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Abstract. A BMO-estimation of two-dimensional Walsh-Fourier series is
proved from which an almost everywhere exponential summability of qua-
dratic partial sums of double Walsh-Fourier series is derived.

1. Introduction

We shall denote the set of all non-negative integers by N , the set of all
integers by Z and the set of dyadic rational numbers in the unit interval I :=
[0, 1) by Q. In particular, each element of Q has the form p

2n
for some p, n ∈

N, 0 ≤ p < 2n. Set IN := [0, 2−N), IN (x) := x ⊕ IN , where ⊕ is the dyadic
addition (see [34]).

Let r0 (x) be the function defined by

r0 (x) =

{
1, if x ∈ [0, 1/2)
−1, if x ∈ [1/2, 1)

, r0 (x+ 1) = r0 (x) .

The Rademacher system is defined by

rn (x) = r0 (2
nx) , n ≥ 1.

Let w0, w1, . . . represent the Walsh functions, i.e. w0 (x) = 1 and if k =
2n1 + · · ·+ 2ns is a positive integer with n1 > n2 > · · · > ns then

wk (x) = rn1 (x) · · · rns (x) .
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The Walsh-Dirichlet kernel is defined by

Dn (x) =
n−1∑
k=0

wk (x) , n ∈ N.

Given x ∈ I, the expansion

(1) x =
∞∑
k=0

xk2
−(k+1),

where each xk = 0 or 1, will be called a dyadic expansion of x. If x ∈ I\Q ,
then (1) is uniquely determined. For the dyadic expansion x ∈ Q we choose
the one for which lim

k→∞
xk = 0.

The dyadic sum of x, y ∈ I in terms of the dyadic expansion of x and y is
defined by

x⊕ y =
∞∑
k=0

|xk − yk| 2−(k+1).

We consider the double system {wn(x)× wm(y) : n,m ∈ N} on the unit
square I2 = [0, 1) × [0, 1). The notation a . b in the whole paper stands
for a ≤ c · b, where c is an absolute constant.

The norm (or quasinorm) of the space Lp (I2) is defined by

‖f‖p :=

∫
I2

|f (x, y)|p dxdy

1/p

(0 < p < +∞) .

If f ∈ L1 (I2), then

f̂ (n,m) =

∫
I2

f (x, y)wn(x)wm(y)dxdy

is the (n,m)-th Fourier coefficient of f .
The rectangular partial sums of double Fourier series with respect to the

Walsh system are defined by

SM,N (x, y; f) =
M−1∑
m=0

N−1∑
n=0

f̂ (m,n)wm(x)wn(y).

Denote

S(1)
n (x, y; f) :=

n−1∑
l=0

f̂ (l, y)wl (x) ,

S(2)
m (x, y; f) :=

m−1∑
r=0

f̂ (x, r)wr (y) ,
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where

f̂ (l, y) =

∫
I

f (x, y)wl (x) dx

and

f̂ (x, r) =

∫
I

f (x, y)wr (y) dy

Recall the definition of BMO [I] space. It is the Banach space of functions
f ∈ L1 (I) with the norm

‖f‖BMO := sup
I

 1

|I|

∫
I

|f − fI |2
1/2

+

∣∣∣∣∣∣
∫
I

f

∣∣∣∣∣∣
and the supremum is taken over all dyadic intervals I ⊂ I.

Let ξ := {ξn : n = 0, 1, 2, . . .} be an arbitrary sequence of numbers. Taking

δnk :=

[
k

2n
,
k + 1

2n

)
,

we define

BMO [ξn] := sup
0≤n<∞

∥∥∥∥∥
2n−1∑
k=0

ξkIδnk (t)

∥∥∥∥∥
BMO

,

where IE is the characteristic function of E ⊂ I.
Set

F := {J := [j2m, (j + 1) 2m) ∩ N, j,m ∈ N} .
Then F is the collection of integer dyadic intervals. The number of elements
in J ∈ F will be denoted by |J |. The mean value of the sequence ξ :=
{ξn : n = 0, 1, 2, . . .} with respect to J is defined by

ξJ :=
1

|J |
∑
l∈J

ξl.

