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Abstract. In this paper we summarize the previous results in the topic
of variable Lebesgue space. We present the basic properties of the variable
Lebesgue spaces and investigate norm and almost everywhere convergence
of the inverse continuous wavelet transform in the variable Lebesgue space.

1. Introduction

The topic of variable Lebesgue spaces is a new chapter of mathematics and
is studied intensively nowadays. In this paper we summarize the main results.
For an exponent function p : Rd → [1,∞), we consider the variable Lp(·)(Rd)
spaces. The variable Lebesgue spaces have a lot of common properties with
the classical Lebesgue spaces. For example, the variable Lp(·)(Rd) spaces are
equipped with the norm ‖ · ‖p(·) are Banach spaces. The analogue of Hölder’s
inequality remains true. Similarly to the classical Lebesgue spaces, if the
measure of X ⊂ Rd is finite, then the spaces Lq(·)(X) ⊂ Lp(·)(X) if and only
if the exponent function p(·) ≤ q(·) almost everywhere. Or, if the exponent
function q(·) is the conjugate function of p(·) and sup{p(x) : x ∈ Rd} < ∞,
then the dual space L∗

p(·)(Rd) and the space Lq(·)(Rd) are equivalent. Though,
there are some properties of the classical Lebesgue spaces, which do not remain
true in the variable Lebesgue spaces. For instance, the translation invariance,
Young’s inequality, or the boundedness of the strong maximal operator (see
Kováčik and Rákosńık [11], Cruz-Uribe and Fiorenza [4], Diening, Hästö and
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Růžička [5], Cruz-Uribe, Firorenza and Neugebauer [3], Cruz-Uribe, Fiorenza,
Martell and Pérez [2]).

The so-called θ-summation method is studied intensively in the literature
(see e.g. Butzer and Nessel [1], Trigub and Belinsky [15], Gát [8], Goginava
[9], Simon [13] and Weisz [16, 17]). For an integrable function θ on Rd, the
θ-summation is defined by

σθ
Tf(x) =

∫
Rd

f(x− t)T dθ(Tt) dt.

By a suitable chosen of θ, we get back the well-known summability methods,
like Fejér, Riesz, Weierstrass, Abel, etc. Feichtinger and Weisz [6, 7, 19] have
proved that the θ-means σθ

Tf converge to f almost everywhere and in norm
as T → ∞, whenever f is in the Lp(Rd) space or in a Wiener amalgam space.
The points of the set of the almost everywhere convergence are characterized
as the Lebesgue points. In [14] we proved that in case of T → 0, the θ-means
converge to 0 pointwise if f ∈ Lp (1 ≤ p ≤ ∞) and in norm, whenever f ∈ Lp

(1 < p < ∞) and θ has a radial majorant.
Some similar results are known in the variable Lebesgue spaces (see e.g.

Cruz-Uribe and Fiorenza [4], Szarvas and Weisz [14]). Under some conditions
on the exponent function p(·) and θ, the θ-means of f converge to f almost
everywhere and in norm for all f ∈ Lp(·) as T → ∞ and converge to 0 pointwise
and in norm as T → 0.

Recently Li and Sun [12] have proved that under some conditions the inverse
continuous wavelet transform converges to Cf at every Lebesgue points of f
for any f ∈ Lp(Rd) (1 ≤ p < ∞), where C is a constant depending on g
and γ. If 1 < p < ∞, then the convergence holds in the Lp(Rd)-norm for
all f ∈ Lp(Rd). Under some other conditions Weisz [18] has proved similar
results. These results were generalized for variable Lebesgue spaces in [14].

In this paper we will present the basic properties of the variable Lebesgue
spaces and investigate the norm and almost everywhere convergence of the
continuous wavelet transform in variable Lebesgue spaces. The solution was
that we traced back the problem to the summability of Fourier transforms.

