SEMI-SYMMETRY TYPE LP-SASAKIAN MANIFOLDS

KANAK KANTI BAISHYA AND PARTHA ROY CHOWDHURY

Abstract

Recently the present authors have introduced the notion of generalized quasi-conformal curvature tensor \mathcal{W}, which bridges Conformal curvature tensor, Concircular curvature tensor, Projective curvature tensor and Conharmonic curvature tensor. The present paper attempts to investigate the curvature conditions (like flatness, semi-symmetry type and Ricci semi-symmetry type) of LP-Sasakian manifold. Further, the paper seeks to table the nature of the Ricci tensor for respective semi-symmetry type curvature conditions.

1. Introduction

In tune with Yano and Sawaki [30], recently the present authors [1] have defined and studied generalized quasi-conformal curvature tensor \mathcal{W}, in the context of $N(k, \mu)$-contact metric manifold. The beauty of generalized quasiconformal curvature tensor \mathcal{W} lies in the fact that it has the flavour of Riemann curvature tensor R, conformal curvature tensor C [8], conharmonic curvature tensor \hat{C} [9], concircular curvature tensor E [29, p. 84] projective curvature tensor P [29, p. 84] and m-projective curvature tensor H [17], as special cases.

In 1989 K. Matsumoto [11] introduced the notion of Lorentzian para-Sasakian (LP-Sasakian for short) manifold. In 1992, Mihai and Rosca [12] defined the same notion independently. This type of manifold is also discussed in [22], [23], [24] and the references therein.

An LP-Sasakian manifold is said to be semi-symmetry type (respectively Ricci semi-symmetry type) if the generalized quasi-conformal curvature tensor \mathcal{W} (respectively Ricci tensor S) admits the condition
(1.1) $\omega(X, Y) \cdot \mathcal{W}=0$, (respectively $\mathcal{W}(X, Y) . S=0)$, for any X, Y on M,
where the dot means that $\omega(X, Y)$ acts on \mathcal{W} (respectively on S) as derivation. Here ω and \mathcal{W} stand for generalized quasi-conformal curvature tensor with the associated scalar triples $(\bar{a}, \bar{b}, \bar{c})$ and (a, b, c) respectively. In particular,

[^0]manifold satisfying the condition $R(X, Y) \cdot R=0$ (obtained from 1.1 by setting $\bar{a}=\bar{b}=\bar{c}=0=a=b=c$) is said to be semi-symmetric in the sense of Cartan ([2, p. 265], and named by N. S. Sinjukov [25]). A full classification of such space is given by Z. I. Szabó ([27], [26], [28]). This type of the manifolds have been studied by several authors such as Sekigawa and Tanno [21], Sekigawa and Takagi [20], Papantoniou [15], Perrone [16], Kowalski [10], Sekigawa [19] and the references therein.

Our work is structured as follows. The section 2 is a very brief account of LP-Sasakian manifolds. Definition and some basic results of the generalized quasi-conformal curvature tensor \mathcal{W} is discussed in section 3. LP-Sasakian manifold with vanishing generalized quasi-conformal curvature tensor is studied in section 4 and it is found that such a manifold M is either an Einstein space or an η-Einstein space or isometric to the Lorentz sphere $S^{2 n+1}(1)$. Furthermore, the nature of the Ricci tensors for the flatness of different curvature tensors are characterized. In section 5, we investigate LP-Sasakian manifold satisfying the condition $\omega(\xi, X) \cdot \mathcal{W}=0$. Based on this conditions and by taking into account the permutation of different curvature tensors, we obtained and tabled the expression of Ricci tensors for different semi-symmetry type conditions. The last section is devoted to study LP-Sasakian manifold admitting the condition $\mathcal{W} \cdot S=0$. Among others an equivalent conditions that (a) M is an Einstein space, (b) M is Ricci symmetric i.e., $\nabla S=0$, (c) $P(\xi, X) \cdot S=0$ (or $E(\xi, X) \cdot S=0$) for all $X \in \chi(M)$ is brought out.