Then it is easy to see that

BMO [ξn] = sup
J∈F

(
1

|J |
∑
k∈J

∣∣ξk − ξJ
∣∣2)1/2

.

We denote by L (logL)α (I2) the class of measurable functions f , with∫
I2

|f |
(
log+ |f |

)α
<∞,

where log+ u := I(1,∞) (u) log u.
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Denote by ST
n (x, f) the partial sums of the trigonometric Fourier series of f

and let

σT
n (x, f) =

1

n+ 1

n∑
k=0

ST
k (x, f)

be the (C, 1) means. Fejr [1] proved that σT
n (f) converges to f uniformly

for any 2π-periodic continuous function. Lebesgue in [19] established almost
everywhere convergence of (C, 1) means if f ∈ L1(T),T := [−π, π). The strong
summability problem, i.e. the convergence of the strong means

(2)
1

n+ 1

n∑
k=0

∣∣ST
k (x, f)− f (x)

∣∣p , x ∈ T, p > 0,

was first considered by Hardy and Littlewood in [16]. They showed that for
any f ∈ Lr(T) (1 < r <∞) the strong means tend to 0 a.e., if n → ∞. The
Fourier series of f ∈ L1(T) is said to be (H, p)-summable at x ∈ T , if the
values (2) converge to 0 as n→ ∞. The (H, p)-summability problem in L1(T)
has been investigated by Marcinkiewicz [24] for p = 2, and later by Zygmund
[44] for the general case 1 ≤ p < ∞. Oskolkov in [26] proved the following:
Let f ∈ L1(T) and let Φ be a continuous positive convex function on [0,+∞)
with Φ (0) = 0 and

(3) lnΦ (t) = O (t/ ln ln t) (t→ ∞) .

Then for almost all x

(4) lim
n→∞

1

n+ 1

n∑
k=0

Φ
(∣∣ST

k (x, f)− f (x)
∣∣) = 0.

It was noted in [26] that Totik announced the conjecture that (4) holds
almost everywhere for any f ∈ L1(T), provided

(5) lnΦ (t) = O (t) (t→ ∞) .

In [28] Rodin proved

Theorem R. Let f ∈ L1(T). Then for any A > 0

lim
n→∞

1

n+ 1

n∑
k=0

(
exp

(
A
∣∣ST

k (x, f)− f (x)
∣∣)− 1

)
= 0

for a.e. x ∈ T.

Karagulyan [17] proved that the following is true.

Theorem K. Suppose that a continuous increasing function Φ : [0,∞) →
[0,∞),Φ (0) = 0, satisfies the condition

lim sup
t→+∞

log Φ (t)

t
= ∞.
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Then there exists a function f ∈ L1(T) for which the relation

lim sup
n→∞

1

n+ 1

n∑
k=0

Φ
(∣∣ST

k (x, f)
∣∣) = ∞

holds everywhere on T.

For quadratic partial sums of two-dimensional trigonometric Fourier series
Marcinkiewicz [25] has proved, that if f ∈ L logL (T2),T := [−π, π)2, then

lim
n→∞

1

n+ 1

n∑
k=0

(
ST
kk (x, y, f)− f (x, y)

)
= 0

for a.e. (x, y) ∈ T2. Zhizhiashvili [43] improved this result showing that class
L logL (T2) can be replaced by L1 (T2).

From a result of Konyagin [18] it follows that for every ε > 0 there exists a
function f ∈ L log1−ε (T2) such that

(6) lim
n→∞

1

n+ 1

n∑
k=0

∣∣ST
kk (x, y, f)− f (x, y)

∣∣ 6= 0 for a.e. (x, y) ∈ T2.

These results show that in the one dimensional case we have the same max-
imal spaces for (C, 1) summability and for (C, 1) strong summability. That is,
in both cases we have L1 (T). But, the situation changes as we step further to
the case of two dimensional functions. In other words, the spaces of functions
with almost everywhere summable Marcinkiewicz and strong Marcinkiewicz
means are different.

