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ON THE MAXIMAL OPERATORS OF
WALSH-KACZMARZ-NÖRLUND MEANS

GEORGE TEPHNADZE

Abstract. The main aim of this paper is to investigate (Hp, Lp,∞) type
inequalities for maximal operators of Nörlund means with monotone coeffi-
cients of one-dimensional Walsh-Kaczmarz system. By applying this results
we conclude a.e. convergence of such Walsh-Kaczmarz-Nörlund means.

1. Introduction

In 1948 S̆neider [22] introduced the Walsh-Kaczmarz system and showed
that the inequality lim supn→∞Dκ

n(x)/ log n ≥ C > 0 holds a.e. In 1974 Schipp
[17] and Young [31] proved that the Walsh-Kaczmarz system is a convergence
system. Skvortsov [21] in 1981 showed that the Fejér means with respect to the
Walsh-Kaczmarz system converge uniformly to f for any continuous functions
f . Gát [3] proved that, for any integrable functions, the Fejér means with
respect to the Walsh-Kaczmarz system converges almost everywhere to the
function. He showed that the maximal operator σ∗,κ of Walsh-Kaczmarz-Fejér
means is of weak type (1, 1) and of type (p, p) for all 1 < p ≤ ∞. Gát’s result
was generalized by Simon [20], who showed that the maximal operator σ∗,κ is of
type (Hp, Lp) for p > 1/2. In the endpoint case p = 1/2 Goginava [9] (see also
[5], [25] and [26]) proved that maximal operator σ∗,κ of Walsh-Kaczmarz-Fejér
means is not of type (H1/2, L1/2) and Weisz [30] showed that the following is
true:

Theorem W1. The maximal operator σ∗,κ of Walsh-Kaczmarz-Fejér means is
bounded from the Hardy space H1/2 to the space L1/2,∞.

The almost everywhere convergence of (C, α) (0 < α < 1) means with re-
spect Walsh-Kaczmarz system was considered by Goginava [8]. Gát and Gogi-
nava [4] proved that the following is true:
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Theorem G2. The maximal operator σα,∗,κ of (C, α) (0 < α < 1) means with
respect Walsh-Kaczmarz system is bounded from the Hardy space H1/(1+α) to
the space L1/(1+α),∞.

Goginava and Nagy [10] proved that σα,∗,κ is not bounded from the Hardy
space H1/(1+α) to the space L1/(1+α).

Logarithmic means with respect to the Walsh and Vilenkin systems was
studied by several authors. We mention, for instance, the papers by Simon
[19], Gát [2] and Blahota, Gát [1], (see also [23]). In [16] Goginava and Nagy
proved that the maximal operator R∗,κ of Riesz’s means is bounded from the
Hardy space Hp to the space Lp,∞, when p > 1/2, but is not bounded from the
Hardy space Hp to the space Lp, when 0 < p ≤ 1/2. They also showed that
there exists a martingale f ∈ Hp, (0 < p ≤ 1), such that the maximal operator
L∗,κ of Nörlund logarithmic means is not bounded in the space Lp.

In the two dimensional case approximation properties of Nörlund and Cesàro
means was considered by Nagy (see [13], [14] and [15]). The results for summa-
bility of some Nörlund means of Walsh-Fourier series can be found in [6] and
[24].

The main aim of this paper is to investigate (Hp, Lp,∞)-type inequalities for
the maximal operators of Nörlund means with monotone coefficients of the
one-dimensional Kaczmarz-Fourier series.

This paper is organized as follows: in order not to disturb our discussions
later on some definitions and notations are presented in Section 2. The main
results and some of its consequences can be found in Section 3. For the proofs
of the main results we need some auxiliary results of independent interest.
Also these results are presented in Section 3. The detailed proofs are given in
Section 4.

2. Definitions and Notations

Now, we give a brief introduction to the theory of dyadic analysis [18]. Let
N+ denote the set of positive integers, N := N+ ∪ {0}.

