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A CLASS OF FINSLER METRICS WITH ISOTROPIC MEAN
BERWALD CURVATURE

B. NAJAFI AND A. TAYEBI

ABSTRACT. In this paper, we find a condition on (a,)-metrics under
which the notions of isotropic S-curvature, weakly isotropic S-curvature
and isotropic mean Berwald curvature are equivalent.

1. INTRODUCTION

The S-curvature is introduced by Shen for a comparison theorem on Finsler
manifolds [8]. Recent studies show that the S-curvature plays a very important
role in Finsler geometry [11, 12]. A Finsler metric F' is said to have isotropic
S-curvature if S = (n + 1)cF, where ¢ = ¢(x) is a scalar function on an
n-dimensional manifold M.

Taking twice vertical covariant derivatives of the S-curvature gives rise the
mean Berwald curvature. A Finsler metric /' with vanishing mean Berwald
curvature is called weakly Berwald metric. In [1], Bacsé and Yoshikawa studied
some weakly Berwald metrics. Also, F'is called to have isotropic mean Berwald
curvature if E = ”THCF ~1lh, for some scalar function ¢ on M, where h is
the angular metric. It is easy to see that every Finsler metric of isotropic
S-curvature is of isotropic mean Berwald curvature. Now, is the equation
S = (n+ 1)cF equivalent to the equation E = "THCF_lh?

Recently, Cheng and Shen proved that a Randers metric F' = a + [ is of
isotropic S-curvature if and only if it is of isotropic mean Berwald curvature
[2]. Then Xiang and Cheng extended this equivalency to the Finsler metric
F =a™™(a+ B)™"! for every real constant m, including Randers metric [13].
In [7] Lee and Lee proved that this notions are equivalent for the Finsler metrics
in the form F = a + a 152

All of above metrics are special Finsler metrics so- called (a, §)-metrics. An
(cv, B)-metric is a scalar function on TM defined by F' := a¢(s) , s = [/«
where ¢ = ¢(s) is a C* on (—by, by) with certain regularity, « is a Riemannian
metric and S is a 1-form on a manifold M. A natural question arises:
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Is being of isotropic S-curvature equivalent to being of isotropic mean Berwald
curvature for (a, B)-metrics?

In [6] Deng and Wang found the formula of the S-curvature of homogeneous
(o, B)-metrics. Then Cheng and Shen classified (a, §)-metrics of isotropic S-
curvature [3].

Let F' = a¢(s) be an (a, f)-metric on a manifold M of dimension n, where
s = g, @ = /a;y'y’ is a Riemannian metric and 8 = b;(z)y" is a 1-form on
M. For an (a, B)-metric, put

¢/
Q="
¢ —s¢

A=1+sQ+ (V" —-s)Q,

¢ =—(Q—sQ)nA+1+sQ}— (V" - ) (1 +sQ)Q",
(b*Q + s)®

A? '

Using the same method as in [3], we give an affirmative answer to the above
question for almost all (a, §)-metrics. More precisely, we prove the following.

(1]

Theorem 1.1. Let F' = ap(s) be an («, B)-metric, where s = g Suppose that
= is not constant. Then F' is of isotropic S-curvature if and only if it is of
1sotropic mean Berwald curvature.

It is remarkable that if = = 0, then F' reduces to a Riemannian metric.
But, in general, it is still an open problem if Theorem 1.1 is true when = is a
constant.

FEzample 1.2. The above mentioned («, #)-metric correspond to ¢ = 1 + s,
¢ = (14 s)™™ and ¢ = 1 + s?, respectively. Using a Maple program shows
that for all these metrics = is not constant.

2. PRELIMINARIES

Let FF = F(z,y) be a Finsler metric on an n-dimensional manifold M.
There is a notion of distortion 7 = 7(x,y) on T'M associated with a volume
form dV = o(x)dz, which is defined by

det(g;;(,y))
o(z) '

7(z,y) =In

Then the S-curvature is defined by
d
S(e.9) = g [7(c®-c)]| .
where ¢(t) is the geodesic with ¢(0) = z and ¢(0) = y [5, 10]. From the

definition, we see that the S-curvature S(zx,y) measures the rate of change in
the distortion on (7, M, F,) in the direction y € T, M.
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Let G = y';% — 2G" a?/i denote the spray of F' and dVgy = o(x)dx be the
Busemann-Hausdorff volume form on M, where the spray coefficients G* are

defined by

G'(z,y) lgﬂ(r,y) { i (z,y)y" — O] (, y)} , y€eT.M.