In [12] a BMO-estimation of two-dimensional trigonometric Fourier series is
proved from which an almost everywhere exponential summability of quadratic
partial sums of double Fourier series is derived.

The results on strong summation and approximation of trigonometric Fourier
series have been extended for several other orthogonal systems. For instance,
concerning the Walsh system see Schipp [30, 31, 33], Fridli and Schipp [2, 3],
Leindler [19, 20, 21, 22, 23], Totik [36, 37, 38], Rodin [27], Weisz [41, 40],
Gabisoniya [4].

The problems of summability of cubical partial sums of multiple Fourier
series have been investigated by Gogoladze [13, 14, 15], Wang [39], Zhag [42],
Glukhov [9], Goginava [10], Gát, Goginava, Tkebuchava [7], Goginava, Gogo-
ladze [11].

For Walsh system Rodin [29] (see also Schipp [32]) proved that the following
is true.

Theorem R2 (Rodin). If Φ(t) : [0,∞) → [0,∞), Φ(0) = 0, is an increasing
continuous function satisfying

(7) lim sup
t→∞

log Φ(t)

t
<∞,
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then the partial sums of Walsh-Fourier series of any function f ∈ L1 (I) satisfy
the condition

lim
n→∞

1

n

n∑
k=1

Φ (|Sk (x; f)− f (x)|) = 0

almost everywhere on I.

In the paper [6] we established, that, as in trigonometric case [17], the bound
(7) is sharp for a.e. Φ-summability of Walsh-Fourier series. Moreover, we prove

Theorem GGK1. If an increasing function Φ(t) : [0,∞) → [0,∞) satisfies
the condition

lim sup
t→∞

log Φ(t)

t
= ∞,

then there exists a function f ∈ L1 (I) such that

lim sup
n→∞

1

n

n∑
k=1

Φ (|Sk (x; f)|) = ∞

holds everywhere on [0, 1).

Schipp in [32] introduced the following operator

Vn (x; f) :=

 1

2n

∫
I

(
n−1∑
j=0

2j−1IIj (t)S2nf (x⊕ t⊕ ej)

)2

dt

1/2

.

Let

V (f) := sup
n
Vn (f) .

The following theorem is proved by Schipp.

Theorem Sch ([32]). Let f ∈ L1 (I). Then

µ {|V f | > λ} . ‖f‖1
λ

.

Set

Hp
nf :=

(
1

2n

2n−1∑
m=0

|Smmf |p
)1/p

and the maximal strong operator

Hp
∗f := sup

n∈N
Hp

nf, p > 0.

In [5] we studied the a.e. convergence of strong Marcinkiewicz means of the
two-dimensional Walsh-Fourier series. In particular, the following is true.
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Theorem GGK2. Let f ∈ L logL (I2) and p > 0. Then

µ {Hp
∗f > λ} . 1

λ

1 +

∫
I2

|f | log+ |f |

 .

The weak type
(
L log+ L, 1

)
inequality and the usual density argument of

Marcinkiewicz and Zygmund imply

Theorem GGK3. Let f ∈ L logL (I2) and p > 0. Then(
1

n

n−1∑
m=0

|Smm (x, y, f)− f (x, y)|p
)1/p

→ 0 for a.e. (x, y) ∈ I2 as n→ ∞.

We note that from the theorem of Getsadze [8] it follows that the class
L logL in the last theorem is necessary in the context of strong summability
question. That is, it is not possible to give a larger convergence space (of the
form L logLφ(L) with φ(∞) = 0) than L logL. This means a sharp contrast
between the one and two dimensional strong summability.

In [11] the exponential uniform strong approximation of the Marcinkiewicz
means of the two-dimensional Walsh-Fourier series was studied. We say that
the function ψ belongs to the class Ψ if it increase on [0,+∞) and

lim
u→0

ψ (u) = ψ (0) = 0.