2. Variable Lebesgue spaces

First of all, we will investigate the classical Lp(Rd) spaces. Let us fix d ≥ 1,
d ∈ N. For a set Y 6= ∅ let Yd be its Cartesian product Y× · · · ×Y taken with
itself d-times. The space Lp(Rd) equipped with the norm

‖f‖p :=
(∫

Rd

|f(x)|p dx
)1/p

(1 ≤ p ≤ ∞),

is the classical Lebesgue space. We use the notation |I| for the Lebesgue
measure of the set I. The set of locally integrable functions is denoted by
Lloc

1 (Rd).
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A function p(·) belongs to P(Rd) if p : Rd → [1,∞] and p(·) is measurable.
Then we say that p(·) is an exponent function. Let

p− := inf{p(x) : x ∈ Rd} and p+ := sup{p(x) : x ∈ Rd}.
Set

Ωp(·)
∞ := Ω∞ := {x ∈ Rd : p(x) = ∞}.

The modular generated by p(·) ∈ P(Rd) is defined by

%p(·)(f) :=

∫
Rd\Ω∞

|f(x)|p(x) dx+ ‖f‖L∞(Ω∞) ,

where f is a measurable function. A measurable function f belongs to the
Lp(·)(Rd) space if there exists λ > 0 such that %p(·) (f/λ) < ∞. We can see
that the modular %p(·) is not a norm. Define the Lp(·)(Rd)-norm by

‖f‖p(·) := inf

{
λ > 0 : %p(·)

(
f

λ

)
≤ 1

}
.

Then ‖ · ‖p(·) is a norm and the space (Lp(·)(Rd), ‖ · ‖p(·)) is a normed space. In
case p(·) = p is a constant, then we get back the usual Lp(Rd) spaces.

The variable Lebesgue spaces are special cases of much more general function
spaces, the so-called Musielak-Orlicz spaces. Let Φ: Rd × [0,∞) → [0,∞] be
given such that for all x ∈ Rd, Φ(x, ·) is non-decreasing, continuous and convex
on the set where it is finite. Assume that Φ(x, 0) = 0, Φ(x, t) > 0 (t > 0),
limt→∞Φ(x, t) = ∞ and for all t ≥ 0, Φ(·, t) is a measurable function. Let

‖f‖LΦ(·,·) = inf

{
λ > 0 :

∫
Rd

Φ

(
x,

|f(x)|
λ

)
dx ≤ 1

}
,

which is the so-called Luxemburg-norm. Then a measurable function f belongs
to the Musielak-Orlicz space if ‖f‖LΦ(·,·) < ∞. If we take Φ(x, t) := tp (1 ≤
p < ∞), Φ(x, t) := tpw(x) (1 ≤ p < ∞), Φ(x, t) := tp(x), Φ(x, t) := tp(x)w(x)
or Φ(x, t) = Φ(t), then we get the classical Lebesgue spaces, the weighted
Lebesgue spaces, the variable Lebesgue spaces, the weighted variable Lebesgue
spaces or the Orlicz spaces back. Here the function w is a so-called weight
function, i.e. w is positive and locally integrable.

3. Basic properties of the variable Lebesgue spaces

In this chapter we review some basic properties of the variable Lebesgue
spaces (the proofs and other interesting facts about variable Lebesgue spaces
can be found in [4] or in [5]). Let p(·) ∈ P(Rd), f, fn ∈ Lp(·)(Rd) (n ∈ N). We
say that (fn) converges to f in modular if for some λ > 0, limn→∞ % (λ(f − fn))
= 0.

We say that (fn) converges to f in the Lp(·)(Rd)-norm, if limn→∞ ‖f − fn‖p(·)
= 0. The norm convergence is stronger than the modular convergence (see [4,
p.44]).
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Theorem 1. Let p(·) ∈ P(Rd), f, fn ∈ Lp(·)(Rd) (n ∈ N). If (fn) converges to
f in the Lp(·)(Rd)-norm, then (fn) converges to f in modular.

Although, if we take a condition on the exponent function, we get (see [4,
p.44])

Theorem 2. In case of p+ < ∞, the sequence (fn) (n ∈ N) converges to f in
modular if and only if (fn) converges to f in the Lp(·)(Rd)-norm.

One of the most important properties of the variable Lebesgue spaces is that
they are Banach spaces (see [4, p.55]).

Theorem 3. If p(·) ∈ P(Rd), then the space (Lp(·)(Rd), ‖ · ‖p(·)) is a Banach
space.

The dense subsets of the classical Lebesgue spaces are very important. For
the variable Lebesgue spaces we have ([4, p.56])

Theorem 4. If p(·) ∈ P(Rd), p+ < ∞, then the set of bounded functions with
compact support is dense in Lp(·)(Rd).