! dxkdy ot
Then the S-curvature is given by
S = gjm - ymafm (Ino).
The mean Berwald curvature E = E;;dz’ ® da? is given by
1 0%S
YT 20y

Definition 2.1. Let (M, F) be an n-dimensional Finsler manifold. Then

(a) Fis of isotropic S-curvature if S = (n + 1)cF,
(b) F is of weak isotropic S-curvature if S = (n+ 1)cF + n,
(¢) F is of isotropic mean Berwald curvature if E = ”THCF ~th,

where ¢ = ¢(z) is a scalar function on M, n = n;(x)y" is a 1-form on M and h
is the angular metric [9].

Consider the (a, 3)-metric F = a¢ (g) where o = \/a;;(z)y'y? is a Rie-
mannian metric and 8 = b;(z)y’ is a 1-form on a manifold M. For an («, 3)-
metric, put

1 1
rij i = 5 (b + byia)y 80y 1= 5 bty = bya),

Tj =b Tij; Sj =) Sij; Tio -— Tijyj, Sio -*— Sijy]7 To ‘= ij], Sp = Sjy].

Let G° denote the spray coefficients of a. We have the following formula for
the spray coefficients G* of F' [5]:

G'=G"+ aQs'y + @{ — 2Qasy + roo}%i + \IJ{ —2Qas + roo}bi,

where sij = al'sy;, 50 = sijyj and roo := r;;4'y’. In [3], Cheng-Shen found
the S-curvature as follows
(b o
(1) S = {2@ — —bffib)) } (TO + S()) — (171@(7”00 — 20(@80),
where
/ /
Q= ¢ A=1+sQ+ (b —s)Q, \I/:g

7= 28
= —(Q - sQ){nA+ 1+ 5Q} — (B — ) (1 + Q)"

Recently, Cheng and Shen characterized (v, 3)-metrics with isotropic S-curvature
and proved the following.
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Lemma 2.2 ([3]). Let F = a¢(f/«a) be an («, f)-metric on an n-manifold.
Then, F' is of isotropic S-curvature S = (n + 1)cF, if and only if one of the
following holds

(i) B satisfies

(2) Tij = E{bQCZij — bibj}: Sj = O,
where € = () is a scalar function, and ¢ = ¢(s) satisfies
PA?

where k is a constant. In this case, ¢ = ke.
(i) B satisfies
(4) ri; =0, s;=0.
In this case, ¢ = 0.
It is remarkable that Cheng, Wang and Wang proved that the condition

® = 0 characterizes the Riemannian metrics among (o, )-metrics [4]. Hence,
in the continue, we suppose that ® # 0.

3. PROOF OF THEOREM 1.1

First, we find the formula of mean Berwald curvature of («, 3)-metrics. After
a long and tedious computation, we obtain the following.

Proposition 3.1. Let F = aqﬁ(g) be an (a, B)-metric. Put Q = 555. Then
the mean Berwald curvature of F' is given by the following

(5)  Ejj = Cibb; + Ca(biy; + bjy;) + Csyy; + Cuaij + Cs(riobs; + 750b;)
+Cs(rioy; + rjoys) + Crriy + Cs(sibj + 5;b;) + Co(siy; + 5;51i)
+Cho(ribj + ;b)) + Cia(riy; + ri9:i),

where
1
Cy = SAAT {@aQ"so + 2aA* " 1rg — A2 1o 4+ 2A%a0" Qs
+HAA2Y Q' sg + QQAQ\II”SO},
-1
Cy = M{QQAQIII"SO — 20/ A?%ry + 200 A20Qsy — A% s
+2A200"5Qs¢ + AA% Y Q' sos + 20A* V' 1 + 20 A>T 517
+2aA? " 550 + P’ sy + @a@"sos},
1 2,20 2,20 214/ 2.1,/
Cs:= A {4A s a@Qsg — 2A75*0 rg + 12aA° W srg + 12aA* W' ssq

+4a A" %1y 4+ 4aA? V" s% sy 4+ 8AZ2Y )’ sy + 2P 55>
—10QY A?srg 4+ 12V A?saQ sy + 6PaQ’sgs — 3<I)7‘0},



A CLASS OF FINSLER METRICS 117

—1
C, = —{4aA2\IJ'sso — Bry — 200 A%sr 4+ 4 A?saQs,
RIAY
+4a ATV s + 2@&@’503},
- 2A%sQ) + @ -0
= G a0 O gear
1
= 20/ A%Q + 207 + Q)
Cs:= 55 Q+ +2Q',
\IJ/

—S —S
Cg = —Cg, ClO =, 011 = —Clo.
(0% (% (0%

The formula of mean Berwald curvature of Randers metrics and Kropina
metrics computed from Proposition 3.1 coincides with the one computed in
[1].

