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ON THE SOLVABILITY OF NON-HOMOGENEOUS
STURM-LIOUVILLE PROBLEM

ANTON I. POPOV

Abstract. Non-homogeneous Sturm-Liouville problems can arise when
trying to solve non-homogeneous partial differential equations or when con-
structing the asymptotic series for partial differential equation solution.
The present paper gives a condition of solvability for the non-homogeneous
Sturm-Liouville problem in general case for formal power series.

1. Introduction

Sturm-Liouville theory is a powerful instrument of the spectral theory. It
is well described in many books (see, e.g. [5, 9] and references therein). Nu-
merous physical problems (both quantum and classical) reduce to the Sturm-
Liouville problem. One meet this problem when dealing with quantum wells,
quantum graphs, wave guides, etc. [6, 7, 8, 11]. We mention also asymptoti-
cal approach in waves theory. It is applied when one has a small parameter
(coupling constant, perturbation parameter, etc.). Formally, an asymptotic
approach reduces to construction of the asymptotic expansion in powers of
this small parameter [1, 4, 10]. The series is constructed consequently, term
by term. To find a term, it is necessary to solve the non-homogeneous Sturm-
Liouville problem for formal power series with the right hand side depending
on the previous terms. Correspondingly, the question appears about the solu-
tion existence for this problem. One observe this situation, e.g. in asymptotic
expansions related with space-time ray method [3, 12]. The present paper
gives necessary and sufficient condition of solvability for the non-homogeneous
Sturm-Liouville problem in general case.
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2. The main theorem

Theorem. Let us consider homogeneous Sturm-Liouville problem

(1)



Ly = (p(x)y′)′ − q(x)y = 0,

ℓ0y = (α0y + α1y
′)

∣∣∣∣
x=x0

= 0,

ℓ1y = (β0y + β1y
′)

∣∣∣∣
x=x1

= 0.

(2) p(x) > 0, Im q = 0.

αj, βj, j = 0, 1 are real. p(x), q(x) are formal power series. Let there exist a
solution y0 ̸= 0 in the form of a formal power series. Then the necessary and
sufficient condition for the existence of the solution in the form of a formal
power series of non-homogeneous Sturm-Liouville problem

(3)


Ly = −F,

ℓ0y = A,

ℓ1y = B.

is as follows:

(4) p(x1)
B

β1
y0

∣∣∣∣
x=x1

− p(x0)
A

α1

y0

∣∣∣∣
x=x0

= −
∫ x1

x0

F (x)y0(x)dx.

Here F (x), A, B is formal power series.

Proof. Necessary condition.

(5) (p(x)y′)′ − q(x)y = −F.
We multiply (5) by y0 and integrate from x0 to x1:∫ x1

x0

((py′)′ − qy)y0dx =

∫ x1

x0

(py′)′y0dx−
∫ x1

x0

qyy0dx(6)

= py′y0

∣∣∣∣x1

x0

−
∫ x1

x0

py′y0dx−
∫ x1

x0

qyy0dx

= py′y0

∣∣∣∣x1

x0

− py′0y

∣∣∣∣x1

x0

+

∫ x1

x0

y(py′0)
′dx−

∫ x1

x0

qyy0dx.

Then, we substitute the boundary conditions into (6):

(7) y′0(x0) = − α

α1

y0(x0),

(8) y′(x0) =
A

α1

− α

α1

y(x0),
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(9) y′0(x1) = −β0
β1
y0(x1),

(10) y′(x1) =
B

β1
− β0
β1
y(x1).

Then∫ x1

x0

((py′)′ − qy)y0dx = p(x1)
B

β1
y0(x1)− p(x1)

β0
β1
yy0(x1)

−p(x0)
A

α1

y0(x0) + p(x0)
α0

α1

yy0(x0) + p(x1)
β0
β1
y0y(x1)(11)

−p(x0)
α0

α1

y0y(x0) +

∫ x1

x0

y((py′0)
′ − qy0)dx

= p(x1)
B

β1
y0

∣∣∣∣
x=x1

− p(x0)
A

α1

y0

∣∣∣∣
x=x0

.

From the other side,

(12)

∫ x1

x0

((py′)′ − qy)y0dx = −
∫ x1

x0

Fy0dx.

Equations (11) and (12) lead to (4), so we get necessary condition.
Sufficient condition.
Let us assume that ψ is a solution of the Cauchy problem:

(13)



(pψ′)′ − qψ = −F,

ψ

∣∣∣∣
x=x0

= A,

ψ′
∣∣∣∣
x=x0

= B.