Denote Z2 the discrete cyclic group of order 2, that is Z2 = {0, 1}, where
the group operation is the modulo 2 addition and every subset is open. The
Haar measure on Z2 is given such that the measure of a singleton is 1/2. Let G
be the complete direct product of the countable infinite copies of the compact
groups Z2. The elements of G are of the form

x = (x0, x1, . . . , xk, . . .) , xk = 0 ∨ 1, (k ∈ N) .

The group operation on G is the coordinate-wise addition, the measure (de-
noted by µ) and the topology are the product measure and topology. The
compact Abelian group G is called the Walsh group. A base for the neigh-
bourhoods of G can be given in the following way:

I0 (x) := G,

In (x) := In (x0, . . . , xn−1) := {y ∈ G : y = (x0, . . . , xn−1, yn, yn+1, . . .)} ,
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(x ∈ G, n ∈ N). These sets are called dyadic intervals.
Denote by 0 = (0 : i ∈ N) ∈ G the null element of G. Let In := In (0),

In := G\In (n ∈ N). Set en := (0, . . . , 0, 1, 0, . . .) ∈ G, the n-th coordinate of
which is 1 and the rest are zeros (n ∈ N).

For k ∈ N and x ∈ G let us denote the kth Rademacher function, by

rk (x) := (−1)xk .

Now, define the Walsh system w := (wn : n ∈ N) on G as:

wn(x) :=
∞
Π
k=0

rnk
k (x) = r|n| (x) (−1)

|n|−1∑
k=0

nkxk
(n ∈ N) .

If n ∈ N, then n =
∞∑
i=0

ni2
i can be written, where ni ∈ {0, 1} (i ∈ N), i.e. n

is expressed in the number system of base 2.
Denote |n| := max{j ∈ N;nj 6= 0}, that is 2|n| ≤ n < 2|n|+1.
The Walsh-Kaczmarz functions are defined by

κn (x) := r|n| (x)

|n|−1∏
k=0

(
r|n|−1−k (x)

)nk = r|n| (x) (−1)

|n|−1∑
k=0

nkx|n|−1−k
.

The Dirichlet kernels are defined by

D0 := 0, Dψ
n :=

n−1∑
i=0

ψi, (ψ = w, or ψ = κ) .

The 2nth Dirichlet kernels have a closed form (see e.g. [18])

(1) Dw
2n (x) = D2n (x) = Dκ

2n (x) =

{
2n, x ∈ In,
0, x /∈ In.

The norm (or quasi-norm) of the spaces Lp(G) and Lp,∞ (G) are defined by

‖f‖pp :=
∫
G

|f |p dµ, ‖f‖pLp,∞(G) := sup
λ>0

λpµ (f > λ) , (0 < p <∞) ,

respectively.
The σ-algebra generated by the dyadic intervals of measure 2−k will be de-

noted by Fk (k ∈ N). Denote by f =
(
f (n), n ∈ N

)
a martingale with respect

to (Fn, n ∈ N) (for details see, e.g. [27, 29]). The maximal function of a mar-
tingale f is defined by

f ∗ = sup
n∈N

∣∣f (n)
∣∣ .

In case f ∈ L1 (G), the maximal function can also be given by

f ∗ (x) = sup
n∈N

1

µ (In(x))

∣∣∣∣∣∣∣
∫

In(x)

f (u) dµ (u)

∣∣∣∣∣∣∣ , (x ∈ G).
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For 0 < p <∞ the Hardy martingale space Hp(G) consists of all martingales
for which

‖f‖Hp
:= ‖f∗‖p <∞.

If f ∈ L1 (G) , then it is easy to show that the sequence (S2nf : n ∈ N) is a
martingale.

If f is a martingale, then the Walsh-Kaczmarz-Fourier coefficients must be
defined in a little bit different way:

f̂ψ (i) = lim
n→∞

∫
G

f (n)ψidµ, (ψ = w, or ψ = κ) .

The Walsh-Kaczmarz-Fourier coefficients of f ∈ L1 (G) are the same as the
ones of the martingale (S2nf : n ∈ N) obtained from f .

The partial sums of the Walsh-Kaczmarz-Fourier series are defined as fol-
lows:

SψMf :=
M−1∑
i=0

f̂ (i)ψi, (ψ = w, or ψ = κ) .

