{n}\right)+\frac{c}{4}\left[(n-1)(n-2)+12\left\{\left(d_{1}-1\right) \cos ^{2} \theta_{1}+d_{2} \cos ^{2} \theta_{2}\right\}\right] \\
& +2 \sum_{i<n}\left(h_{i n}^{n+1}\right)^{2}+\sum_{r=n+2}^{4 m}\left\{\left(h_{n n}^{r}\right)^{2}+2 \sum_{i=1}^{n-1}\left(h_{i n}^{r}\right)^{2}+\left(\sum_{j=1}^{n-1} h_{j j}^{r}\right)^{2}\right\}
\end{aligned}
$$

where S is the Ricci tensor of M.
Combining (3.22) and (3.23), we obtain

$$
\begin{align*}
& \frac{n^{2}}{2}\|H\|^{2}+\frac{c}{4}\left[2(n-1)+12 \cos ^{2} \theta_{1}\right] \tag{3.24}\\
& \quad \geq 2 S\left(e_{n}, e_{n}\right)+2 \sum_{i<n}\left(h_{i n}^{n+1}\right)^{2}+\sum_{r=n+2}^{4 m}\left\{\sum_{i=1}^{n}\left(h_{i n}^{r}\right)^{2}+\left(\sum_{j=1}^{n-1} h_{j j}^{r}\right)^{2}\right\} .
\end{align*}
$$

Thus, we have

$$
\operatorname{Ric}(X) \leq \frac{1}{4}\left\{n^{2}\|H\|^{2}+(n-1) c+6 c \cos ^{2} \theta_{1}\right\}
$$

which proves (3.14).
(b) If X is tangent to D_{2}, we have

$$
\begin{aligned}
(3.25) \tau & \sum_{1 \leq \alpha \neq \beta \leq n-1} h_{\alpha \alpha}^{n+1} h_{\beta \beta}^{n+1}+2 \sum_{i<j}\left(h_{i j}^{n+1}\right)^{2}+\sum_{r=n+2}^{4 m} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2} \\
= & 2 S\left(e_{n}, e_{n}\right)+\frac{c}{4}\left[(n-1)(n-2)+12\left\{d_{1} \cos ^{2} \theta_{1}+\left(d_{2}-1\right) \cos ^{2} \theta_{2}\right\}\right] \\
& +2 \sum_{i<n}\left(h_{i n}^{n+1}\right)^{2}+\sum_{r=n+2}^{4 m}\left\{\left(h_{n n}^{r}\right)^{2}+2 \sum_{i=1}^{n-1}\left(h_{i n}^{r}\right)^{2}+\left(\sum_{j=1}^{n-1} h_{j j}^{r}\right)^{2}\right\},
\end{aligned}
$$

where S is the Ricci tensor of M.
Combining (3.22) and (3.25), we obtain

$$
\begin{align*}
& \frac{n^{2}}{2}\|H\|^{2}+\frac{c}{4}\left[2(n-1)+12 \cos ^{2} \theta_{2}\right] \tag{3.26}\\
& \quad \geq 2 S\left(e_{n}, e_{n}\right)+2 \sum_{i<n}\left(h_{i n}^{n+1}\right)^{2}+\sum_{r=n+2}^{4 m}\left\{\sum_{i=1}^{n}\left(h_{i n}^{r}\right)^{2}+\left(\sum_{j=1}^{n-1} h_{j j}^{r}\right)^{2}\right\} .
\end{align*}
$$

Thus, we have

$$
\operatorname{Ric}(X) \leq \frac{1}{4}\left\{n^{2}\|H\|^{2}+(n-1) c+6 c \cos ^{2} \theta_{2}\right\},
$$

which proves (3.15).
(II) Assume $H(p)=0$. Equality holds in (3.14) and (3.15) if and only if

$$
\begin{equation*}
h_{1 n}^{r}=\ldots=h_{n-1, n}^{r}=0, \quad h_{n n}^{r}=\sum_{i=1}^{n-1} h_{i i}^{r}, r \in\{n+1, \ldots, 4 m\} . \tag{3.27}
\end{equation*}
$$

Then $h_{i n}^{r}=0, \forall i \in\{1, \ldots, n\}, r \in\{n+1, \ldots, 4 m\}$, i.e. X belongs to the relative null space N_{p}.

Now, we can state the following:
Corollary 3.3. Let M be an n-dimensional quaternion semi-slant submanifold of a 4m-dimensional quaternion space form $\tilde{M}(c)$ of constant quaternion sectional curvature c. Then
(I) For each unit vector $X \in T_{p} M$, if
(a) X is tangent to D_{1}, we have

$$
\begin{equation*}
\operatorname{Ric}(X) \leq \frac{1}{4}\left\{n^{2}\|H\|^{2}+(n-1) c+6 c\right\} \tag{3.28}
\end{equation*}
$$

and
(b) X is tangent to D_{2}, we have

$$
\begin{equation*}
\operatorname{Ric}(X) \leq \frac{1}{4}\left\{n^{2}\|H\|^{2}+(n-1) c+6 c \cos ^{2} \theta\right\} . \tag{3.29}
\end{equation*}
$$

(II) If $H(p)=0$, then an unit tangent vector X at p satisfies the equality case of (3.28) and (3.29) if and only if X belongs to the relative null space N_{p}.