Theorem GG ([11]). a)Let ϕ ∈ Ψ and let the inequality

lim
u→∞

ϕ (u)√
u

<∞

hold. Then for any function f ∈ C (I2) the equality

lim
n→∞

∥∥∥∥∥1n
n∑

l=1

(
eϕ(|Sll(f)−f |) − 1

)∥∥∥∥∥
C

= 0

is satisfied.
b) For any function ϕ ∈ Ψ satisfying the condition

lim
u→∞

ϕ (u)√
u

= ∞

there exists a function F ∈ C (I2) such that

lim
m→∞

1

m

m∑
l=1

(
eϕ(|Sll(0,0,F )−F (0,0)|) − 1

)
= +∞.

In this paper we study a BMO-estimation for quadratic partial sums of
two-dimensional Walsh-Fourier series from which an almost everywhere expo-
nential summability of quadratic partial sums of double Walsh-Fourier series
is derived.
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Theorem 1. If f ∈ L (logL)2 (I2), then

µ
{
(x, y) ∈ I2 : BMO [Snn (x, y; f)] > λ

}
. 1

λ

1 +

∫
I2

|f | (log |f |)2
 .

The following theorem shows that the quadratic sums of two-dimensional
Walsh-Fourier series of a function f ∈ L (logL)2 (I2) are almost everywhere
exponentially summable to the function f . It will be obtained from the previ-
ous theorem by using the John-Nirenberg theorem (see ([12]).

Theorem 2. Suppose that f ∈ L (logL)2 (I2). Then for any A > 0

lim
m→∞

1

m

m∑
n=1

(exp (A |Snn (x, y; f)− f (x, y)|)− 1) = 0

for a.e. (x, y) ∈ I2.

2. Proof of Theorem

Let f ∈ L1 (I2). Then the dyadic maximal function is given by

Mf (x, y) := sup
n∈N

22n
∫

In(x)×In(y)

|f (s, t)| dsdt.

For a two-dimensional integrable function f we need to introduce the fol-
lowing hybrid maximal functions

M1f (x, y) := sup
n∈N

2n
∫

In(x)

|f (s, y)| ds,

M2f (x, y) := sup
n∈N

2n
∫

In(y)

|f (x, t)| dt,

V1 (x, y, f)(8)

: = sup
n∈N

 1

2n

∫
I

(
n−1∑
j=0

2j−1IIj (t)S
(1)
2n f (x⊕ t⊕ ej, y)

)2

dt

1/2

,

V2 (x, y, f)(9)

: = sup
n∈N

 1

2n

∫
I

(
n−1∑
j=0

2j−1IIj (t)S
(2)
2n f (x, y ⊕ t⊕ ej)

)2

dt

1/2

.

It is well known [44] that for f ∈ L log+ L the following estimation holds

(10) λµ {Mf > λ} . 1 +

∫
I2

|f | log+ |f |
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and for s = 1, 2

(11)

∫
I2

Msf . 1 +

∫
I2

|f | log+ |f | ,

(12) µ {: Vs (f) > λ} . ‖f‖1
λ

, f ∈ L1

(
I2
)
.

It is proved in [5] that the following estimation holds(
1

2n

2n−1∑
m=0

|Smm (x, y, f)|2
)1/2

(13)

. V2 (x, y,M1f) + V1 (x, y,M2f) +Mf (x, y)

+V2 (x, y, A) + V1 (x, y, A) + ‖f‖1 ,
where A is an integrable and nonegative function on I2 of two variable for
which

(14)

∫
I2

A . 1 +

∫
I2

|f | log+ |f | , f ∈ L logL.

Proof of Theorem 1. We can write

BMO [Snn (x, y; f)](15)

= sup
m,j

 1

2m

(j+1)2m−1∑
l=j2m

∣∣∣∣∣∣Sll (x, y; f)−
1

2m

(j+1)2m−1∑
q=j2m

Sqq (x, y; f)

∣∣∣∣∣∣
21/2

= sup
m,j

(
1

2m

2m−1∑
l=0

|Sl+j2m,l+j2m (x, y; f)

− 1

2m

2m−1∑
q=0

Sq+j2m,q+j2m (x, y; f)

∣∣∣∣∣
2
1/2

.

