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Abstract. It is shown that in Minkowski space there exist transforma-
tions of the coordinates of events alternative to the 3-parameter Lorentz
boosts. However, in contrast to the boosts, they constitute a 3-parameter
noncompact group which, in turn, is a subgroup of the homogeneous 6-
parameter Lorentz group. Moreover, in the same space, there exists another
3-parameter noncompact group isomorphic to above-mentioned one. As we
shall see, these two 3-parameter noncompact groups are rudiments of the
3-parameter groups of relativistic symmetry of the axially symmetric Fins-
lerian spaces with the preferred directions ν and −ν, respectively. Finally,
it will be also demonstrated that inversion of the preferred direction ν in the
axially symmetric Finslerian space-time does not change the Lobachevski
geometry of 3-velocity space. However, this leads to an inversion of the
corresponding family of horospheres of the space.

1. Introduction

As it is known, space-time is Riemannian within the framework of GR, and
the distribution and motion of matter only determines the local curvature of
space-time without affecting the geometry of the tangent spaces. In other
words, regardless of the properties of the material medium which fills the Rie-
mannian space-time, any flat tangent space-time remains the space of events
of SR, i.e. the Minkowski space with its Lorentz symmetry, which is usually
identified with the relativistic symmetry.

However, in recent literature there is an increasing interest in the problem
of violation of Lorentz symmetry (see [1] and the references cited therein).
Particularly, the string-motivated approach to this problem is widely discussed.

The point is that even if the original unified theory of interactions possesses
Lorentz symmetry up to the most fundamental level, this symmetry can be
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spontaneously broken due to the emergence of the condensate of vector or
tensor field. The appearance of such a condensate, or of a constant classi-
cal field on the background of Minkowski space, implies that it can affect the
dynamics of the fundamental fields and thereby modify the Standard Model
of strong, weak and electromagnetic interactions. Since the constant classical
field is transformed by the passive Lorentz transformations as a Lorentz vector
or tensor, its influence on the dynamics of fundamental fields of the Standard
Model is described by the introduction of the additional terms representing all
possible Lorentz-covariant convolutions of the condensate with the Standard
fundamental fields into the Standard Lagrangian. The phenomenological the-
ory, based on such a Lorentz-covariant modification of the Standard model is
called the Standard Model Extension (SME) [2].

By design, the phenomenological SME theory is not Lorentz-invariant, since
its Lagrangian is not invariant under active Lorentz transformations of the
fundamental fields against the background of fixed condensate. In addition, in
the context of SME, a violation of Lorentz symmetry also involves the violation
of relativistic symmetry, since the presence of non-invariant condensate breaks
the physical equivalence of the different inertial reference systems.

It should be noted that in the low-energy limit of gravitation theories with
broken Lorentz and relativistic symmetries, there appears an unlimited number
of possibilities to build a variety of effective field theories, each of which being
potentially able to explain at least some of the recently discovered astrophysical
phenomena. At the same time, the very existence of the Finsler geometric
models of space-time [3], [4] within which a violation of Lorentz symmetry
occurs without the violation of relativistic symmetry strongly constrains the
possible effective field theories with broken Lorentz symmetry: in order to be
viable, such theories, in spite of the presence of Lorentz violation, should have
the property of relativistic invariance.

Note also that, as shown in [4], the Ridge/CMS-effect revealed at the Large
Hadronic Collider, directly demonstrates that in the early Universe there spon-
taneously emerged the axially symmetric local anisotropy of space-time with
a group DISIMb(2) as an inhomogeneous group of local relativistic symmetry
and the corresponding Finsler metric

(1) ds2 =

[
(dx0 − νdx)2

dx2
0 − dx2

]r
(dx2

0 − dx2).

This metric, proposed for the first time in [5], depends on two constant param-
eters r and ν, and generalizes the Minkowski metric. Here r determines the
magnitude of spatial anisotropy, characterizing, thus, the degree of deviation
of (1) from the isotropic Minkowski metric. Instead of the 3-parametric group
of rotations of Minkowski space, Finsler spaces (1) allow only one 1-parameter
group of rotations around the unit vector ν, which represents a physically
preferred direction in 3D space.
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One of the most important distinguishing features of Finsler spaces (1)
consists in their noninvariance under the discrete improper transformations:
x0 → −x0 or x → −x. This suggests that the emergence of the axially sym-
metric local anisotropy of space-time in the early Universe should be accom-
panied by violation of the CPT invariance (in this connection see [6]). In order
to scrutinize such a problem, we shall take here the first steps towards the ob-
jective, namely consider inhomogeneous groups of local relativistic symmetry
of Finsler spaces (1) and of

(2) ds2 =

[
(dx0 + νdx)2

dx2
0 − dx2

]r
(dx2

0 − dx2).