Let {qk : k > 0} be a sequence of non-negative numbers. The nth Nörlund
means for the Fourier series of f is defined by

(2) tψn :=
1

Qn

n∑
k=1

qn−kS
ψ
k f, (ψ = w, or ψ = κ) ,

where

Qn :=
n−1∑
k=0

qk.

It is evident that

tψnf (x) =

∫
G

f (x+ t)Fψ
n (t) dt,

where

Fψ
n =

1

Qn

n∑
k=1

qn−kD
ψ
k .

Let q0 > 0 and lim
n→∞

Qn = ∞. The summability method (2) generated by

{qk : k ≥ 0} is regular if and only if

(3) lim
n→∞

qn−1

Qn

= 0.

It can be found in [12] (see also [11]).
The nth Fejér means of a function f is given by

σψnf :=
1

n

n−1∑
k=0

Sψk f, (ψ = w, or ψ = κ) .
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Fejér kernel is defined in the usual manner

Kψ
n :=

1

n

n∑
k=1

Dψ
k , (ψ = w, or ψ = κ) .

The (C, α)-means are defined as

σα,ψn f =
1

Aαn

n∑
k=1

Aα−1
n−kS

ψ
k f, (ψ = w, or ψ = κ) ,

where

(4) Aα0 = 0, Aαn =
(α+ 1) . . . (α+ n)

n!
, (α 6= −1,−2, . . .)

It is known that

(5) Aαn ∼ nα, Aαn − Aαn−1 = Aα−1
n ,

n∑
k=1

Aα−1
n−k = Aαn.

The kernel of (C, α)-means is defined in the following way

Kα,ψ
n f =

1

Aαn

n∑
k=1

Aα−1
n−kD

ψ
k f, (ψ = w, or ψ = κ) .

The nth Riesz’s logarithmic mean Rn and Nörlund logarithmic mean Ln are
defined by

Rψ
nf :=

1

ln

n−1∑
k=0

Sψk f

k
, Lψnf :=

1

ln

n−1∑
k=1

Sψk f

n− k
, (ψ = w, or ψ = κ) .

respectively, where

ln :=
n−1∑
k=1

1/k.

For the martingale f we consider the following maximal operators

t∗,ψf := sup
n∈N

∣∣tψnf ∣∣ , σ∗,ψf := sup
n∈N

∣∣σψnf ∣∣ , σα,∗,ψf := sup
n∈N

∣∣σα,ψn f
∣∣ ,

R∗,ψf := sup
n∈N

∣∣Rψ
nf
∣∣ , L∗,ψf := sup

n∈N

∣∣Lψnf ∣∣ , (ψ = w, or ψ = κ).

A bounded measurable function a is p-atom, if there exists an interval I,
such that ∫

I

adµ = 0, ‖a‖∞ ≤ µ (I)−1/p , supp (a) ⊂ I.
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3. Results

Theorem 1. a) Let sequence {qk : k ≥ 0} be non-increasing, satisfying condi-
tion

(6)
q0n

Qn

= O (1) , as n→ ∞,

or non-decreasing. Then the maximal operators t∗,κ of Nörlund means are
bounded from the Hardy space H1/2 to the space L1/2,∞.

b) Let 0 < p < 1/2 and sequence {qk : k ≥ 0} be non-decreasing, satisfying
condition

(7)
q0
Qn

≥ 1

n
,

or non-increasing. Then there exists a martingale f ∈ Hp (G) , such that

sup
n∈N

‖tκnf‖Lp,∞

‖f‖Hp

= ∞.

Theorem 2. a) Let 0 < α < 1, sequence {qk : k ≥ 0} be non-increasing and

(8)
q0n

α

Qn

= O (1) ,
qn − qn+1

nα−2
= O (1) , as n→ ∞.

Then the maximal operator t∗,κ of Nörlund means are bounded from the Hardy
space H1/(1+α) to the space L1/(1+α),∞.

b) Let 0 < p < 1/ (1 + α), sequence {qk : k ≥ 0} be non-increasing and

(9)
q0
Qn

≥ c

nα
, 0 < α ≤ 1, as n→ ∞.