Corollary 3.4. Let M be an n-dimensional quaternion submanifold of a $4 m$ dimensional quaternion space form $\tilde{M}(c)$ of constant quaternion sectional curvature c. Then
(I) For each unit vector $X \in T_{p} M$, we have

$$
\begin{equation*}
\operatorname{Ric}(X) \leq \frac{1}{4}\left\{n^{2}\|H\|^{2}+(n-1) c+6 c\right\} . \tag{3.30}
\end{equation*}
$$

(II) If $H(p)=0$, then an unit tangent vector X at p satisfies the equality case of (3.30) if and only if X belongs to the relative null space N_{p}.

Corollary 3.5. Let M be an n-dimensional totally real submanifold of a $4 m$ dimensional quaternion space form $\tilde{M}(c)$ of constant quaternion sectional curvature c. Then
(I) For each unit vector $X \in T_{p} M$, we have

$$
\begin{equation*}
\operatorname{Ric}(X) \leq \frac{1}{4}\left\{n^{2}\|H\|^{2}+(n-1) c\right\} . \tag{3.31}
\end{equation*}
$$

(II) If $H(p)=0$, then an unit tangent vector X at p satisfies the equality case of (3.31) if and only if X belongs to the relative null space N_{p}.

References

[1] D. V. Alekseevskiĭ. Compact quaternion spaces. Funkcional. Anal. i Priložen, 2(2):1120, 1968.
[2] M. Barros and B.-Y. Chen. Holonomy groups of normal bundles. II. J. London Math. Soc. (2), 22(1):168-174, 1980.
[3] M. Barros, B.-Y. Chen, and F. Urbano. Quaternion CR-submanifolds of quaternion manifolds. Kodai Math. J., 4(3):399-417, 1981.
[4] M. Barros and F. Urbano. Totally real submanifolds of quaternion Kaehlerian manifolds. Soochow J. Math., 5:63-78, 1979.
[5] A. Bejancu. CR submanifolds of a Kaehler manifold. I. Proc. Amer. Math. Soc., 69(1):135-142, 1978.
[6] M. Bektas. Totally real submanifolds in a quaternion space form. Czechoslovak Math. J., 54(129)(2):341-346, 2004.
[7] D. E. Blair and B.-Y. Chen. On CR-submanifolds of Hermitian manifolds. Israel J. Math., 34(4):353-363 (1980), 1979.
[8] B.-Y. Chen. Totally umbilical submanifolds of quaternion-space-forms. J. Austral. Math. Soc. Ser. A, 26(2):154-162, 1978.
[9] B.-Y. Chen. Geometry of submanifolds and its applications. Science University of Tokyo, Tokyo, 1981.
[10] B.-Y. Chen. Geometry of slant submanifolds. Katholieke Universiteit Leuven, Louvain, 1990.
[11] B.-Y. Chen. Some pinching and classification theorems for minimal submanifolds. Arch. Math. (Basel), 60(6):568-578, 1993.
[12] B.-Y. Chen. Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimensions. Glasg. Math. J., 41(1):33-41, 1999.
[13] B.-Y. Chen. On Ricci curvature of isotropic and Lagrangian submanifolds in complex space forms. Arch. Math. (Basel), 74(2):154-160, 2000.
[14] B.-Y. Chen and C. S. Houh. Totally real submanifolds of a quaternion projective space. Ann. Mat. Pura Appl. (4), 120:185-199, 1979.
[15] S. Ishihara. Quaternion Kählerian manifolds. J. Differential Geometry, 9:483-500, 1974.
[16] K. Matsumoto, I. Mihai, and A. Oiagă. Ricci curvature of submanifolds in complex space forms. Rev. Roumaine Math. Pures Appl., 46(6):775-782 (2002), 2001.
[17] I. Mihai, F. Al-Solamy, and M. H. Shahid. On Ricci curvature of a quaternion CRsubmanifold in a quaternion space form. Rad. Mat., 12(1):91-98, 2003.
[18] N. Papaghiuc. Semi-slant submanifolds of a Kaehlerian manifold. An. Ştiinţ. Univ. Al. I. Cuza Iaşi Secţ. I a Mat., 40(1):55-61, 1994.
[19] B. J. Papantoniou and M. H. Shahid. Quaternion CR-submanifolds of a quaternion Kaehler manifold. Int. J. Math. Math. Sci., 27(1):27-37, 2001.
[20] B. Sahin. Slant submanifolds of quaternion Kaehler manifolds. Commun. Korean Math. Soc., 22(1):123-135, 2007.
[21] L. Ximin. On Ricci curvature of totally real submanifolds in a quaternion projective space. Arch. Math. (Brno), 38(4):297-305, 2002.
[22] K. Yano and M. Kon. Structures on manifolds, volume 3 of Series in Pure Mathematics. World Scientific Publishing Co., Singapore, 1984.
[23] D. W. Yoon. A basic inequality of submanifolds in quaternionic space forms. Balkan J. Geom. Appl., 9(2):92-103, 2004.

Department of Mathematics,
University of Allahabad,
Allahabad-211002, Uttar Pradesh, India
E-mail address: ssshukla_au@rediffmail.com
Department of Mathematics,
University of Allahabad,
Allahabad-211002, Uttar Pradesh, India
E-mail address: babapawanrao@gmail.com

[^0]: 2010 Mathematics Subject Classification. 53C40, 53C25, 53C15.
 Key words and phrases. Mean curvature, slant submanifold, scalar curvature, quaternion space form.

