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VARIATIONAL THEORY ON GRASSMANN FIBRATIONS:
EXAMPLES

ZBYNĚK URBAN AND DEMETER KRUPKA

Dedicated to Professor Lajos Tamássy on the occasion of his 90th birthday

Abstract. Simple examples of variational functionals on Grassmann fi-
brations are analysed on the basis of the Hilbert form. The Lagrange,
Euler – Lagrange, and Noether classes, characterizing the functionals, their
extremals and invariance properties are discussed. The relationship of equa-
tions for extremals and conservation law equations is established; in the ex-
amples the system of Euler – Lagrange equations turns out to be equivalent
with the system of conservation law equations.

1. Introduction

This paper is aimed to explain new concepts and methods of the variational
theory on Grassmann fibrations by simple examples. It partially covers invited
lectures, given by both authors at the Joint Event Colloquium on Differential
Geometry and Finsler Extension of Relativity Theory, August 2013, Debrecen,
dedicated to Professor Lajos Tamássy on the occasion of his 90th birthday.
The results can be considered as an extension of our paper [6].

In Section 2 and Section 3 we briefly recall basic concepts of the theory of
Grassmann fibrations and variational functionals on them. Then in Section
4 and Section 5 we discuss examples of variational functionals on the Grass-
mann fibrations G1R2 and G1R3, constructed from the Euclidean metric on R2

and its extension to R3. Our aim is to characterize the meaning of the defini-
tion of the first order Lepage form, the Hilbert form, its invariance properties
and the consequences arising from the Noether theorem in this context (“con-
servation laws”) for extremals of the underlying variational functionals. In
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particular, differences between basic underlying concepts, the Lagrange form,
Euler – Lagrange form, etc. on fibred manifolds on one side, and the Lagrange
class, Euler – Lagrange class, etc. on Grassmann fibrations are described. The
methods, based on the Hilbert form, do not require any parametrisations. The
examples also provide us with the methods how the invariance properties can
be used for the study of extremals: to this purpose one should first solve the
Noether equations for the generators of invariance groups, and then to for-
mulate and solve the “conservation law” equations. It turns out that in our
examples the conservation law equations are completely equivalent with the
Euler – Lagrange equations for extremals. The functions, representing the first
integrals, or “conserved quantities”, can naturally be interpreted as a part of
the adapted coordinates to the extremal submanifolds.

We consider in our examples three variational functionals for 1-dimensional
(non-parametrized) submanifolds of R2 and R3, defined on the Grassmann
fibrations G1R2 and G1R3; the functionals are defined by means of the 1st-
order Lepage forms (the Hilbert forms). The following topics are included:

– construction of the Hilbert form from a homogeneous Lagrangian,
– the Euler – Lagrange class and equations for extremals as set solutions,
– invariance transformations of the Lagrange class, classification,
– “conserved quantities” (first integrals) within the Grassmann fibration frame-
work, conservation law equations and their solutions.

2. Grassmann fibrations

Throughout, we consider curves in a smooth manifold Y of dimension m+1,
where m ≥ 0 is an integer. By an r-velocity at a point y ∈ Y , we mean an
r-jet Jr

0ζ with source at the origin 0 ∈ R, and target at y = ζ(0). A 1-velocity
J1
0 ζ is just a tangent vector of Y at y. r-velocities form a manifold denoted by
T rY . If (V, ψ), ψ = (yK), is a chart on Y , then the associated chart on T rY
is denoted by (V r, ψr), ψr = (yK(0), y

K
(1), y

K
(2), . . . , y

K
(r)).

If I ⊂ R is an open interval and γ : I → Y a curve in Y , the r-jet prolongation
of γ is the curve T rγ : I → T rY , where T rγ(t) = Jr

0 (γ ◦ tr−t), and tr−t is the
translation, sending the origin 0 ∈ R to the point t ∈ R. The open set of
regular velocities in T rY (the velocities represented by immersions) is denoted
by ImmT rY .

The r-th differential group of the real line R, denoted Lr, is the manifold
of invertible r-jets with source and target at 0 ∈ R; the composition of jets
Lr × Lr 3 (Jr

0α, J
r
0β) → Jr

0 (α ◦ β) ∈ Lr defines on Lr a Lie group structure.
The manifold ImmT rY is endowed with the canonical right action of the
differential group Lr, ImmT rY × Lr 3 (Jr

0ζ, J
r
0α) → Jr

0 (ζ ◦ α) ∈ ImmT rY .
This action can be described by means of adapted charts. If (V, ψ), ψ = (yK),

is a chart on Y , then the associated chart (V r, ψr) induces a chart on ImmT rY
by restricting the coordinate functions ψr to V r ∩ ImmT rY . Since regular
velocities are represented by immersions, for every element Jr

0ζ ∈ ImmT rY
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at least one coordinate yK(1)(J
r
0ζ) does not vanish. Setting for every L, 1 ≤

L ≤ m + 1, V r(L) = {Jr
0ζ ∈ V r | yL(1)(Jr

0ζ) 6= 0}, we get an open and Lr-

invariant subset of V r. Restriction of ψr to V r(L) yields a chart (V r(L), ψr(L))
on ImmT rY .

To describe the adapted charts we need a specific summation convention. A
q-tuple (I1, I2, . . . , Iq) is said to be a q-partition of a set I = {i1, i2, . . . , il} of
integers, if Ij, 1 ≤ j ≤ q, are disjoint subsets of I, and

⋃
Ij = I. |Ij| is the

number of elements of the set Ij. By the symbol∑
(I1,I2,...,Iq)

we understand summation through all q-partitions of the set I, such that
i1 = i2 = . . . = il = 1. If an index L from the sequence {1, 2, . . . ,m + 1} has
been chosen, we let the Greek indices σ, ν, . . . run through the complementary
sequence {1, 2, . . . , L− 1, L+ 1, . . . ,m+ 1}.