Obviously, the Finsler space (2) is obtained from (1) by replacing x0 → −x0

or x → −x.

2. Axially symmetric Finsler spaces and their isometry groups
as inhomogeneous groups of local relativistic symmetry

For a start let us consider the flat Finsler space-time (1). As to the isometry
group of (1) and to its Lie algebra, for the first time they were found (in an ex-
plicit form) in [7],[8],[9]. The respective group turned out to be 8-parametric:
four parameters correspond to space-time translations, one parameter, to ro-
tations about preferred direction ν, and three parameters, to the generalized
Lorentz boosts. One should notice that at present, after the works [10],[11],
this 8-parameter group is increasingly referred to as DISIMb(2), where b is the
new designation of the above-mentioned parameter r (for more details concern-
ing what has been said, see, in particular, [12],[13]). As to the abbreviation
DISIMb(2), this stands for Deformed Inhomogeneous SIMilitude group that
includes a 2-parameter Abelian homogeneous noncompact subgroup. Never-
theless, hereafter we shall hold on to our original designations.

Now let us consider infinitesimal transformations of the 8-parameter isom-
etry group of the axially symmetric Finsler space-time (1). Originally (see
[7]), the corresponding transformations of its 3-parameter homogeneous non-
compact subgroup, i.e. infinitesimal transformations of relativistic symmetry
of space-time (1), were obtained in the form

dx0 = (−r(νn)x0 − nx)dα,(3)

dx = (−r(νn)x− nx0 − [x[νn]])dα,

where the unit vector n and α are the group parameters. As to the infinitesimal
transformations of the above-mentioned 1-parameter group of rotations and of
the 4-parameter group of space-time translations, they have the form

(4) dx = [xν]dω; dxi = dai, i = 0, 1, 2, 3.

Using all these infinitesimal transformations with the condition that the third
space axis is directed along ν and three successive directions (along the first-,
the second- and the third axis) are chosen for n, we arrive at the simplest
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representation of generators of the 8-parameter isometry group of the Finsler
space-time (1). As a result,

X1 = −(x1p0 + x0p1)− (x1p3 − x3p1),(5)

X2 = −(x2p0 + x0p2) + (x3p2 − x2p3),

X3 = −rxipi − (x3p0 + x0p3),

R3 = x2p1 − x1p2; pi = ∂/∂xi.

These generators satisfy the following commutation relations:

[X1X2] = 0, [R3X3] = 0,(6)

[X3X1] = X1, [R3X1] = X2,

[X3X2] = X2, [R3X2] = −X1;

[pipj] = 0;(7)

[X1p0] = p1, [X2p0] = p2, [X3p0] = rp0 + p3, [R3p0] = 0,

[X1p1] = p0 + p3, [X2p1] = 0, [X3p1] = rp1, [R3p1] = p2,

[X1p2] = 0, [X2p2] = p0 + p3, [X3p2] = rp2, [R3p2] = −p1,

[X1p3] = −p1, [X2p3] = −p2, [X3p3] = rp3 + p0, [R3p3] = 0.

The operators X1, X2, X3 and their Lie algebra correspond to the special case
where the third spatial axis is directed along ν. In the general case where
spatial axes are oriented arbitrarily with respect to the preferred direction, the
corresponding operators generate the following finite homogeneous transfor-
mations (the generalized Lorentz boosts making up the 3-parameter group of
relativistic symmetry of the flat axially symmetric Finslerian event space (1)):

(8) x′i = D(v,ν)Ri
j(v,ν)L

j
k(v)x

k,

where v denotes the velocities of moving (primed) inertial reference frames, the
matrices Lj

k(v) represent the ordinary Lorentz boosts, the matrices Ri
j(v,ν)

represent additional rotations of the spatial axes of the moving frames around
the vectors [vν] through the angles