The well-known Hölder’s inequality remains true in the variable Lebesgue
spaces too (see e.g. [4, p.27]). Namely, if p(·) ∈ P(Rd) and q(·) ∈ P(Rd)
exponent functions are such that 1/p(x) + 1/q(x) = 1 for all x ∈ Rd, then we
say that q(·) is the conjugate function of p(·).

Theorem 5 (Hölder’s inequality). Let p(·) ∈ P(Rd), 1/p(x) + 1/q(x) = 1.
Then for all f ∈ Lp(·)(Rd) and g ∈ Lq(·)(Rd), fg ∈ L1(Rd) and∫

Rd

|f(x)g(x)| dx ≤ Cp(·) ‖f‖p(·) ‖g‖q(·).

Let Ω ⊂ Rd, |Ω| < ∞. For the classical spaces the Lp(Ω) spaces decrease as
p increase. In the variable Lebesgue spaces we have an analogous theorem ([4,
p.41]).

Theorem 6. Suppose that p(·), q(·) ∈ P(Ω) and |Ω \ Ω
p(·)
∞ | < ∞. Then

Lq(·)(Ω) ⊂ Lp(·)(Ω) if and only if p(·) ≤ q(·) almost everywhere.

Another embedding theorem is (see [5, p.83])

Theorem 7. If p(·), q(·), r(·) ∈ P(Rd), p(·) ≤ q(·) ≤ r(·) almost everywhere,
then

Lp(·)(Rd) ∩ Lr(·)(Rd) ↪→ Lq(·)(Rd) ↪→ Lp(·)(Rd) + Lr(·)(Rd).

Moreover, if g ∈ Lq(·)(Rd), then

‖g‖q(·) ≤ 2max{‖g‖p(·), ‖g‖r(·)}.
and

inf
g=g1+g2, g1∈Lp(·)(Rd),

g2∈Lr(·)(Rd)

{‖g1‖p(·) + ‖g2‖r(·)} ≤ 2‖g‖q(·).
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The duality results are similar to the case of the classical Lebesgue spaces.
It is known that the dual space of Lp(·)(Rd) is L∗

p(·)(Rd) equipped with the

norm ‖Φ‖ := sup‖f‖p(·)≤1 |Φ(f)|, where L∗
p(·)(Rd) contains all bounded linear

functionals Φ: Lp(·)(Rd) → R.

Theorem 8. Let g be a measurable function and define the linear functional
Φg : Lp(·)(Rd) → R by

Φg(f) :=

∫
Rd

f(x)g(x) dx.

If p(·) ∈ P(Rd) and q(·) ∈ P(Rd) is the conjugate function of p(·), then Φg ∈
L∗

p(·)(Rd) if and only if g ∈ Lq(·)(Rd).

Moreover, if p+ is finite, then essentially there are no other bounded linear
functionals in the dual space just Φg (see e.g. [4, p.63]).

Theorem 9. Let p(·) ∈ P(Rd) and q(·) is the conjugate function of p(·). Then
the followings are equivalent:

(1) p+ < ∞,
(2) For any Φ ∈ L∗

p(·)(Rd) there exists a unique g ∈ Lq(·)(Rd) such that
Φ = Φg.

We get the next results as immediate consequences:

Corollary 1. In case of p+ < ∞, the space L∗
p(·)(Rd) and the space Lq(·)(Rd)

are equivalent.

Corollary 2. Suppose that p(·) ∈ P(Rd). Then Lp(·)(Rd) is reflexive if and
only if 1 < p− ≤ p+ < ∞.

We have seen that there are some important properties of the classical
Lebesgue spaces which remain true for the variable Lebesgue spaces. How-
ever, there are some important statements that are not true for the variable
Lebesgue spaces. For example, the classical Lebesgue spaces are translation
invariant spaces, i.e. for all f ∈ Lp(Rd) (1 ≤ p ≤ ∞) and for all h ∈ Rd,
Thf ∈ Lp(Rd) and ‖f‖p = ‖Thf‖p, where Thf(x) = f(x − h) (x ∈ Rd). This
property is used to prove norm-convergence (for example the norm-convergence
of θ-summation). But in the variable Lebesgue spaces, this never holds (see
[4, p.203]).