Lemma 1. Let (V, ψ), ψ = (yK), be a chart on Y . Let L be a fixed index,
1 ≤ L ≤ m+ 1, and let r ≥ 1.

(a) There exist unique functions wσ, wσ
(1), w

σ
(2), . . . , w

σ
(r), defined on V r(L),

satisfying

yσ = wσ, yσ(l) =
l∑

q=1

∑
(I1,I2,...,Iq)

yL|I1|y
L
|I2| . . . y

L
|Iq |w

σ
(q).

The functions wσ
(1), w

σ
(2), . . . , w

σ
(r) are given by

wσ
(l)(J

r
0ζ) = Dl(yσζ ◦ (yLζ)−1)(yLζ(0)),

and are Lr-invariant.
(b) The pair (V r(L), ψr(L)), where

ψr(L) = (wL, wL
(1), w

L
(2), . . . , w

L
(r), w

σ, wσ
(1), w

σ
(2), . . . , w

σ
(r)),

and wL = yL, wL
(l) = yL(l), 1 ≤ l ≤ r, is a chart on ImmT rY .

(c) The Lr-orbits are on V r(L) defined by the equations

wσ
(l) = cσl , cσl ∈ R.

We call the pair (V r(L), ψr(L)) the L-subordinate chart (associated with
(V, ψ)) on ImmT rY .

The right action of Lr on ImmT rY defines the orbit space

GrY = ImmT rY/Lr.

Its elements (contact elements, or classes of regular velocities Jr
0ζ) are denoted

by [Jr
0ζ].
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Lemma 2. The canonical right action of Lr defines on ImmT rY the struc-
ture of a right principal Lr-bundle with base the orbit space GrY . GrY is
endowed with a unique smooth structure such that the quotient projection is a
submersion.

The set GrY endowed with the structures defined by Lemma 2 is called the
Grassmann fibration (of 1-dimensional submanifolds) over Y (cf. Grigore and
Krupka [1]). The canonical projection of GrY onto Y is denoted by ρr,0.

The associated smooth structure of GrY is described as follows. We de-
note V

r(L)
G = πr(V r(L)), ψ

r(L)
G = (w̃L, w̃σ, w̃σ

(1), w̃
σ
(2), . . . , w̃

σ
(r)), where the coor-

dinate functions on V
r(L)
G are defined by wL = w̃L ◦ πr and wσ

(l) = w̃σ
(l) ◦ πr,

πr : ImmT rY → GrY denotes the quotient projection, and 0 ≤ l ≤ r. The pair

(V
r(L)
G , ψ

r(L)
G ) is a chart on GrY , called the L-subordinate chart. We usually

omit the tilde symbol if no misunderstanding may arise.
Any immersion f : X → Y of a 1-dimensional manifold X, can be prolonged

to an immersion Grf : X → GrY into GrY . If X is an open interval in R,
then Grζ(t) = [T rζ(t)], and this formula extends to an arbitrary manifold by
means of charts on X.

Let W ⊂ Y be an open set, W r = (ρr,0)−1(W ) ⊂ GrY , and let α : W →
Y be a diffeomorphism. We define a diffeomorphism Grα : W r → GrY by
Grα([Jr

0ζ]) = [Jr
0 (α ◦ ζ)]; Grα is called the r-th Grassmann prolongation of α.

This definition applies to vector fields on W . If αt is the local one-parameter
group of a vector field Ξ, then the formula

GrΞ([Jr
0ζ]) =

(
d

dt
Grαt([J

r
0ζ])

)
0

defines a vector field GrΞ on W r, the r-th Grassmann prolongation of Ξ.

Remark 1. For further use we express Lemma 1 for regular 1-velocities. If
(V, ψ), ψ = (yK), is a chart on Y and (V 1, ψ1), ψ1 = (yK , ẏK), is the
associated chart, then the L-subordinate chart on ImmT 1Y , (V 1(L), ψ1(L)),
ψ1(L) = (wL, ẇL, wσ, wσ

(1)), is defined by the coordinate transformations

yL = wL, ẏL = ẇL, yσ = wσ, ẏσ = wσ
(1)ẇ

L,

and

(1) wL = yL, ẇL = ẏL, wσ = yσ, wσ
(1) =

ẏσ

ẏL
.

Equations of the L1-orbits are

wσ = cσ, wσ
(1) = cσ1 , cσ, cσ1 ∈ R.
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3. Variational functionals on Grassmann fibrations

Let η be a 1-form on GrY . To any 1-dimensional manifoldX, any immersion
f : X → Y , and any compact subset Ω ⊂ X we assign the variational integral

ηΩ(f) =

∫
Ω

Grf ∗η.

The mapping f → ηΩ(f) is the variational functional, associated with η.
To investigate the structure of variational integrals we need the concept

of a contact form. For any open set W ⊂ Y , denote by Ωr
0W the ring of

differentiable functions, by Ωr
kW the Ωr

0W -module of differential k-forms, and
by ΩrW the exterior algebra onW r. We say that a 1-form η ∈ Ωr

1W is contact,
if Grζ ∗η = 0 for all immersions ζ : I → W , where I is an open interval in
R. For any fixed L, the forms dwL, ωσ

(l), dw
σ
(r), where the Greek index is

complementary to L and ωσ
(l) = dwσ

(l) −wσ
(l+1)dw

L, constitute the contact basis

of 1-forms on V
r(L)
G . A k-form η ∈ Ωr

kW is said to be contact, if it is locally
generated by the contact 1-forms ωσ

(l). Contact forms define an ideal in ΩrW ,
called the contact ideal, and denoted by ΘrW .