(9) ϕ = arccos

{
1−

(1−
√

1− v2/c2)[vν]2

(1− vν/c)v2

}
of the relativistic aberration of ν, and the diagonal matrices

(10) D(v,ν) =

(
1− vν/c√
1− v2/c2

)r

I

stand for the additional dilatational transformations of the event coordinates.
Note that the structure of the generalized Lorentz boosts (8) ensures the

fact that, in spite of new (Finsler) geometry of the flat event space (1), the



FINSLER SPACES WITH MUTUALLY OPPOSITE PREFERRED DIRECTIONS 19

3-velocity space remains to be a Lobachevski space (see, for instance [14]) with
metric

(11) dl2v =
(dv)2 − [vdv]2

(1− v2)2
.

Thus, the transition from the Minkowski event space to the flat axially symmet-
ric Finsler event space (1) leaves the relativistic 3-velocity space unchanged.
Therefore it is clear that the 3-parameter group of the generalized Lorentz
boosts (8) induces an isomorphic 3-parameter group of the corresponding mo-
tions of the Lobachevski space. In particular, the Abelian (see (6)) 2-parameter
subgroup with the generators X1, X2 (see (5)) induces a 2-parameter subgroup
of such motions of the Lobachevski space which leave invariant a family of
the horospheres (1 − vν)/

√
1− v2 = const, i.e., of surfaces perpendicular

(see Fig.1) to the congruence of geodesics parallel to ν and possessing Eu-
clidean inner geometry. Now, along with initial Finsler space-time (1), let us

Figure 1. Horosphere 2D image in the Lobachevski space. The
horosphere belongs to the family (1− vν)/

√
1− v2 = const

consider the Finsler space-time (2). Since its metric can be obtained from (1)
by replacing ν → −ν, we shall treat (2) as axially symmetric Finsler space-
time with the opposite direction of ν.

For easier comparison of corresponding equations peculiar to the spaces
(1) and (2), we represent, for example, infinitesimal transformations of 3-
parameter groups of relativistic symmetry of these spaces in the following
form

dx
(1)
(2)

0 = (∓r(νn)x0 − nx)dα,(12)

dx
(1)
(2) = (∓r(νn)x− nx0 ∓ [x[νn]])dα,

where the unit vector n and α are the group parameters. Here and below,

two-level index
(1)
(2) in the left side of each equation indicates that the equation

relates to space (1) and space (2). In accordance with the architecture of this
index, the upper signs in the right side of each equation correspond to the case
of space (1), whereas the lower signs correspond to the case of space (2).
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As for the infinitesimal transformations of the above-mentioned 1-parameter
group of rotations and 4-parameter group of space-time translations, they have
the form

(13) dx
(1)
(2) = ±[xν]dω; (dxi)

(1)
(2) = dai, i = 0, 1, 2, 3.

If, as before, the spatial axes are chosen so that ν = (0, 0, 1), and three succes-
sive directions (along the first-, the second- and the third axis) are chosen for
n, then the generators and the corresponding Lie algebras of the 8-parameter
isometry groups of Finsler spaces (1) and (2) appear as

X
(1)
(2)

1 = −(x1p0 + x0p1)∓ (x1p3 − x3p1),(14)

X
(1)
(2)

2 = −(x2p0 + x0p2)± (x3p2 − x2p3),

X
(1)
(2)

3 = ∓r(x0p0 + xp)− (x3p0 + x0p3),

R
(1)
(2)

3 = ±(x2p1 − x1p2); pi = ∂/∂xi.

[X
(1)
(2)

1 X
(1)
(2)

2 ] = 0, [R
(1)
(2)

3 X
(1)
(2)

3 ] = 0,(15)

[X
(1)
(2)

3 X
(1)
(2)

1 ] = ±X
(1)
(2)

1 , [R
(1)
(2)

3 X
(1)
(2)

1 ] = ±X
(1)
(2)

2 ,

[X
(1)
(2)

3 X
(1)
(2)

2 ] = ±X
(1)
(2)

2 , [R
(1)
(2)

3 X
(1)
(2)

2 ] = ∓X
(1)
(2)

1 ;

[pipj] = 0;(16)

[X
(1)
(2)

1 p0] = p1, [X
(1)
(2)