Then there exists an martingale f ∈ Hp (G), such that

sup
n∈N

‖tκnf‖Lp,∞

‖f‖Hp

= ∞.

c) Let sequence {qk : k ≥ 0} be non-increasing and

(10) lim
n→∞

q0n
α

Qn

= ∞.

Then there exists a martingale f ∈ Hp (G), such that

sup
n∈N

‖tκnf‖L1/(1+α),∞

‖f‖H1/(1+α)

= ∞.

The next remark shows that conditions in (8) are sharp in the following
sense:

Remark 1. The sequence {qk : k ≥ 0} of Cesàro means σαn satisfy conditions

(11)
q0
Qn

≥ c

nα
, qn − qn+1 ≥

c

nα−2
, 0 < α ≤ 1, as n→ ∞,
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but they are not uniformly bounded from the martingale Hardy spacesH1/(1+α) (G)
to the space L1/(1+α) (G).

Theorem 1 follows the following result:

Corollary 1. Let
{
qk = log(β) (k + 1)α : k ≥ 0

}
, where α ≥ 0, β ∈ N+ and

log(β) x =

β times︷ ︸︸ ︷
log . . . log x. Then the following summability method

θκnf =
1

Qn

n∑
k=1

log(β) (n− k − 1)α Sκkf

is bounded from the Hardy space H1/2 to the space weak − L1/2 and is not
bounded from Hp to the space weak − Lp, when 0 < p < 1/2.

Analogously to Theorem 1, if we apply Abel transformation we obtain that
the following is true:

Corollary 2. The maximal operator R∗,κ of Riesz’s means is bounded from
the Hardy space H1/2 to the space weak −L1/2 and is not bounded from Hp to
the space weak − Lp, when 0 < p < 1/2.

By combining the first and second parts of Theorem 2 we prove that the
following is true:

Corollary 3. Let {qk = kα−1 : k ≥ 0} , where 0 < α ≤ 1. Then the following
summability method

Lα,κn f =
1

Qn

n∑
k=1

(n− k)α−1 Sκkf

is bounded from the Hardy space H1/(1+α) to the space weak − L1/(1+α) and is
not bounded from Hp to the space weak − Lp, when 0 < p < 1/ (1 + α).

By applying the second part of Theorem 2 we obtain that the following is
true

Corollary 4. The maximal operator L∗,κ of Nörlund logarithmic means is not
bounded from the Hardy space Hp to the space weak − Lp, when 0 < p < 1.

By using Lemma 1 we get that

Corollary 5. Let f ∈ L1 and {qk : k ≥ 0} be non-decreasing or non-increasing
satisfying condition (8). Then tκnf → f, a.e.

As the consequence of corollaries 2 and 5 we conclude that

Corollary 6. Let f ∈ L1. Then

σκnf → f, a.e., as n→ ∞,

Rκ
nf → f, a.e., as n→ ∞

and
σα,κn f → f, a.e., as n→ ∞, (0 < α < 1) .
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4. Some auxiliary results

Lemma 1 (see [27]). Suppose that an operator T is σ-linear and for some
0 < p ≤ 1 ∫

I

|Ta|p dµ ≤ cp <∞,

for every p-atom a, where I denote the support of the atom. If T is bounded
from L∞ to L∞, then

‖Tf‖Lp(G) ≤ cp ‖f‖Hp(G) .

Moreover, if 0 < p < 1 then T is of weak type-(1,1):

‖Tf‖L1,∞(G) ≤ c ‖f‖L1(G) .

Lemma 2. Let 2m < n ≤ 2m+1. Then

QnF
w
n = QnD2m − w2m−1

2m−1∑
l=1

(qn−2m+l − qn−2m+l+1) lK
w
l

−w2m−1 (2
m − 1) qn−1K

w
2m−1 + w2mQn−2mF

w
n−2m .

Lemma 3. Let 0 < α < 1 and sequence {qk : k ≥ 0} be non-increasing and
satisfying condition (8). Then

|Fw
n | ≤

c (α)

nα

|n|∑
j=0

2jαKw
2j .