We restrict ourselves without loss of generality to the case when η is a Lepage
form. The meaning of this condition for the first variation formula is explained
e.g. in the chapters of the handbook Krupka and Saunders [4], and in Krupka
[3]. Formally, we say that η is a Lepage form, if iZdη belongs to the contact
ideal ΘrW for every ρr,0-vertical vector field Z on W r.

Let η be a form on GrY , expressible in a chart (V
r(L)
G , ψ

r(L)
G ) by

(2) η = LL
η dw

L +
∑

0≤l≤r−1

Bl
σω

σ
l .

The term LL
η dw

L, complementary to the contact part, is said to be the local

Lagrangian, and its component LL
η the local Lagrange function associated to η

(and (V
r(L)
G , ψ

r(L)
G )). The class, defined globally,

[η] = LL
η dw

L mod ΘrW,

is called the Lagrange class, associated with η.
The following theorem characterizes Lepage forms by means of charts.

Theorem 1. Let (V, ψ), ψ = (yK), be a chart on Y such that V ⊂ W , and
let η ∈ Ωr

1W be a 1-form on W r locally expressed by (2). Then η is a Lepage
form if and only if

(3) (ρ2r−1,r)∗η = LL
η dw

L +
∑

0≤l≤r−1

( ∑
0≤k≤r−l−1

(−1)k
dk

d(wL)k
∂LL

η

∂wσ
(k+l+1)

)
ωσ
(l).
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Remark 2. If r = 1, the Lepage form defined by (3) is given by

(4) η = LL
η dw

L +
∂LL

η

∂wσ
(1)

ωσ,

and coincides with the well-known Hilbert form. To show the projectability of
the Hilbert form, associated with the Lagrange function L : ImmT 1Y → R, it
is sufficient to find its expression in the adapted coordinates on the Grassmann
fibration G1Y . Indeed, in the adapted chart (wL, wσ, ẇL, wσ

(1)), defined on an

open subset of ImmT 1Y where ẇL 6= 0 by (1), we get

∂L
∂ẏK

dyK =
∂L
∂ẇL

dwL − ∂L
∂wσ

(1)

wσ
(1)

ẇL
dwL +

∂L
∂wσ

(1)

1

ẇL
dwσ

=
∂L
∂ẇL

dwL +
∂L
∂wσ

(1)

1

ẇL
ωσ = LL

η dw
L +

∂LL
η

∂wσ
(1)

ωσ = η,

where LL
η = (1/ẇL)L is defined on G1Y and L is a positive-homogeneous

function on ImmT 1R2.
If r = 2 we get

η = LL
η dw

L +

(
∂LL

η

∂wσ
(1)

− d

dwL

∂LL
η

∂wσ
(2)

)
ωσ +

∂LL
η

∂wσ
(2)

ωσ
(1),

which is an analogue of the Lepage equivalent of a 2nd order Lagrangian on a
fibred manifold (cf. Krupka [3]).

The following theorem characterizes the meaning of Lepage forms for the
variational theory. ΘrW ∧ΘrW denotes the exterior power of ΘrW .

Theorem 2. Let η ∈ Ωr
1W be a Lepage form. Then

dη = Eσ(LL
η )ω

σ ∧ dwL mod (Θ2rW ∧Θ2rW ),

where

Eσ(LL
η ) =

r∑
k=0

(−1)k
dk

d(wL)k

(
∂LL

η

∂wσ
(k)

)
.

We say that an immersion f : X → W is an extremal of the variational
functional ηΩ, if for every vector field Ξ such that suppΞ ∩ f(X) ⊂ f(Ω),

(∂GrΞη)Ω(f) = 0.

f is called an extremal, if it is an extremal for every piece Ω ⊂ X. In this
definition we consider vector fields, which vanish on the boundary ∂Ω of the
piece Ω along f . The class

Eη = Eσ(LL
η )ω

σ ∧ dwL mod Θ2rW

is called the Euler – Lagrange class associated to η.
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Theorem 3. Let η ∈ Ωr
1W be a Lepage form, let f : X → W be an immersion.

The following conditions are equivalent:
(a) f is an extremal of ηΩ.

(b) For every chart (V, ψ) on Y there exists a subordinate chart (V
r(L)
G , ψ

r(L)
G )

on GrY such that in this chart the following system of partial differential equa-
tions for f is satisfied,

(5)
r∑

k=0

(−1)k
dk

d(wL)k

(
∂LL

η

∂wσ
(k)

)
◦G2rf = 0, 1 ≤ σ ≤ m.

Equations (5) are the Euler – Lagrange equations associated with η.
Now we study variational functionals, invariant under Lie groups of dif-

feomorphisms. For generalities on invariant variational structures on fibred
manifolds we refer to Krupka and Saunders [4].

We say that a 1-form η ∈ Ωr
1W is invariant with respect to a diffeomorphism

α : W → Y , if

(6) Grα ∗η = η mod ΘrW.

If condition (6) is satisfied, we also say that α is an invariance transformation
of η. This condition means that Grα preserves classes of forms under the
equivalence relation ”η1 is equivalent with η2 if η1 − η2 ∈ ΘrW”. We say that
a vector field Ξ on W r is the generator of invariance transformations of η, if
its 1-parameter group consists of invariance transformations of η.