The Cauchy problem always has a solution. Consequently, ψ exists. Let us
consider y = ψ − y0.

(14) (py′)′ − qy = (pψ′)′ − qψ − (py′0)
′ + qy0 = −F,

i.e. y satisfies the proper equation. Check the boundary conditions. We
multiply the first equation in (13) by y0 and integrate from x0 to x1:∫ x1

x0

((pψ′)′ − qψ)y0dx =

∫ x1

x0

(pψ′)′y0dx−
∫ x1

x0

qψy0dx

= pψ′y0

∣∣∣∣x1

x0

−
∫ x1

x0

pψ′y′0dx−
∫ x1

x0

qψy0dx

= p(ψ′y0 − y′0ψ)

∣∣∣∣x1

x0

+

∫ x1

x0

ψ((py′0)
′ − qy0)dx
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= p((y′ + y′0)y0 − y′0(y + y0))

∣∣∣∣x1

x0

= p(y′y0 − y′0y)

∣∣∣∣x1

x0

,(15)

so,

(16)

∫ x1

x0

((pψ′)′ − qψ)y0dx = p(x1)y
′(x1)y0(x1)− p(x1)y

′
0(x1)y(x1)−

− p(x0)y
′(x0)y0(x0) + p(x0)y

′
0(x0)y(x0).

We substitute (9)-(10) into (16) and come to the equation:

(17)

∫ x1

x0

((pψ′)′ − qψ)y0dx = p(x1)y
′(x1)y0(x1) + p(x1)

β0
β1
y0(x1)y(x1)−

− p(x0)y
′(x0)y0(x0)− p(x0)

α0

α1

y0(x0)y(x0).

On the other side,

(18)

∫ x1

x0

((py′)′ − qy)y0dx = −
∫ x1

x0

Fy0dx.

Let

(19) p(x1)
B

β1
y0

∣∣∣∣
x=x1

− p(x0)
A

α1

y0

∣∣∣∣
x=x0

= −
∫ x1

x0

F (x)y0(x)dx.

Then, relations (17)-(19) gives us:

(20) p(x1)
B

β1
y0

∣∣∣∣
x=x1

− p(x0)
A

α1

y0

∣∣∣∣
x=x0

= p(x1)y
′(x1)y0(x1)

+ p(x1)
β0
β1
y0(x1)y(x1)− p(x0)y

′(x0)y0(x0)− p(x0)
α0

α1

y0(x0)y(x0).

Condition (20) must be fulfilled for any x0 and x1. We fix x0, and will change
x1. Since the ratio of (20) must always be performed, then parts of the equa-
tion, corresponding to x0 and x1 should be independent of each other:

(21) −p(x0)
A

α1

y0(x0) = −p(x0)y′(x0)y0(x0)− p(x0)
α0

α1

y0(x0)y(x0).

(22) p(x1)
B

β1
y0(x1) = p(x1)y

′(x1)y0(x1) + p(x1)
β0
β1
y0(x1)y(x1).

y0(x1) ̸= 0. Proof by contradiction. If y0(x1) = 0 then from the boundary

condition ℓ1y = (β0y + β1y
′)

∣∣∣∣
x=x1

= 0 we get: y′0

∣∣∣∣
x=x1

= 0. Consequently, y0 is
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a solution of the Cauchy problem:

(p(x)y′0)
′ − q(x)y0 = 0,

y0

∣∣∣∣
x=x1

= 0,

y′0

∣∣∣∣
x=x1

= 0.

Therefore, y0 ≡ 0, which contradicts to the hypothesis of the theorem. Taking
into account that p > 0, β1 ̸= 0, we can divide the both sides of (22) by
p(x1)y0(x1) and multiply by β1. As a result, we obtain:

(23) B = β1y
′(x1) + β0y(x1),

i.e. we come to the necessary condition for x = x1.
Let’s go back to relation (21):

(24) −p(x0)
A

α1

y0(x0) = −p(x0)y′(x0)y0(x0)− p(x0)
α0

α1

y0(x0)y(x0).

Taking into account that p > 0, y0(x0) ̸= 0 ((proved in a similar way as for
y0(x1)), α1 ̸= 0, we come to the proper condition at x = x0:

(25) α1y
′(x0) + α0y(x0) = A.

This completes the proof. □
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