Theorem 10. Suppose that p(·) ∈ P(Rd), h ∈ Rd. Then the translation
operator Th is bounded on Lp(·)(Rd) if and only if p(·) is constant. Moreover,
if p(·) is non-constant, then for all h ∈ Rd there exists f ∈ Lp(·)(Rd) such that
Th /∈ Lp(·)(Rd).

A Banach space B is called homogeneous Banach space, if

(1) for all f ∈ B and x ∈ Rd, Txf ∈ B and ‖Txf‖B = ‖f‖B,
(2) the function x 7→ Txf from Rd to B is continuous for all f ∈ B,



318 KRISTÓF SZARVAS

(3) the functions in B are uniformly locally integrable, i.e. for every compact
set K ⊂ Rd there exists a constant CK such that∫

K

|f | dλ ≤ CK‖f‖B (f ∈ B).

Corollary 3. In case p(·) ∈ P(Rd) is not a constant, then Lp(·)(Rd) is not a
homogeneous Banach space.

The convolution of the measurable functions f and g is defined by

(f ∗ g)(x) :=
∫
Rd

f(x− t)g(t) dt =

∫
Rd

f(t)g(x− t) dt.

The so-called Young’s inequality is a well-known result in the classical Lebesgue
spaces:

‖f ∗ g‖r ≤ ‖f‖p‖g‖q
for all f ∈ Lp(Rd) and g ∈ Lq(Rd), where 1 ≤ p, q, r ≤ ∞, and 1/r + 1 =
1/p + 1/q. In case of q = 1 we obtain the inequality ‖f ∗ g‖p ≤ ‖f‖p‖g‖1.
Unfortunately, since the spaces Lp(·)(Rd) are not translation invariant, unless
p(·) is a constant, we get that the Young’s inequality does not hold in the
variable Lebesgue spaces ([4, 204]):

Theorem 11. Let p(·) ∈ P(Rd), 1 < p− ≤ p+ < ∞. Then

‖f ∗ g‖p(·) ≤ C‖f‖p(·)‖g‖1
for some C > 0 and for all f ∈ Lp(·)(Rd), g ∈ L1(Rd) if and only if p(·) is a
constant.

Another surprising result for the classical Hardy-Littlewood maximal oper-
ator is Theorem 15.

The interpolation is another central topic of the classical Lebesgue spaces.
The Riesz-Thorin’s theorem remains true for the variable Lebesgue spaces ([4,
p.128]).

Theorem 12. Let pi(·), qi(·) ∈ P(Rd) (i = 1, 2). If T is a sublinear operator
such that for all f ∈ Lpi(·)(Rd)

‖Tf‖qi(·) ≤ Mi ‖f‖pi(·) (i = 1, 2, ),

then for each 0 < θ < 1 and for all f ∈ Lp(·)(Rd),

‖Tf‖q(·) ≤ CM θ
1M

1−θ
2 ‖f‖p(·) ,

where p(·), q(·) are defined by

1

p(x)
=

θ

p1(x)
+

1− θ

p2(x)
,

1

q(x)
=

θ

q1(x)
+

1− θ

q2(x)
(x ∈ Rd).

In the classical Lebesgue spaces, the so-called Marcinkiewicz-theorem says
that
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Theorem 13 (Marcinkiewicz). Let 1 ≤ p1 ≤ p2 < ∞ If T is a sublinear
operator for which

sup
t>0

∥∥tχ{x∈Rd:Tf(x)>t}
∥∥
pi
≤ C‖f‖pi

for all f ∈ Lpi(Rd) (i = 1, 2), then for any p1 < q < p2

‖Tf‖q ≤ C‖f‖q
for all f ∈ Lq(Rd).

In the topic of variable Lebesgue spaces it is an open question that if the
sublinear operator T satisfies

sup
t>0

∥∥tχ{x∈Rd:Tf(x)>t}
∥∥
pi(·)

≤ C ‖f‖pi(·) (i = 1, 2)

for all f ∈ Lpi(·)(Rd), then the inequality

‖Tf‖p(·) ≤ C ‖f‖p(·)
does hold for any f ∈ Lp(·)(Rd), where 1/p(x) = θ/p1(x) + (1− θ) /p2(x)
(0 < θ < 1, x ∈ Rd)?