The following is an extension of the classical Noether equation for the Grass-
mann fibrations.

Theorem 4. Let η ∈ Ωr
1W be a 1-form and Ξ be a vector field on Y . The

following two conditions are equivalent:
(a) Ξ is the generator of invariance transformations of η.
(b) The Lie derivative of η with respect to GrΞ belongs to the contact ideal

ΘrW ,
∂GrΞη ∈ ΘrW.

The following theorem is a restatement of the first variation formula for
invariant Lepage forms.

Theorem 5. Let η ∈ Ωr
1W be a Lepage form, and let Ξ be the generator of

invariance transformations of η. Then

iG2rΞEη + dρ2r,r ∗iGrΞη = 0 mod Θ2rW.

We are now in a position to extend the classical Emmy Noether’s analysis of
invariant variational functionals to Grassmann fibrations. Let φ : W r → R be
a function, and let f : X → Y be an immersion. Suppose that X is connected.
We shall say that φ is constant along f , if

d(Grf ∗φ) = 0.
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We also say that φ is a level set function for the immersion f .

Theorem 6. Let η ∈ Ωr
1W be a Lepage form, and let an immersion f : X → Y

be an extremal. Then for every generator Ξ of invariance transformations of
η, iGrΞη is a level-set function for the immersion Grf ,

(7) d(Grf ∗iGrΞη) = 0.

Remark 3. According to Theorem 6, formula (7) includes a construction of
adapted charts to the submanifolds Grf(X) ⊂ GrY ; analogues of the “con-
served quantities” from geometric mechanics are the coordinate functions,
defining the submanifolds.

4. Example: Arc-length functional on the Grassmann fibration
G1R2

Consider the manifold R2, with the canonical coordinates (x, y) and the
associated coordinates (x, y, ẋ, ẏ) on ImmT 1R2. Formula

L(x, y, ẋ, ẏ) =
√
ẋ2 + ẏ2

defines a Lagrange function on ImmT 1R2; L satisfies, for any τ ∈ R, the
condition L(x, y, τ ẋ, τ ẏ) = |τ |L(x, y, ẋ, ẏ), and is positive-homogeneous.

(a) Extremals as set solutions The Hilbert form associated with L is

(8) η =
1√

ẋ2 + ẏ2
(ẋdx+ ẏdy).

To find the Euler – Lagrange equations for extremals, we choose a vector field

Ξ = ξ1
∂

∂x
+ ξ2

∂

∂y
+ Ξ1 ∂

∂ẋ
+ Ξ2 ∂

∂ẏ
,

on ImmT 1R2 and find an expression for the 1-form iΞdη. First we have

dη = − ẋẏ

(ẋ2 + ẏ2)
√
ẋ2 + ẏ2

dẋ ∧ dy + ẏ2

(ẋ2 + ẏ2)
√
ẋ2 + ẏ2

dẋ ∧ dx

− ẋẏ

(ẋ2 + ẏ2)
√
ẋ2 + ẏ2

dẏ ∧ dx+ ẋ2

(ẋ2 + ẏ2)
√
ẋ2 + ẏ2

dẏ ∧ dy.

Contracting this form by Ξ we have

(9) iΞdη =
ẋΞ2 − ẏΞ1

(ẋ2 + ẏ2)
√
ẋ2 + ẏ2

(ẋdy− ẏdx) +
ẏξ1 − ẋξ2

(ẋ2 + ẏ2)
√
ẋ2 + ẏ2

(ẋdẏ− ẏdẋ).

Omitting the term containing the contact form ẋdy−ẏdx we get for the Euler –
Lagrange class

(10) iΞdη ≈ ẏξ1 − ẋξ2

(ẋ2 + ẏ2)
√
ẋ2 + ẏ2

(ẋdẏ − ẏdẋ).
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Consequently, extremals are exactly the curves satisfying the equation

(11) ẋÿ − ẏẍ = 0.

For curves, that can be parametrized by the coordinate x, that is, the curves
of the form x → (x, y(x)), ẋ = 1, ẍ = 0, and equation (11) reduces to ÿ = 0.
Analogously, for curves expressible as y → (y, x(y)), (11) reduces to ẍ = 0.
Consequently, solving these equations and writing them in a unique way we
get all extremals described as the set solutions

{(x, y) ∈ R2 |Px+Qy +R = 0, P,Q,R ∈ R}.

Remark 4. Equation (11) is invariant with respect to reparametrisations, and
its solutions are the set solutions (cf. Urban and Krupka [5]). Indeed, if t is a
parameter, and κ = κ(t) a reparametrisation, then

dx

dt
=
dx

dκ

dκ

dt
,

d2x

dt2
=
d2x

dκ2

(
dκ

dt

)2

+
dx

dκ

d2κ

dt2

hence
dx

dt

d2y

dt2
− dy

dt

d2x

dt2
=

(
dκ

dt

)3(
dx

dκ

d2y

dκ2
− dy

dκ

d2x

dκ2

)
.

Remark 5. Equation (11), where the dot means differentiation with respect
to a parameter t, can be resolved immediately. Indeed, if we have a solution,
then writing

(12)
ẍ

ẋ
=
ÿ

ẏ
= −φ,

we get a function φ = φ(t), and (12) splits in two conditions ẍ+φ(t)ẋ = 0 and
ÿ + φ(t)ẏ = 0. Setting

µ(t) = e−
∫ t
0 φ(τ)dτ ,

we have
d

dt

ẋ

µ(t)
=

1

µ(t)
(ẍ+ ẋφ(t)) = 0

hence ẋ = Aµ(t), and

x(t) = A

∫ t

0

µ(τ)dτ +B, A,B ∈ R.