Since (0 ≤ l < 2m)

Sl+j2m,l+j2m (x, y; f) = Sj2m,j2m (x, y; f) + Sj2m,l (x, y; fwj2m (x))wj2m (y)

+Sl,j2m (x, y; fwj2m (y))wj2m (x)

+Sl,l (x, y; fwj2m (x)⊗ wj2m (y))wj2m (x)wj2m (y)

from (15) we obtain

BMO [Snn (x, y; f)](16)

≤ sup
m,j

(
1

2m

2m−1∑
l=0

|Sl,l (x, y; fwj2m (x)⊗ wj2m (y))
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− 1

2m

2m−1∑
q=0

Sq,q (x, y; fwj2m (x)⊗ wj2m (y))

∣∣∣∣∣
2
1/2

+sup
m,j

(
1

2m

2m−1∑
l=0

|Sl,j2m (x, y; fwj2m (y))

− 1

2m

2m−1∑
q=0

Sq,j2m (x, y; fwj2m (y))

∣∣∣∣∣
2
1/2

+sup
m,j

(
1

2m

2m−1∑
l=0

|Sj2m,l (x, y; fwj2m (x))

− 1

2m

2m−1∑
q=0

Sj2m,q (x, y; fwj2m (x))

∣∣∣∣∣
2
1/2

≤ 2 sup
m,j

(
1

2m

2m−1∑
l=0

|Sl,l (x, y; fwj2m (x)⊗ wj2m (y))|2
)1/2

+2 sup
m,j

(
1

2m

2m−1∑
l=0

|Sl,j2m (x, y; fwj2m (y))|2
)1/2

+2 sup
m,j

(
1

2m

2m−1∑
l=0

|Sj2m,l (x, y; fwj2m (x))|2
)1/2

: = T1 + T2 + T3.

From (13) we have

T1 . V2 (x, y,M1f) + V1 (x, y,M2f) +Mf (x, y)(17)

+V2 (x, y, A) + V1 (x, y, A) + ‖f‖1 .
Since

Sl,j2m (x, y; fwj2m) = S
(1)
l

(
x, y;S

(2)
j2mwj2m

)
for T2 we can write

(18) T2 . sup
m,j

(
1

2m

2m−1∑
l=0

∣∣∣S(1)
l

(
x, y;S

(2)
j2m (fwj2m)

)∣∣∣2)1/2

.

Schipp proved the following estimation (see [32])

(19)

(
1

2m

2m−1∑
l=0

|Sl (x; f)|2
)1/2

. V (x, f) .
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Combining (18) and (19) we get

T2 . sup
m,j

V1

(
x, y;

∣∣∣S(2)
j2m (f)

∣∣∣) . V1
(
x, y;S(2)

∗ (f)
)
,

where

S(2)
∗ (x, y; f) := sup

n

∣∣S(2)
n (x, y; f)

∣∣ .
Let f ∈ L (logL)2 (I2). Then f (x, ·) ∈ L (logL)2 (I) for a.e. x ∈ I,and from

the well-known theorem ([35]) S
(2)
∗ (x, ·; f) ∈ L1 (I) for a.e. x ∈ I. Moreover,

(20)

∫
I

∣∣S(2)
∗ (x, y; f)

∣∣ dy .

∫
I

|f (x, y)|
(
log+ |f (x, y)|

)2
dy + 1


for a.e. x ∈ I.

Setting

Ω :=
{
(x, y) ∈ I2 : V1 (x, y, f) > λ

}
.

we can use Fubini’s Theorem and Theorem 1 to write

|Ω| =
∫
I2

1Ω (x, y) dxdy(21)

=

∫
I

∫
I

1Ω (x, y) dx

 dy

. 1

λ

∫
I

∫
I

|f (x, y)| dx

 dy.