It is easy to see that [ is of isotropic mean Berwald curvature if and only
if F'is of weak isotropic S-curvature. Hence, we consider an (o, 3)-metric
F = a¢(B/a) with weak isotropic S-curvature, S = (n + 1)cF + 7, where
n = ni(x)y’ is a 1-form on underlying manifold M. Using the same method
used in [3], one can obtain that the condition that F' is of weak isotropic
S-curvature S = (n + 1)cF + 7 is equivalent to the following equation

(6) al%(roo — 20Qs0) — 20 (rg + So) = —(n + 1)cF + 6,
where
7. _J'®) B

To simplify the equation (6), we choose special coordinates v: (s, u?) — (y)
as follows

(8) yl = ;O_@ yA = U’Au

where

Then
b 5= bs a

b2 — g2

Fix an arbitrary point x. Take a local coordinate system at x as in (8). We
have

(9) a

I
\.Q‘

ry=0bry, ra4=0bria,

s1 =0, s4=0bs14.
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Let
rip = Z?"lAy ;  S10 = ZSLAZJ y Too = Z TABZ/ Z/ )
A,B=2
T == ZTA?JA7 So = ZSA?JA-
A=2 A=2
Put _
0=ty —ny'.
Then t; are given by
"(b "(b
(10) t = —]}((b))rn, tg = —{;((b)) (ria + S14)-
From (8), we have
sbr
(11) To = [)2——11526[ + bflo, So — 50 = bgw,
and
s2a@? S
(12) oo = 15— 2l + QWFN + Too,
~ 5 f’(b) f'(b)
13 0=t ——a — — =250 — 7.
" R (UM O M

Substituting (11), (12) and (13) into (6) and by using (9), we find that (6) is
equivalent to the following equations:

(14) %(b2 — %o = — { (2‘9—; — 2Ubh ) ri1 -+ (n+1)ch*¢ — sbtl} a?,

@ Q)
(15) <S— - 2\1’52) (r1a + S14) — (sz + 8)——814 + bna — bty = 0.

A? A?
(16) m =0
Let /
)
1= [% = 2\1/52]
We see that T = 0 if and only if
)

% — 22 = 2y,

where = p(x) is independent of s.
Let us suppose that 2 = (bQQA%)@ is not constant. Now we shall divide the

proof into two cases:
(i) T =0 and (ii) T # 0.
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3.1. T = 0. First, note that T = 0 implies that
(17) —— = 2Ub = by,

where p = p(z) is a function on M independent of s. First, we prove the
following.

Lemma 3.2. Let (M, F) be an n-dimensional Finsler manifold. Suppose that
F = a¢(B/a) be an (o, B)-metric and Y = 0. If F' has weak isotropic S-
curvature, S = (n+ 1)cF +n, then 8 satisfies

1
(18) Tij = kaij - €bibj + b—z(nbj + T'jbi),
where k = k(z), € = ¢(x), and ¢ = ¢(s) satisfies the following ODE:
P
(19) (k= es?) 5z = {v + (k= eb)u}s — (n+ oo,

where v = v(x). If sg # 0, then ¢ satisfies the following additional ODE:

(20) Q) =12+ ),
where X = \(x).

Proof. Since ® # 0 and 7y and @ are independent of s, it follows from (14)
and (15) that in a special coordinate system (s,y*) at a point z, the following
relations hold

(21) raB — ]C(SAB,

5P 2 2 LA T
(22) S(W_Nb )T11+(n—|—1)cb ng—I—k‘w(b — s°) = bsty,

P P
(23) (S_ - Q\I/b2> (TIA + 51A> — (b2Q + 5>—81A — btA = —bT]A,

A? A2
where k = k(x) is independent of s. Let
1 = —(k’ — Eb2).

Then (18) holds. By (17), we have
5P sP
B2 ou = O
2A2 ST

Then (22) and (23) become

)

(24) b(k — es?)—— = sty + sbu(k — b%c) — (n + 1)cbo.

2A?2

P
(25) bQ,M(""lA + 31,4) - P<Qb2 + 8)81,4 — btA = —bnA.
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Letting ¢, = bv in (24) we get (19). Now, suppose that sy # 0. Rewrite (25)
as

(0]
{b2u — P(QbQ + 8)} S14 = bta —bna — b2 puria.

We can see that there is a function A = A(z) on M such that
)
ub* — P(Qb2 +5) = b2\
This gives (20).

Lemma 3.3 ([3]). Let F = a¢(f/«a) be an (a, B)-metric. Assume that

¢7§k1\/1+k282+k38

for any constants k1 > 0,ky and ks. If T =0, then b = constant.
An (a, f)-metric is called Randers-type if ¢ = k1/1 + kos? + kgs for any

constants k; > 0, ks and k3. Now, we consider the equivalency of the notions
weak isotropic S-curvature and isotropic S-curvature for a non-Randers type
(o, B)-metric.