Analogously

y(t) = C

∫ t

0

µ(τ)dτ +D, C,D ∈ R.

Changing the parametrisation by the formula

κ(t) =

∫ t

0

µ(τ)dτ,
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we get the parametric equations of a straight line

x = Aκ+B, y = Cκ+D.

(b) Invariance and the Noether currents In accordance with the gen-
eral theory, the Hilbert form (8) is invariant with respect to a vector field Ξ,
if the Lie derivative ∂Ξη satisfies ∂Ξη = 0 mod Θ1R2. We suppose that Ξ is
the first Grassmann prolongation of a vector field ξ on Y , that is, Ξ = G1ξ,
where

ξ = ξ1
∂

∂x
+ ξ2

∂

∂y
.

The Lie derivative is given by ∂Ξη = iΞdη+diΞη, where iΞdη is given by (9).
The second term, the Noether current associated with ξ, is

iΞη =
1√

ẋ2 + ẏ2
(ξ1ẋ+ ξ2ẏ),

hence

diΞη =
ẏ(−ẋξ2 + ẏξ1)

(ẋ2 + ẏ2)
√
ẋ2 + ẏ2

dẋ+
ẋ(−ẏξ1 + ẋξ2)

(ẋ2 + ẏ2)
√
ẋ2 + ẏ2

dẏ

+
1√

ẋ2 + ẏ2

(
∂ξ1

∂x
ẋ+

∂ξ2

∂x
ẏ

)
dx+

1√
ẋ2 + ẏ2

(
∂ξ1

∂y
ẋ+

∂ξ2

∂y
ẏ

)
dy.

(13)

Then

∂Ξη =
1√

ẋ2 + ẏ2

(
− ẋΞ

2 − ẏΞ1

ẋ2 + ẏ2
ẏ +

∂ξ1

∂x
ẋ+

∂ξ2

∂x
ẏ

)
dx

+
1√

ẋ2 + ẏ2

(
ẋΞ2 − ẏΞ1

ẋ2 + ẏ2
ẋ+

∂ξ1

∂y
ẋ+

∂ξ2

∂y
ẏ

)
dy.

Consequently, passing to classes, the invariance equation reads

∂ξ1

∂x
ẋ2 +

(
∂ξ2

∂x
+
∂ξ1

∂y

)
ẋẏ +

∂ξ2

∂y
ẏ2 = 0.

Supposing that the functions ξ1 and ξ2 do not depend on ẋ and ẏ,

∂ξ1

∂x
= 0,

∂ξ2

∂y
= 0,

∂ξ2

∂x
+
∂ξ1

∂y
= 0.

The solution is

ξ1 = Ay +B, ξ2 = −Ax+ C, A,B,C ∈ R,

and implies that the Lie algebra of invariance vector fields is 3-dimensional,

ξ = (Ay +B)
∂

∂x
+ (−Ax+ C)

∂

∂y
.
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The Noether current associated with ξ is a function given by

iΞη =
A√

ẋ2 + ẏ2
(yẋ− xẏ) +

B√
ẋ2 + ẏ2

ẋ+
C√

ẋ2 + ẏ2
ẏ.

This determines the conservation law equation

(14)
1√

ẋ2 + ẏ2
(A(yẋ− xẏ) +Bẋ+ Cẏ) = const

with the right-hand side an arbitrary constant. Since A, B, C are arbitrary,
the conservation law equations are

yẋ− xẏ√
ẋ2 + ẏ2

= S,
ẋ√

ẋ2 + ẏ2
= P,

ẏ√
ẋ2 + ẏ2

= Q,

where P , Q, S ∈ R. These conditions imply that

(15)
yẋ√
ẋ2 + ẏ2

− xẏ√
ẋ2 + ẏ2

= Py −Qx = S

so every solution is a straight line. This proves, that every solution of the
conservation law equations is an extremal.

(c) An extension to G1R3 Consider the manifold R3, with the canonical
coordinates (x, y, z), the associated coordinates (x, y, z, ẋ, ẏ, ż), and a Lagrange
function on ImmT 1R3, defined by

L(x, y, z, ẋ, ẏ, ż) =
√
ẋ2 + ẏ2 + ż.

L is positive homogeneous. The Hilbert form associated with L is

η =
ẋ√

ẋ2 + ẏ2
dx+

ẏ√
ẋ2 + ẏ2

dy + dz,

and comparison with (10) and (11) implies that extremal equation is

ẋÿ − ẏẍ = 0.

Solving this equation we get the extremals as the set solutions

{(x, y, z) ∈ R3 |Px+Qy +R = 0},
where P , Q and R are arbitrary functions of the variable z.

We shall now study invariance properties of the Hilbert form. First we find
an expression for the Lie derivative ∂Ξη = iΞdη + diΞη with respect to the
Grassmann prolongation Ξ = G1ξ of a vector field ξ defined on R3,

(16) ξ = ξ1
∂

∂x
+ ξ2

∂

∂y
+ ξ3

∂

∂z
.

The first term in the Lie derivative ∂Ξη coincides with (9),

(17) iΞdη =
ẋΞ2 − ẏΞ1

(ẋ2 + ẏ2)
√
ẋ2 + ẏ2

(ẋdy− ẏdx)+ ẏξ1 − ẋξ2

(ẋ2 + ẏ2)
√
ẋ2 + ẏ2

(ẋdẏ− ẏdẋ).
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The second term diΞη is defined by the current associated with Ξ,

iΞη =
1√

ẋ2 + ẏ2
(ξ1ẋ+ ξ2ẏ) + ξ3.