2 p0] = p2,

[X
(1)
(2)

1 p1] = p0 ± p3, [X
(1)
(2)

2 p1] = 0,

[X
(1)
(2)

1 p2] = 0, [X
(1)
(2)

2 p2] = p0 ± p3,

[X
(1)
(2)

1 p3] = ∓p1, [X
(1)
(2)

2 p3] = ∓p2,

[X
(1)
(2)

3 p0] = ±rp0 + p3, [R
(1)
(2)

3 p0] = 0,

[X
(1)
(2)

3 p1] = ±rp1, [R
(1)
(2)

3 p1] = ±p2,

[X
(1)
(2)

3 p2] = ±rp2, [R
(1)
(2)

3 p2] = ∓p1,

[X
(1)
(2)

3 p3] = ±rp3 + p0, [R
(1)
(2)

3 p3] = 0.

Now compare the 3-parameter noncompact homogeneous group of rela-

tivistic symmetry of space (1) (the generators X
(1)
1 , X

(1)
2 , X

(1)
3 ) with the cor-

responding group of space (2) (the generators X
(2)
1 , X

(2)
2 , X

(2)
3 ). According
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to their Lie algebras (see (15)), these groups are isomorphic to the corre-

sponding 3-parameter subgroups (with generators X
(1)
1 , X

(1)
2 , X

(1)
3 |r=0 and

X
(2)
1 , X

(2)
2 , X

(2)
3 |r=0, respectively) of the homogeneous Lorentz group. Simi-

larly to the case of space (1), the Abelian 2-parameter subgroup (with the

generators X
(2)
1 , X

(2)
2 ) induces a 2-parameter subgroup of such motions of the

Lobachevski space which leave invariant a family of the horospheres (1 +
vν)/

√
1− v2 = const, i.e. of surfaces perpendicular (see Fig.2) to the con-

gruence of geodesics parallel to −ν and possessing Euclidean inner geometry.

Figure 2. Horosphere 2D image in the Lobachevski space. The
horosphere belongs to the family (1 + vν)/

√
1− v2 = const

3. Two 3-parametric noncompact subgroups of the homogeneous
Lorentz group as rudiments of the 3-parametric groups of
relativistic symmetry of the axially symmetric Finsler
spaces with mutually opposite preferred directions

If r = 0, the metrics of axially symmetric Finsler spaces (1) and (2), i.e.

(17)
(
ds2
)(1)
(2) =

[
(dx0 ∓ νdx)2

dx2
0 − dx2

]r
(dx2

0 − dx2),

reduce to the Minkowski one ds2 = dx2
0 − dx2. However transformations of

relativisic symmetry of these spaces, i.e. transformations

(18)
(
x′i)(1)(2) = D(v,±ν)Ri

j(v,±ν)Lj
k(v)x

k,

in which

D(v,±ν) =

(
1∓ vν/c√
1− v2/c2

)r

I,

do not reduce to the ordinary Lorentz boosts

(19) x′i = Li
k(v)x

k.
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Incidentally, these boosts can be represented in the following explicit form

x′
0 = x0−(vx)√

1−v2 ,(20)

x′ = x− v√
1−v2

[
x0 −

(
1−

√
1− v2

)
(vx) /v2

]
.

At r = 0, i.e. in the case of Minkowski space where all directions in 3D
space are equivalent, ν has no physical meaning. In this case, each of the two
rudimentary transformations

(21) x′i = Ri
j(v,±ν)Lj

k(v)x
k

differs from the Lorentz boost (19) by the corresponding additional rotation

(22) x′i = Ri
k(v,±ν)xk

of the spatial axes. This additional rotation is adjusted in such a way that
if a ray of light has the direction ν or −ν in one frame, then it will have
respectively the same direction in all the frames.

In order to find an explicit form of the additional rotation (22) we should
use the following general formula

(23) x′ = x+ [N [Nx]](1− cosϕ)− [Nx] sinϕ.

This formula determines the transformed components x′ of radius vector x
after rotation of the spatial axes around arbitrary unit vector N through an
angle ϕ.
In our case the respective N and ϕ can be obtained by means of solving
hyperbolic triangles in the Lobachevski 3-velocity space (see Fig.3).