5. Proofs

Proof of Lemma 2. Let 2m < n ≤ 2m+1. It is easy to show that

(12)
n∑
l=1

qn−lD
w
l =

2m∑
l=1

qn−lD
w
l +

n∑
l=2m+1

qn−lD
w
l = I + II.

By combining Abel transformation and following equality (see [7])

D2m−j = D2m − w2m−1Dj, j = 1, . . . , 2m − 1,

we get that

I =
2m−1∑
l=0

qn−2m+lD
w
2m−l =

2m−1∑
l=1

qn−2m+lD
w
2m−l + qn−2mD2m(13)

= D2m

2m−1∑
l=0

qn−2m+l − w2m−1

2m−1∑
l=1

qn−2m+lD
w
l

= (Qn −Qn−2m)D2m − w2m−1

2m−2∑
l=1

(qn−2m+l − qn−2m+l+1) lK
w
l

−w2m−1qn−1 (2
m − 1)Kw

2m−1.
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Since

Dw
j+2m = D2m + w2mD

w
j , j = 1, 2, . . . , 2m − 1

for II we can write that

(14) II =
n−2m∑
l=1

qn−2m−lD
w
l+2m = Qn−2mD2m + w2mQn−2mF

w
n−2m .

Combining (12-14) we complete the proof of Lemma 2. �

Proof of Lemma 3. Let sequence {qk : k ≥ 0} be non-increasing. The case

q0n/Qn = O (1) , as n → ∞, will be considered separately in Theorem 1. So,
we can exclude this case.

Since 0 < α < 1, we may assume that {qk : k ≥ 0} satisfy both conditions
in (8) and in addition, satisfies the following

Qn

q0n
= o (1) , as n→ ∞.

It follows that

(15) qn = q0
qnn

q0n
≤ q0

Qn

q0n
= o (1) , as n→ ∞.

By using (15) we immediately get that

(16) qn =
∞∑
l=n

(ql − ql+1) ≤
∞∑
l=n

1

l2−α
≤ c

n1−α

and

(17) Qn ≤
n−1∑
l=0

ql ≤
n∑
l=1

c

l1−α
≤ cnα.

If we apply (16) and (17) we get that

(18) QnD2m ≤ 2α(m+1)D2m ≤ cAα2mD2m , 2
m < n ≤ 2m+1

and

(19) (2m − 1) qn−1

∣∣Kw
2m−1

∣∣ ≤ cnα−12m
∣∣Kw

2m−1

∣∣ ≤ cAα−1
n 2m

∣∣Kw
2m−1

∣∣ ,
where Aαn is defined by (4).

Let

n = 2n1 + 2n2 + · · ·+ 2nr , n1 > n2 > . . . > nr, n
(k) = 2nk+1 + · · ·+ 2nr .

By combining (18) and (19) we have that

|QnF
w
n | ≤ cAαn(0)D2n1+c

2n1−1∑
l=1

∣∣∣Aα−2
n(1)+l

∣∣∣ |lKw
l |+cAα−1

n(0) 2
n1
∣∣Kw

2n1−1

∣∣+c ∣∣Qn(1)Fw
n(1)

∣∣ .
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By using this process r-time we get that

|QnF
w
n | ≤ c

r∑
k=1

(
Aαn(k−1)D2nk +

2nk−1∑
l=1

∣∣∣Aα−2
n(k)+l

∣∣∣ |lKw
l |+ Aα−1

n(k−1)2
nk
∣∣Kw

2nk−1

∣∣) .
The next steps of the proof is analogously to Lemma 5 of the paper [4],

where is proved the analogical estimation for (C, α) means. So, we leave out
the details. �
Proof of Theorem 1. By using Abel transformation we obtain that

(20) Qn :=
n−1∑
j=0

qj =
n∑
j=1

qn−j · 1 =
n−1∑
j=1

(qn−j − qn−j−1) j + q0n

and

(21) tκnf =
1

Qn

(
n−1∑
j=1

(qn−j − qn−j−1) jσ
κ
j f + q0nσ

κ
nf

)
.