Using (13),

diΞη =
(−ẋξ2 + ẏξ1)(ẏdẋ− ẋdẏ)

(ẋ2 + ẏ2)
√
ẋ2 + ẏ2

+

(
1√

ẋ2 + ẏ2

(
∂ξ1

∂x
ẋ+

∂ξ2

∂x
ẏ

)
+
∂ξ3

∂x

)
dx

+

(
1√

ẋ2 + ẏ2

(
∂ξ1

∂y
ẋ+

∂ξ2

∂y
ẏ

)
+
∂ξ3

∂y

)
dy

+

(
1√

ẋ2 + ẏ2

(
∂ξ1

∂z
ẋ+

∂ξ2

∂z
ẏ

)
+
∂ξ3

∂z

)
dz

(18)

Thus, summarizing, formulas (17) and (18) yield

∂Ξη =

(
1√

ẋ2 + ẏ2

(
∂ξ1

∂x
ẋ+

∂ξ2

∂x
ẏ − ẋΞ2 − ẏΞ1

ẋ2 + ẏ2
ẏ

)
+
∂ξ3

∂x

)
dx

+

(
1√

ẋ2 + ẏ2

(
∂ξ1

∂y
ẋ+

∂ξ2

∂y
ẏ +

ẋΞ2 − ẏΞ1

ẋ2 + ẏ2
ẋ

)
+
∂ξ3

∂y

)
dy

+

(
1√

ẋ2 + ẏ2

(
∂ξ1

∂z
ẋ+

∂ξ2

∂z
ẏ

)
+
∂ξ3

∂z

)
dz.

Supposing that the class of ∂Ξη is invariant with respect to Ξ, and omitting
the term with the contact form ẋdy − ẏdx, we get the invariance condition(

1√
ẋ2 + ẏ2

(
∂ξ1

∂x
ẋ+

∂ξ2

∂x
ẏ

)
+
∂ξ3

∂x

)
ẋ+

(
1√

ẋ2 + ẏ2

(
∂ξ1

∂y
ẋ+

∂ξ2

∂y
ẏ

)
+
∂ξ3

∂y

)
ẏ

+

(
1√

ẋ2 + ẏ2

(
∂ξ1

∂z
ẋ+

∂ξ2

∂z
ẏ

)
+
∂ξ3

∂z

)
ż = 0.

The components ξ1, ξ2 , ξ3 of the vector field ξ (16), leaving invariant
the Hilbert form, can be determined from this condition by an elementary
calculation. We get

ξ = (Ax+B)
∂

∂x
+ (−Ay + C)

∂

∂y
+D

∂

∂z
,

where A, B, C are functions of z, and D ∈ R.
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The Noether current, associated with ξ, is given by

iΞη =
A√

ẋ2 + ẏ2
(yẋ− xẏ) +

B√
ẋ2 + ẏ2

ẋ+
C√

ẋ2 + ẏ2
ẏ +D.

The corresponding conservation law equation for 1-dimensional submanifolds
of R2 reads

1√
ẋ2 + ẏ2

(A(yẋ− xẏ) +Bẋ+ Cẏ) +D = const.

Since D ∈ R, this equation reduces, for any fixed value of the coordinate z, to
equation (14). Comparing this result to (15) we see that the solutions are the
sets of the form

Py −Qx = S,

where P , Q and S are arbitrary functions of the coordinate z (straight lines
on the plane defined by the condition z = const).

5. Example: Extremals on the sphere S2
r with free radius

Consider the manifold R3, with the spherical coordinates (ϑ, ϕ, r), where for
instance 0 < ϑ < π, 0 < ϕ < 2π, and r > 0, defined by the transformation
equations x = r cosϕ sinϑ, x = r sinϕ sinϑ, z = r cosϑ, where (x, y, z) are
the canonical coordinates on R3. The spherical coordinates form an adapted
chart to the 2-dimensional sphere S2

r in R3 of radius r and centre 0 ∈ R3.
The associated coordinates on the manifold of regular velocities ImmT 1R3 are
denoted (ϑ, ϕ, r, ϑ̇, ϕ̇, ṙ), the ϑ-subordinate coordinates (ϑ, ϕ, r, ϑ̇, ϕ(1), r(1)) on

the domain V 1(ϑ) = {P ∈ ImmT 1R3 | ϑ̇(P ) 6= 0} are defined by the formulas

ϕ(1) = ϕ̇/ϑ̇, r(1) = ṙ/ϑ̇. The associated chart on the Grassmann fibration
G1R3 = ImmT 1R3/L1 is formed by the functions (ϑ, ϕ, r, ϕ(1), r(1)) on the set

V
1(ϑ)
G = π1(V 1(ϑ)), where π1 : ImmT 1R3 → G1R3 is the quotient projection.

Let λ be a Lagrangian on V
1(ϑ)
G ⊂ G1R3, defined by

λ = Ldϑ,
where the Lagrange function L is given by

(19) L(ϑ, ϕ, r, ϕ(1), r(1)) =
√

1 + ϕ2
(1) sin

2 ϑ+ r(1).

Note that (19) originates in the metric Lagrangian on the unit sphere S2 in
R3.

(a) Extremals as set solutions The Euler – Lagrange expressions read

E1(L) =
∂L
∂ϕ

− d

dϑ

∂L
∂ϕ(1)

= − d

dϑ

ϕ(1) sin
2 ϑ√

1 + ϕ2
(1) sin

2 ϑ
,

E1(L) =
∂L
∂r

− d

dϑ

∂L
∂r(1)

= 0.