Consequently, from (20) we obtain∣∣{(x, y) ∈ I2 : V1
(
x, y;S(2)

∗ (f)
)
> λ

}∣∣(22)

. 1

λ

∫
I

∫
I

∣∣S(2)
∗ (x, y; f)

∣∣ dx
 dy

. 1

λ

∫
I

∫
I

|f (x, y)|
(
log+ |f (x, y)|

)2
dy + 1

 dx

=
c

λ

∫
I2

(
|f (x, y)|

(
log+ |f (x, y)|

)2
+ 1
)
dxdy

1/2

.
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Analogously, we can prove that

(23) |{T3 > λ}| . 1

λ

∫
I2

(
|f (x, y)|

(
log+ |f (x, y)|

)2
+ 1
)
dxdy

 .

From (10), (11), (21), (12), (13), (14) and Theorem D we conclude that

|{T1 > λ}|

. 1

λ
(‖M1f‖1 + ‖M2f‖1 + ‖A‖1 + ‖f‖1)

. 1

λ

1 +

∫
I2

|f | log+ |f |

 .

Combining (16), (17), (22) and (23) we conclude the proof of Theorem 1. �

References

[1] L. Fejér. Untersuchungen über Fouriersche Reihen. Math. Ann., 58:51–69, 1904.
[2] S. Fridli and F. Schipp. Strong summability and Sidon type inequalities. Acta Sci. Math.

(Szeged), 60(1-2):277–289, 1995.
[3] S. Fridli and F. Schipp. Strong approximation via Sidon type inequalities. J. Approx.

Theory, 94(2):263–284, 1998.
[4] O. D. Gabisoniya. Points of strong summability of fourier series. Mat. Zametki,

14(5):615–626, 1973.
[5] G. Gát, U. Goginava, and G. Karagulyan. Almost everywhere strong summability of

Marcinkiewicz means of double Walsh-Fourier series. Anal. Math., 40(4):243–266, 2014.
[6] G. Gát, U. Goginava, and G. Karagulyan. On everywhere divergence of the strong

Φ-means of Walsh-Fourier series. J. Math. Anal. Appl., 421(1):206–214, 2015.
[7] G. Gát, U. Goginava, and G. Tkebuchava. Convergence in measure of logarithmic

means of quadratical partial sums of double Walsh-Fourier series. J. Math. Anal. Appl.,
323(1):535–549, 2006.

[8] R. Getsadze. On the boundedness in measure of sequences of superlinear operators in
classes Lφ(L). Acta Sci. Math. (Szeged), 71(1-2):195–226, 2005.

[9] V. A. Glukhov. Summation of multiple Fourier series in multiplicative systems. Mat.
Zametki, 39(5):665–673, 1986.

[10] U. Goginava. The weak type inequality for the maximal operator of the Marcinkiewicz-
Fejér means of the two-dimensional Walsh-Fourier series. J. Approx. Theory,
154(2):161–180, 2008.

[11] U. Goginava and L. Gogoladze. Strong approximation by Marcinkiewicz means of two-
dimensional Walsh-Fourier series. Constr. Approx., 35(1):1–19, 2012.

[12] U. Goginava, L. Gogoladze, and G. Karagulyan. BMO-estimation and almost every-
where exponential summability of quadratic partial sums of double Fourier series. Con-
str. Approx., 40(1):105–120, 2014.

[13] L. Gogoladze. On the exponential uniform strong summability of multiple trigonometric
Fourier series. Georgian Math. J., 16(3):517–532, 2009.

[14] L. D. Gogoladze. Strong means of Marcinkiewicz type. Soobshch. Akad. Nauk Gruzin.
SSR, 102(2):293–295, 1981.



ALMOST EVERYWHERE SUMMABILITY 245

[15] L. D. Gogoladze. On strong summability almost everywhere. Mat. Sb. (N.S.),
135(177)(2):158–168, 271, 1988.

[16] G. H. Hardy and J. E. Littlewood. Sur la série de Fourier d’une fonction à carré
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