Let sequence {qk : k ≥ 0} be non-increasing, satisfying condition (6). Then

|tκnf | ≤
1

Qn

(
n−1∑
j=1

|qn−j − qn−j−1| j + q0n

)
σ∗,κf

=
−1

Qn

(
n−1∑
j=1

(qn−j − qn−j−1) jσ
κ
j f + q0nσ

κ
nf

)
σ∗,κf +

2q0n

Qn

σ∗,κf

≤ cσ∗,κf.

Let sequence {qk : k ≥ 0} be non-decreasing. Then

≤ 1

Qn

(
n−1∑
j=1

(qn−j − qn−j−1) j + q0n

)
σ∗,κf ≤ cσ∗,κf.

It follows that t∗,κf ≤ cσ∗,κf . By using Theorem W1 we conclude that the
maximal operators t∗,κ are bounded from the martingale Hardy space H1/2 to
the space L1/2,∞. It follows that (see Lemma 1) t∗,κ is of weak type (1,1) and
tκnf → f , a.e., for all f ∈ L1.

Let

fn = D2n+1 −D2n .

It is evident that

f̂κn (i) =

{
1, if i = 2n, . . . , 2n+1 − 1,
0, otherwise.

From (1) we get that

(22) ‖fn‖Hp
= ‖D2n‖p ≤ 1/2n(1/p−1).
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It is easy to show that∣∣tκ2n+1fn
∣∣ = 1

Q2n+1

∣∣q0Sκ2n+1fn
∣∣ = q0

Q2n+1

∣∣Dκ
2n+1 −D2n

∣∣
=

q0
Q2n+1

|κ2n| =
q0

Q2n+1

.

Let sequence {qk : k ≥ 0} be non-increasing. Then we automatically get
that

(23)
q0

Q2n+1

≥ q0
q0 (2n + 1)

=
1

2n + 1
.

Under condition (7) we also have inequality (23) in the case when sequence
{qk : k ≥ 0} be non-decreasing. Hence∥∥tκ2n+1fn

∥∥
Lp,∞

‖fn‖Hp

≥
cq0

Q2n+1

(
µ
{
x ∈ G :

∣∣tκ2n+1fn
∣∣ ≥ cq0

Q2n+1

})1/p
‖fn‖Hp

(24)

≥ cq02
n(1/p−1)

Q2n+1

≥ cq02
n(1/p−1)

2n + 1
≥ cq02

n(1/p−2).

Since, 0 < p < 1/2 so n→ ∞ gives our statement. �
Proof of Theorem 2. Since t∗,κ is bounded from L∞ to L∞, by Lemma 1, the
proof of theorem 2 will be complete, if we show that∫

IN

|t∗,κa|1/(1+α) dµ ≤ c <∞,

for every1/ (1 + α)-atom a, where I denotes the support of the atom.
To show boundedness of t∗,κ we use the method of Gát and Goginava [4].

They proved that the maximal operator σα,∗ of (C,α) (0 < α < 1) means with
respect Walsh-Kaczmarz system is bounded from the Hardy space H1/(1+α) to
the space L1/(1+α),∞. Their proof was depend on the following inequality

|Kα,w
n | ≤ c (α)

nα

|n|∑
j=0

2jαKw
2j .

Since our estimation of the kernel of IV is the same, it is easy to see that the
proof will be quite analogous to that of Theorem G2, so we leave out details.

By using Theorem W we also conclude that the maximal operators t∗ are of
weak type-(1,1) and tκnf → f, a.e., for all f ∈ L1.

Now, we prove the second part of Theorem 2. Let 0 < p < 1/ (1 + α). By
combining (9), (22) and (24) we have that∥∥tκ2n+1fn

∥∥
Lp,∞

‖fn‖Hp

≥ cq02
n(1/p−1)

Q2n+1

≥ cq02
αn (2n + 1)1/p−1−α

Q2n+1

≥ c2n(1/p−1−α)
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→ ∞, when n→ ∞.

Let as prove the third part of Theorem 2. By combining (10), (22) and (24)
we have that ∥∥tκ2n+1fn

∥∥
L1/(1+α),∞

‖fn‖H1/(1+α)

≥ cq02
nα

Q2n+1

→ ∞, when n→ ∞.

This complete the proof of Theorem 2. �
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