Lemma 3.4. Let F = a¢(5/a) be a non-Randers type («, 3)-metric. Suppose
that = is not constant and Y = 0. Then F' is of weak isotropic S-curvature if
and only if F' is of isotropic S-curvature.

Proof. 1t is sufficient to prove that if I’ is of weak isotropic S-curvature, then
F is of isotropic S-curvature. By db = (19 + s¢)/b and Lemma 3.3, we have

ro + so = 0.
Then by the formula of S-curvature of an (a, #)-curvature, we get
)

S = —Oéilm{’roo — 206@80}.
By Lemma 3.2,
2
Too = (]C — €S2>062 + b—jT()Oé
Then
P
2 2
S=—(k—es )EOH_ bQAQ(b Q + 5)so.

By (19), we have

(26) S = —S{V + (k — 5b2)u}oz + (b*Q + 5)so + (n + 1)coa.

o
b2A2
Since S = (n + 1)cF + n, then by (26) we obtain the following

(27) —S{V + (k — 5b2)u}a + (b?°Q + s)so = 1.

b2 A2
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Letting y* = 0b° for a sufficiently small § > 0 yields
—5{1/ + (k- 5b2)u}b2 = Siib.
It is easy to see that in the special coordinate n:b* = 0, hence in general
n;0* = 0. We conclude that
(28) v+ (k—eb*)pu=0.
Then (27) reduces to

(29) S0 =1.

If sg # 0, then from the last equation, we obtain that = is constant, which is
excluded here. Hence, we have so = 0. Thus by (29), we conclude that n = 0
and F' has isotropic S-curvature S = (n + 1)cF. O

3.2. T # 0. Here, we consider the case when ¢ = ¢(s) satisfies
(30) T#0

We need the following two lemmas. The proofs mainly follow the proof of
Lemma 6.1 and Lemma 6.2 in [3], respectively. Thus we omit the proofs.

Lemma 3.5. Let F' = a¢(s),s = f/a, be an («, 5)-metric on an n-dimen-
sional manifold. Assume that Y # 0. Suppose that F has weak isotropic
S-curvature, S = (n+ 1)cF +n. Then

(31) Tij = kaij — Ebibj — )\(Sibj + Sjbi)7

where A = N(x), k = k(x) and € = ¢(x) are scalar functions of x and

(32) —2s(k — eb®)U + (k — 682)% +(n+1)cgp — sv =0,
where
f'(b) 2
33 =— k —eb).
(33) L =)
If in addition so # 0, i.e., sa, # 0 for some A,, then
QO sP
where
/() 2 NA
35 0= — 1— M%) — —=.
(35) b))

Lemma 3.6. Let F' = a¢(s), s = [/a, be an (a, B)-metric. Suppose that
o = ¢(s) satisfies (30) and ¢ # ki1 + kas? + kss for any constants ky > 0,

ko and k3. If F' has weak isotropic S-curvature, then

Tj—i-Sj:O.
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Proposition 3.7. Let F' = a¢(s), s = /a, be an («, 5)-metric. Suppose that
¢ = ¢(s) satisfies (30) and ¢ # kiv/1 + kas?+kss for any constants ky > 0, ks

and ks. Suppose that = is not constant. If F' is of weak isotropic S-curvature,
S = (n+1)cF +n, then

(36) Tij = E(bQCLi]’ — bibj>7 S = O,

where € = £(x) is a scalar function on M and ¢ = ¢(s) satisfies

(37) e(b® — 52)% =—(n+1)co.
Proof. Contracting (31) with b yields
(38) vyt 55 = (k — eb?)b; + (1 — Ab)s,.
By Lemma 3.6, r; + s; = 0. It follows from (38) that
(39) (1 —A?)s; + (k — eb®)b; = 0.
Contracting (39) with ¥ yields

(k — eb?)b* = 0.
We get

k= eb”.

Then (31) is reduced to
rij = €(b2aij — blb]) — )\(biSj + bjsi)-
By (33),
v=20.
Then (32) is reduced to (37).
We claim that sy = 0. Suppose that sq # 0. By (39), we conclude that
1
By (35),
§= Mo
SA(,
It follows from (34) that

(L*Q+5)D  bna,

A2 SA, ’
which implies that = is constant. This is impossible by the assumption on
non-constancy of =. Therefore, s; = 0. This completes the proof. U

By Proposition 3.7 and Lemma 2.2, we have the following.

Corollary 3.8. Let F' = a¢(s), s = 5/a, be a non-Randers type («, 5)-metric.
Suppose that T # 0 and = is not constant. Then F is of weak isotropic S-
curvature, if and only if it is of isotropic S-curvature.
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