(20)
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We search for solutions ζ : X → R3 of the associated Euler – Lagrange equa-
tions that are immersions, defined on a 1-dimensional manifold X such that

G1ζ(X) ⊂ V
1(ϑ)
G , where G1ζ is the Grassmann prolongation of ζ. The Euler –

Lagrange equations (20) reduce to one equation

(21)
ϕ(1) sin

2 ϑ√
1 + ϕ2

(1) sin
2 ϑ

= c

for some c ∈ R, −1 < c < 1. Solutions of (21) can be parametrized by the
coordinate ϑ, i.e. the curves ϑ→ (ϑ, ϕ(ϑ), r(ϑ)) in R3, and satisfy the condition

ϕ = arccos

(
c√

1− c2
cosϑ

sinϑ

)
+ c0,

where c0 ∈ R is an integration constant. Hence we get all extremals described
as set-solutions, where the radius coordinate r is an arbitrary function of the
polar angle ϑ. It is well-known that for r = r(ϑ) = const the solutions of (21),
the geodesics on a sphere of radius r, are the great circles (cf. Jost and Li-Jost
[2]).

(b) Invariance and first integrals The Lepage form associated with the
Lagrange function (19) is given by

(22) η =
1√

1 + ϕ2
(1) sin

2 ϑ
dϑ+

ϕ(1) sin
2 ϑ√

1 + ϕ2
(1) sin

2 ϑ
dϕ+ dr,

We note that (22) coincides with the standard Hilbert form associated with
the Lagrange function (19) on the manifold of regular velocities ImmT 1R3.

Let Ξ be a vector field on R3, and G1Ξ its first-order Grassmann prolonga-
tion, expressed by means of the ϑ-subordinate chart on G1R3,

Ξ = Ξϑ ∂

∂ϑ
+ Ξϕ ∂

∂ϕ
+ Ξr ∂

∂r
,

G1Ξ = Ξϑ ∂

∂ϑ
+ Ξϕ ∂

∂ϕ
+ Ξr ∂

∂r
+ Ξϕ

(1)

∂

∂ϕ(1)

+ Ξr
(1)

∂

∂r(1)
.

We compute the Lie derivative of the Lepage form η. From expression (22),

∂G1Ξη = iG1Ξdη + diG1Ξη

=

(
∂L
∂ϑ

Ξϑ +

(
L − ∂L

∂ϕ(1)

ϕ(1) −
∂L
∂r(1)

r(1)

)
dΞϑ

dϑ

+
∂L
∂ϕ(1)

dΞϕ

dϑ
+

∂L
∂r(1)

dΞr

dϑ

)
dϑ+

(
L − ∂L

∂ϕ(1)

ϕ(1) −
∂L
∂r(1)

r(1)

)
∂Ξϑ

∂ϕ
ωϕ
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+

(
L − ∂L

∂ϕ(1)

ϕ(1) −
∂L
∂r(1)

r(1)

)
∂Ξϑ

∂r
ωr

+
∂L
∂ϕ(1)

∂Ξϕ

∂ϕ
ωϕ +

∂L
∂ϕ(1)

∂Ξϕ

∂r
ωr +

∂L
∂r(1)

∂Ξr

∂ϕ
ωϕ +

∂L
∂r(1)

∂Ξr

∂r
ωr

+
∂2L
∂ϕ2

(1)

dΞϕ

dϑ
ωϕ − ∂2L

∂ϕ2
(1)

ϕ(1)
dΞϑ

dϑ
ωϕ +

∂2L
∂ϕ(1)∂ϑ

Ξϑωϕ,

where ωϕ = dϕ − ϕ(1)dϑ, ω
r = dr − r(1)dϑ. The Noether’s equation for Ξ,

∂G1Ξη = 0 mod Θ1R3, reads

(23)
1√

1 + ϕ2
(1) sin

2 ϑ

(
ϕ2
(1) sinϑ cosϑΞ

ϑ +
dΞϑ

dϑ
+ ϕ(1) sin

2 ϑ
dΞϕ

dϑ

)
+
dΞr

dϑ
= 0.

We find all solutions of this equation. (23) can equivalently be written as two
equations

(24)
1√

1 + ϕ2
(1) sin

2 ϑ

∂Ξϑ

∂r
+

ϕ(1) sin
2 ϑ√

1 + ϕ2
(1) sin

2 ϑ

∂Ξϕ

∂r
+
∂Ξr

∂r
= 0,

and

ϕ2
(1) sinϑ cosϑ√
1 + ϕ2

(1) sin
2 ϑ

Ξϑ +
1√

1 + ϕ2
(1) sin

2 ϑ

(
∂Ξϑ

∂ϑ
+
∂Ξϑ

∂ϕ
ϕ(1)

)

+
ϕ(1) sin

2 ϑ√
1 + ϕ2

(1) sin
2 ϑ

(
∂Ξϕ

∂ϑ
+
∂Ξϕ

∂ϕ
ϕ(1)

)
+
∂Ξr

∂ϑ
+
∂Ξr

∂ϕ
ϕ(1) = 0.

(25)

Differentiating (24) with respect to ϕ(1) we get

sin2 ϑ√
(1 + ϕ2

(1) sin
2 ϑ)3

(
∂Ξϕ

∂r
− ϕ(1)

∂Ξϑ

∂r

)
= 0,

hence and from (24) we conclude that

(26)
∂Ξϑ

∂r
= 0,

∂Ξϕ

∂r
= 0,

∂Ξr

∂r
= 0.