2. LP-SASAKIAN MANIFOLDS

An $(2 n+1)$-dimensional differentiable manifold M is said to be an LPSasakian manifold ([4], [11]) if it admits a $(1,1)$ tensor field ϕ, a unit timelike contravariant vector field ξ, a 1-form η and a Lorentzian metric g which satisfy

$$
\begin{gather*}
\eta(\xi)=-1, \quad g(X, \xi)=\eta(X), \quad \phi^{2} X=X+\eta(X) \xi \tag{2.1}\\
g(\phi X, \phi Y)=g(X, Y)+\eta(X) \eta(Y), \quad \nabla_{X} \xi=\phi X \tag{2.2}\\
\left(\nabla_{X} \phi\right)(Y)=g(X, Y) \xi+\eta(Y) X+2 \eta(X) \eta(Y) \xi \tag{2.3}
\end{gather*}
$$

where ∇ denotes the operator of covariant differentiation with respect to the Lorentzian metric g. It can be easily seen that in an LP-Sasakian manifold, the following relations hold :

$$
\begin{equation*}
\phi \xi=0, \quad \eta(\phi X)=0, \quad \operatorname{Rank} \phi=2 n \tag{2.4}
\end{equation*}
$$

Again, if we put

$$
\Omega(X, Y)=g(X, \phi Y)
$$

for any vector fields X, Y then the tensor field $\Omega(X, Y)$ is a symmetric $(0,2)$ tensor field [12]. Also, since the vector field η is closed in an LP-Sasakian manifold, we have ([11], [12])

$$
\begin{equation*}
\left(\nabla_{X} \eta\right)(Y)=\Omega(X, Y), \quad \Omega(X, \xi)=0 \tag{2.5}
\end{equation*}
$$

for any vector fields X and Y.
Let M be an $(2 n+1)$-dimensional LP-Sasakian manifold with structure (ϕ, ξ, η, g). Then the following relations hold ([11], [12]):

$$
\begin{equation*}
g(R(X, Y) Z, \xi)=\eta(R(X, Y) Z)=g(Y, Z) \eta(X)-g(X, Z) \eta(Y) \tag{2.6}
\end{equation*}
$$

$$
\begin{equation*}
R(\xi, X) Y=g(X, Y) \xi-\eta(Y) X \tag{2.7}
\end{equation*}
$$

$$
\begin{equation*}
R(X, Y) \xi=\eta(Y) X-\eta(X) Y \tag{2.8}
\end{equation*}
$$

$$
\begin{equation*}
S(X, \xi)=2 n \eta(X) \tag{2.9}
\end{equation*}
$$

for any vector fields X, Y, Z where R is the Riemannian curvature tensor of the manifold.

3. The generalized quasi conformal curvature tensor

The generalized quasi-conformal curvature tensor is defined as

$$
\begin{align*}
& \mathcal{W}(X, Y) Z=\frac{2 n-1}{2 n+1}[(1+2 n a-b)-\{1+2 n(a+b)\} c] C(X, Y) Z \tag{3.1}\\
& +[1-b+2 n a] E(X, Y) Z+2 n(b-a) P(X, Y) Z \\
& \quad+\frac{2 n-1}{2 n+1}(c-1)\{1+2 n(a+b)\} \hat{C}(X, Y) Z
\end{align*}
$$

for all X, Y and $Z \in \chi(M)$, the set of all vector field of the manifold M, where a, b and c are real constants. And C, E, P and \hat{C} stand for Conformal, Concircular, Projective and Conharmonic curvature tensor respectively. These curvature tensor are defined as follows

$$
\begin{align*}
& C(X, Y) Z=R(X, Y) Z \tag{3.2}\\
& -\frac{1}{2 n-1}[S(Y, Z) X-S(X, Z) Y+g(Y, Z) Q X-g(X, Z) Q Y] \\
& \quad+\frac{r}{2 n(2 n-1)}[g(Y, Z) X-g(X, Z) Y] \\
& E(X, Y) Z=R(X, Y) Z-\frac{r}{2 n(2 n+1)}[g(Y, Z) X-g(X, Z) Y] \tag{3.3}\\
& \quad P(X, Y) Z=R(X, Y) Z-\frac{1}{2 n}[S(Y, Z) X-S(X, Z) Y] \tag{3.4}\\
& \begin{array}{r}
\hat{C}(X, Y) Z=R(X, Y) Z-\frac{1}{2 n-1}[S(Y, Z) X-S(X, Z) Y \\
\\
\quad+g(Y, Z) Q X-g(X, Z) Q Y]
\end{array} \tag{3.5}
\end{align*}
$$

for all $X, Y \& Z \in \chi(M)$, where R, S, Q and r being Christoffel Riemannian curvature tensor, Ricci tensor, Ricci operator and scalar curvature respectively.