Figure 3. Hyperbolic triangles in the relativistic 3-velocity space

In Fig.3, the point B depicts the initial reference frame, D the reference
frame moving at velocity v (the unit vector n indicates the direction of v, i.e.
n = v/v). In the reference frame B the ray of light has the direction ν or
ν̃ = −ν, and in the reference frame D, the direction ν′ or ν̃′, respectively.
The DCC̃ angle is zero (the straight lines DC and C̃C are parallel). The DC̃C
angle is zero (the straight lines DC̃ and CC̃ are also parallel). In addition,
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∠DAC = ∠DAC̃ = π/2 and ∠ADC = ∠ADC̃ = Π(b). Here Π(b) is the
Lobachevski angle for parallelism. Its dependence on the distance b between
two points D and A is determined by the formula Π(b) = 2 arctan e−b.

In order to find the angle ϕ of relativistic aberration of ν, the vector ν should
be carried in parallel from B to D along the straight line BD and then one
should make use of the formulae of hyperbolic geometry, taking into account
that tanh a = v/c. As a result, we arrive at (9). From the same Fig.3 one can
see that the rotation is performed around the vector [vν]. Now, with the help
of (23), we are able to write down the transformation which corresponds to
the additional rotation x′i = Ri

k(v,ν)x
k of the spatial axes. It has the form

(24) x′ = x+
(
√
1− v2 − 1)(vx) + v2(νx)

v2(1− vν)
v +

+
(1−

√
1− v2)[2(vν)(vx)− v2(νx)]− v2(vx)

v2(1− vν)
ν.

Note that in (24) we put c = 1.
Similarly, in order to find the angle ϕ̃ of relativistic aberration of ν̃, the

vector ν̃ should be carried in parallel from B to D along the straight line BD.
As a result, we get

(25) ϕ̃ = arccos

{
1−

(1−
√

1− v2/c2)[νv]2

(1 + vν/c)v2

}
From Fig.3 one can see that such a rotation is performed around the vector
[νv]. Now, with the help of (23) we are able to write down the transfor-
mation which corresponds to another additional rotation x′i = Ri

k(v, ν̃)x
k =

Ri
k(v,−ν)xk of the spatial axes. It has the form

(26) x′ = x+
(
√
1− v2 − 1)(vx)− v2(νx)

v2(1 + vν)
v +

+
(1−

√
1− v2)[2(vν)(vx)− v2(νx)] + v2(vx)

v2(1 + vν)
ν.

Here, as before, we put c = 1.

4. Conclusion

Having studied the axially symmetric Finsler spaces with mutually opposite
preferred directions and their isometry groups, we gave particular attention to
the limiting case r = 0. As it turned out, if r = 0, the respective Finsler metrics
ds2 = [(dx0 ∓ νdx)2/(dx2

0 − dx2)]
r
(dx2

0 − dx2) reduce to the Minkowski one
ds2 = dx2

0 − dx2. However, transformations of relativistic symmetry of the
above-mentioned Finsler spaces do not reduce to the ordinary Lorentz boosts.
At r = 0, i.e. in the case of Minkowski space where all directions in 3D space are
equivalent, ν has no physical meaning. In this case, each of the transformations
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of the pair of rudimentary transformations x′i = Ri
j(v,±ν)Lj

k(v)x
k differs from

the Lorentz boost x′i = Li
k(v)x

k by the corresponding additional rotation
x′i = Ri

k(v,±ν)xk of the spatial axes. This additional rotation is adjusted in
such a way that if a ray of light has the direction ν or −ν in one frame, then
it will have respectively the same direction in all the frames. Thus, at r = 0,
the two sets of rudimentary transformations represent two alternatives to the
Lorentz boosts, however, in contrast to the boosts, they constitute two different
but isomorphic 3-parameter noncompact groups (see the two horospheres in
Fig.4 illustrating this fact).

Physically, such noncompact transformations are realized as follows. First
choose as ν a direction towards a preselected star (or opposite direction) and
then perform an arbitrary Lorentz boost by complementing it with such a
turn of the spatial axes that in a new reference frame the direction towards
the star (or opposite direction, respectively) remains unchanged. These two
sets consisting of the described transformations form two different 3-parameter
noncompact groups.

Figure 4. Two different horospheres in Lobachevski space as
examples of two different surfaces of transitivity arising from the
two rudimentary groups
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