4. Maximal operators

Maximal operators are playing central role in Fourier analysis and in approxi-
mation theory. The classical Hardy-Littlewood maximal operator is defined by

Mf(x) := sup
x∈Q

1

|Q|

∫
Q

|f | dλ (x ∈ Rd),

where f ∈ Lloc
1 (Rd) and the supremum is taken over all cubesQ ⊂ Rd with sides

parallel to the axes. The following result is known for the classical Lebesgue
spaces:

‖Mf‖p ≤ C ‖f‖p
for all f ∈ Lp(Rd) (1 < p ≤ ∞) and

sup
t>0

tλ
(
x ∈ Rd : Mf(x) > t

)
≤ C ‖f‖1

for all f ∈ L1(Rd). To generalize this result for variable Lebesgue spaces we
will introduce the log-Hölder continuous functions. We say that r(·) is locally
log-Hölder continuous if there exists a constant C0 such that for all x, y ∈ Rd,
‖x− y‖2 < 1/2,

|r(x)− r(y)| ≤ C0

− log(‖x− y‖2)
.

We denote this set by LH0(Rd).
We say that r(·) is log-Hölder continuous at infinity if there exist constants

C∞ and r∞ such that for all x ∈ Rd

|r(x)− r∞| ≤ C∞

log(e+ ‖x‖2)
.
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We write briefly r(·) ∈ LH∞(Rd). Let

LH(Rd) := LH0(Rd) ∩ LH∞(Rd).

For example, if r(·) is in LH0(Rd), then r(·) is uniformly continuous and
bounded on every bounded set E ⊂ Rd. Moreover, if r(·) is in LH∞(Rd),
then r(·) is bounded (the proofs can be found in [4, p.15]). With the help of
this property, we get sufficient condition for the boundedness of the Hardy-
Littlewood maximal operator (see [4, p.89]).

Theorem 14. Let p(·) ∈ P(Rd) and 1/p(·) ∈ LH(Rd).

(1) Then for all f ∈ Lp(·)(Rd)

sup
t>0

∥∥tχ{x∈Rd:Mf(x)>t}
∥∥
p(·) ≤ C ‖f‖p(·) .

(2) If in addition p− > 1, then for all f ∈ Lp(·)(Rd)

‖Mf‖p(·) ≤ C ‖f‖p(·) .

However, the integral inequality never holds in the variable Lebesgue spaces
(see [4, p.108]).

Theorem 15. Let p(·) ∈ P(Rd) and p+ < ∞. Then the inequalities∫
{x∈Rd:Mf(x)>t}

tp(x) dx ≤ C

∫
Rd

|f(x)|p(x) dx,∫
Rd

Mf(x)p(x) dx ≤ C

∫
Rd

|f(x)|p(x) dx

are true if and only if p(·) is a constant almost everywhere.

It is known that in case of p = 1, the Hardy-Littlewood maximal operator
is not bounded on L1(Rd). Analogously, if p− = 1, then the maximal operator
M is not bounded on the space Lp(·)(Rd) (see [4, p.90]).

We can define other maximal operators too. For example, the strong maxi-
mal operator is given by

Msf(x) := sup
x∈I

1

|I|

∫
I

|f | dλ (x ∈ Rd),

where f ∈ Lloc
1 (Rd) and the supremum is taken over all rectangles I ⊂ Rd with

sides parallel to the axes. It is known that

‖Msf‖p ≤ C ‖f‖p
for all f ∈ Lp(Rd) (1 < p ≤ ∞) and

sup
t>0

tλ
(
x ∈ Rd : Msf(x) > t, |x| ≤ C0

)
≤ C + C

∫
Rd

|f |(log+ |f |)d−1 dλ

for all f ∈ L1(L logL)d−1(Rd). In contrast to the previous theorem, the strong
maximal operator is never bounded on the variable Lp(·)(Rd) spaces unless p(·)
is a constant (see Kokilashvili and Meskhi [10]):
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Theorem 16. Let 1 < p− ≤ p+ < ∞. Then the strong maximal operator Ms

is bounded on Lp(·)(Rd) if and only if p(·) is constant.