Differentiating now (25) with respect to ϕ(1) and setting ϕ(1) = 0, we obtain

(27)
∂Ξr

∂ϑ
= 0,

∂Ξr

∂ϕ
= 0,

∂Ξϑ

∂ϑ
= 0.

Equation (25) now transforms into(
∂Ξϑ

∂ϕ
+ sin2 ϑ

∂Ξϕ

∂ϑ

)
ϕ(1) + sinϑ

(
cosϑΞϑ + sinϑ

∂Ξϕ

∂ϕ

)
ϕ2
(1) = 0,
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which implies the following two conditions on Ξϑ and Ξϕ,

(28)
∂Ξϑ

∂ϕ
+ sin2 ϑ

∂Ξϕ

∂ϑ
= 0,

and

(29) cosϑΞϑ + sinϑ
∂Ξϕ

∂ϕ
= 0.

Since Ξϑ does not depend on ϑ (27), differentiating (28) with respect to ϑ we
get

(30) 2 cosϑ
∂Ξϕ

∂ϑ
+ sinϑ

∂2Ξϕ

∂ϑ2
= 0.

However, equation (30) can be integrated and we get its solution of the form

(31) Ξϕ = C0
cosϑ

sinϑ
+ C,

where C0 and C are functions of ϕ. Indeed, we substitute ξ = ∂Ξϕ/∂ϑ in (30)
and obtain the equation

(32) 2ξ cosϑ+ sinϑ
∂ξ

∂ϑ
= 0,

which has a solution ξ = −C0(1/ sin
2 ϑ), where C0 = C0(ϕ). Integrating this

substitution for ξ we obtain (31). From (31) and (32) we get

(33) Ξϑ =

∫
C0dϕ+ C1,

where C1 ∈ R. Now we determine the integration constants C, C0 and C1

using condition (29). Applying expressions for Ξϕ (31) and for Ξϑ (33), into
(29), we have (∫

C0dϕ+ C1 +
dC0

dϕ

)
cosϑ+

dC

dϕ
sinϑ = 0,

which implies that
dC

dϕ
= 0,

and

(34)

∫
C0dϕ+ C1 +

dC0

dϕ
.

Thus, C does not depend on ϕ hence it is a constant. Differentiating (34) with
respect to ϕ we get a linear second-order ordinary equation for C0,

(35)
d2C0

dϕ2
+ C0 = 0,
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the harmonic oscillation equation with angular frequency equal to 1. The
general solution of (35) reads

(36) C0 = A cosϕ+B sinϕ,

where A,B ∈ R. Substituting now (36) into the expressions for ξϕ and Ξϑ

(31), (33), we conclude that

(37) Ξϕ = (A cosϕ+B sinϕ)
cosϑ

sinϑ
+ C,

and

(38) Ξϑ = A sinϕ−B cosϕ+ C1.

Finally, using (37) and (38), we get from (29) that C1 = 0.
Summarizing, the general solution of the Noether equation (23) for vector

field Ξ is of the form

Ξ = (A sinϕ−B cosϕ)
∂

∂ϑ
+

(
(A cosϕ+B sinϕ)

cosϑ

sinϑ
+ C

)
∂

∂ϕ
+D

∂

∂r

= AΞ1 +BΞ′
1 + CΞ2 +DΞ3,

where

Ξ1 = sinϕ
∂

∂ϑ
+ cosϕ

cosϑ

sinϑ

∂

∂ϕ
, Ξ2 =

∂

∂ϕ
, Ξ3 =

∂

∂r
,

Ξ′
1 = sinϕ

cosϑ

sinϑ

∂

∂ϕ
− cosϕ

∂

∂ϑ
,

and A,B,C,D ∈ R. Since Ξ′
1 = [Ξ1,Ξ2], we have 3-dimensional Lie algebra of

generators of invariance transformations of the given Lepage form, generated
by vector fields Ξ1, Ξ2 and Ξ3.

Contracting the Lepage form η by the generators of invariance transforma-
tions Ξ1, Ξ2 and Ξ3, we obtain the first integrals (Noether currents),
(39)

iΞ1η =
sinϕ+ ϕ(1) sinϑ cosϕ cosϑ√

1 + ϕ2
(1) sin

2 ϑ
, iΞ2η =

ϕ(1) sin
2 ϑ√

1 + ϕ2
(1) sin

2 ϑ
, iΞ3η = 1.

The functions (39) are the level-set functions for extremals of the variational
principle, given by the Lepage form η. If an extremal is a great circle on
a sphere of radius r = r(ϑ) = const, which lies in a plane given by equation
Pr sinϑ cosϕ+Qr sinϑ sinϕ+Rr cosϑ = 0, then along this extremal we obtain

iΞ1η =
sgn (R)P√
P 2 +Q2 +R2

, iΞ2η = − sgn (R)R√
P 2 +Q2 +R2

, iΞ3η = 1.
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On the other hand, every immersion ζ, which is constant along the level-set
functions (39), is an extremal for η. Indeed, if

(40)
sinϕ+ ϕ(1) sinϑ cosϕ cosϑ√

1 + ϕ2
(1) sin

2 ϑ
= c1,

ϕ(1) sin
2 ϑ√

1 + ϕ2
(1) sin

2 ϑ
= c2,

along ζ for some c1, c2 ∈ R, −1 < c2 < 1, then the second equation of (40) co-
incides with the Euler – Lagrange equation (21) hence ζ is an extremal. More-
over, the first equation of (40) specifies the plane in R3, containing the ex-
tremal. Consequently, in this example the Noether currents do not determine
the extremal uniquely.
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