5. θ-summation

In this chapter we will introduce a general method for approximation, the
so-called θ-summation. Let θ ∈ L1(Rd) be a radial function. The θ-means of
f ∈ Lp(Rd) (1 ≤ p ≤ ∞) are defined by

σθ
Tf(x) := (f ∗ θT )(x) =

∫
Rd

f(x− t)θT (t) dt,

where

θT (x) := T dθ(Tx) (x ∈ Rd, T > 0).

A point x ∈ Rd is called a Lebesgue point of f ∈ Lloc
1 (Rd) if

lim
h→0

1

|B(0, h)|

∫
B(0,h)

|f(x+ u)− f(x)| du = 0,

where

B(a, δ) := {x ∈ Rd : ‖x− a‖2 < δ}.
It is known that if f ∈ Lp(Rd) (1 ≤ p ≤ ∞) or f ∈ Lp(·)(Rd) (p(·) ∈ P(Rd)),
then almost every x ∈ Rd is a Lebesgue point of f (see e.g. Feichtinger and
Weisz [7] and Szarvas and Weisz [14]).

We say that η is a radial majorant of f , if η is radial, non-increasing as
a function on (0,∞), non-negative, bounded, |f | ≤ η and η ∈ L1(Rd). If in
addition, η(·) ln (| · |+ 2) ∈ L1(Rd), then we say that η is a radial log-majorant
of f . The next theorem can be found in Feichtinger and Weisz [6] and Szarvas
and Weisz [14].

Theorem 17. Suppose that θ ∈ L1(Rd).

(1) Then for all f ∈ Lp(Rd) (1 ≤ p < ∞)

lim
T→∞

σθ
Tf =

∫
Rd

θ(x) dx · f in the Lp(Rd)-norm.

If θ has a radial majorant, then the convergence holds for all Lebesgue
points.

(2) If θ has a radial majorant, then for all f ∈ Lp(Rd)
(1 < p < ∞)

lim
T→0

σθ
Tf = 0 in the Lp(Rd)-norm.

This convergence holds for all x ∈ Rd pointwise and for all 1 ≤ p ≤ ∞.

We have generalized this result for variable Lebesgue spaces in [14]:

Theorem 18. Suppose that p(·) ∈ P(Rd) and θ has a radial majorant.
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(1) Then for all Lebesgue points of f ∈ Lp(·)(Rd),

lim
T→∞

σθ
Tf(x) =

∫
Rd

θ(y) dy · f(x).

(2) If in addition p+ < ∞, then

lim
T→0

σθ
Tf(x) = 0

for all f ∈ Lp(·)(Rd) and for all x ∈ Rd.

To prove norm-convergence, we have to take other conditions. The first
statement of the next theorem can be found in Cruz-Uribe and Fiorenza [4,
p.199]. We have proved the second one in [14].

Theorem 19. Let p(·) ∈ P(Rd), p+ < ∞, 1/p(x) + 1/q(x) = 1. Suppose that
θ has a radial majorant and the maximal operator is bounded on Lq(·)(Rd).

(1) Then for all f ∈ Lp(·)(Rd)

lim
T→∞

σθ
Tf =

∫
Rd

θ(x) dx · f in the Lp(·)(Rd)-norm.

(2) If in addition p− > 1, then

lim
T→0

σθ
Tf = 0 in the Lp(·)(Rd)-norm

for all f ∈ Lp(·)(Rd).

Note that if 1/p(·) ∈ LH(Rd) and p+ < ∞, then 1/q(·) ∈ LH(Rd) and
q− > 1, hence the maximal operator is bounded on Lq(·)(Rd). Therefore if
1/p(·) ∈ LH(Rd), p+ < ∞ and θ has a radial majorant, then the statements
of the previous theorem remain true.

6. Continuous wavelet transform

In this chapter we will present an application of the previous results. Namely,
we will rewrite the continuous wavelet transform as a θ-summation and we will
get convergence theorems for the continuous wavelet transform. The continu-
ous wavelet transform of f with respect to a wavelet g is defined by

Wgf(x, s) := |s|−d/2

∫
Rd

f(t)g(s−1(t− x)) dt = 〈f, TxDsg〉,

(x ∈ Rd, s ∈ R, s 6= 0), when the integral does exist. Here Tx the translation
operator and Ds is the dilatation operator, i.e.,

Txf(t) = f(t− x) and Dsf(t) = |s|−d/2f

(
t

s

)
(x, t ∈ Rd, 0 6= s ∈ R).

We suppose that g, γ ∈ L2(Rd) and∫ ∞

0

|ĝ(sω)||γ̂(sω)| ds
s

< ∞
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for almost every ω ∈ Rd with ‖ω‖2 = 1. If

Cg,γ :=

∫ ∞

0

ĝ(sω)γ̂(sω)
ds

s

is independent of ω, then the inversion formula holds for all f ∈ L2(Rd):∫ ∞

0

∫
Rd

Wgf(x, s)TxDsγ
dxds

sd+1
= Cg,γ · f,

where the equality is understood in a vector-valued weak sense. Consider the
operators

ρSf :=

∫ ∞

S

∫
Rd

Wgf(x, s)TxDsγ
dxds

sd+1

and

ρS,Tf :=

∫ T

S

∫
Rd

Wgf(x, s)TxDsγ
dxds

sd+1
,

where 0 < S < T < ∞. Let

C ′
g,γ := −

∫
Rd

(g∗ ∗ γ)(x) ln (|x|) dx,

where g∗(x) = g(−x) is the involution operator. In case of g and γ both have
radial log-majorants, then C ′

g,γ is finite (see Li and Sun [12]).

If g and γ are radial,
∫
Rd(g

∗ ∗ γ)(x) dx = 0, and both have a radial log-

majorant, then for any f ∈ Lp(Rd) (1 ≤ p < ∞)

lim
S→0+,T→∞

ρS,Tf(x) = lim
S→0+

ρSf(x) = C ′
g,γf(x)

at every Lebesgue point of f (see Li and Sun [12]). Moreover, if 1 < p < ∞,
then the convergence holds in the Lp(Rd)-norm for all f ∈ Lp(Rd). In case of
p = 1, then

lim
S→0+

ρSf = C ′
g,γf in the L1(Rd)-norm

for all f ∈ L1(Rd). Under some similar conditions Weisz [18] proved similar
results. We investigated the same questions on variable Lebesgue spaces and
we proved similar theorems (see [14]). Under some conditions Cg,γ = C ′

g,γ (see
Li and Sun [12]). Our main result in [14] is, that under some conditions we
trace back %Sf to a θ-summation:

Theorem 20. Suppose that g, γ have radial log-majorants and∫
Rd

(g∗ ∗ γ)(x) dx = 0.

If p(·) ∈ P(Rd) and p+ < ∞, then for all f ∈ Lp(·)(Rd)

%Sf = σθ
1/Sf (S > 0),

where θ is a suitable function, which has radial majorant.
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Using this result we proved the convergence of %Sf and %S,Tf at Lebesgue
points, almost everywhere and in the Lp(·)(Rd)-norm.

Theorem 21. Suppose that g, γ have radial log-majorants and∫
Rd

(g∗ ∗ γ)(x) dx = 0.

If p(·) ∈ P(Rd) and p+ < ∞, then for all Lebesgue points of f ∈ Lp(·)(Rd),

(1)
lim

S→0+
%Sf(x) = C ′

g,γ · f(x).

(2)
lim

S→0+,T→∞
%S,Tf(x) = C ′

g,γ · f(x).

Since almost every x ∈ Rd is a Lebesgue point of f ∈ Lp(·)(Rd) (p(·) ∈
P(Rd)), we get the almost everywhere convergence of %Sf and %S,Tf as a
corollary.

Theorem 22. Suppose that g, γ have radial log-majorants and∫
Rd

(g∗ ∗ γ)(x) dx = 0.

Let p(·) ∈ P(Rd), p+ < ∞, 1/p(x) + 1/q(x) = 1. If the maximal operator is
bounded on Lq(·)(Rd), then for all f ∈ Lp(·)(Rd),

(1)
lim

S→0+
%Sf = C ′

g,γ · f in the Lp(·)(Rd)-norm.

(2) If in addition p− > 1, then for all f ∈ Lp·(Rd)

lim
S→0+,T→∞

%S,Tf = C ′
g,γ · f in the Lp(·)(Rd)-norm.
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