In particular, the generalized quasi-conformal curvature tensor \mathcal{W} reduced to
(1) Riemann curvature tensor R, if $a=b=c=0$,
(2) conformal curvature tensor C, if $a=b=-\frac{1}{2 n-1}, c=1$,
(3) conharmonic curvature tensor \hat{C}, if $a=b=-\frac{1}{2 n-1}, c=0$,
(4) concircular curvature tensor E, if $a=b=0$ and $c=1$,
(5) projective curvature tensor P, if $a=-\frac{1}{2 n}, b=0, c=0$ and
(6) m-projective curvature tensor H, if $a=b=-\frac{1}{4 n}, c=0$.

The m-projective curvature tensor is introduced by G. P. Pokhariyal and R. S. Mishra [17]. Which is defined as follows

$$
\begin{align*}
H(X, Y) Z=R(X, Y)-\frac{1}{4 n}[S(Y, Z) X & -S(X, Z) Y \tag{3.6}\\
& +g(Y, Z) Q X-g(X, Z) Q Y]
\end{align*}
$$

Using (3.2), (3.3), (3.4) and (3.5) in (3.1), the generalized quasi-conformal curvature tensor \mathcal{W} becomes

$$
\begin{align*}
& \mathcal{W}(X, Y) Z=R(X, Y) Z+a[S(Y, Z) X-S(X, Z) Y] \tag{3.7}\\
&+ b[g(Y, Z) Q X-g(X, Z) Q Y] \\
&\left.\left.\quad-\frac{c r}{2 n+1}\left(\frac{1}{2 n}+a+b\right)\right] g(Y, Z) X-g(X, Z) Y\right] .
\end{align*}
$$

Note that our generalized quasi-conformal curvature tensor \mathcal{W} is not a generalized curvature tensor (see, [13], [6], [5], [7]), as it does not satisfy the condition $\mathcal{W}\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=\mathcal{W}\left(X_{3}, X_{4}, X_{1}, X_{2}\right)$, where

$$
\mathcal{W}\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=g\left(\mathcal{W}\left(X_{1}, X_{2}\right) X_{3}, X_{4}\right),
$$

for all $X_{1}, X_{2}, X_{3}, X_{4}$. Moreover our \mathcal{W} is not a proper generalized curvature tensor [13], as it does not satisfy the second Bianchi identity

$$
\begin{equation*}
\left(\nabla_{X_{1}} \mathcal{W}\right)\left(X_{2}, X_{3}\right) X_{4}+\left(\nabla_{X_{2}} \mathcal{W}\right)\left(X_{3}, X_{1}\right) X_{4}+\left(\nabla_{X_{3}} \mathcal{W}\right)\left(X_{1}, X_{2}\right) X_{4}=0 \tag{3.8}
\end{equation*}
$$

4. LP-SASAKiAn manifolds with flat generalized QUASI-CONFORMAL CURVATURE TENSOR

Definition 4.1. An LP-Sasakian manifold $M^{2 n+1}(\phi, \xi, \eta, g)$ is said to be η Einstein, if its Ricci tensor S of the metric g satisfies

$$
S(X, Y)=\alpha g(X, Y)+\beta \eta(X) \eta(Y)
$$

for some real constant α and β.

Such notion was first introduced and studied by Okumura [14] and named by Sasaki [18] in his lecture notes 1965. In particular, if $\beta=0$, we say that the manifold is Einstein.

Let the manifold be generalized quasi-conformally flat. Therefore, using (2.7) and (2.9) in (3.7) we can easily bring out after a straightforward calculation that

$$
\begin{equation*}
S(X, Z)=\kappa g(X, Z)+(\kappa-2 n) \eta(X) \eta(Z), \tag{4.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\kappa=-\frac{1}{a}\left\{1+2 n b-\frac{c r}{2 n+1}\left(\frac{1}{2 n}+a+b\right)\right\} . \tag{4.2}
\end{equation*}
$$

Remark 4.2. The Ricci tensor S in the equation (4.1) can also be written as

$$
\begin{equation*}
S(X, Z)=\kappa g(X, Z)+(\kappa-2 n) \eta(X) \eta(Z), \tag{4.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\kappa=-\frac{1}{b}\left\{1+2 n a-\frac{c r}{2 n+1}\left(\frac{1}{2 n}+a+b\right)\right\} . \tag{4.4}
\end{equation*}
$$

Thus, we see that LP-Sasakian manifold with $\mathcal{W}(X, Y) Z=0$ is an η-Einstein space provided $a \neq 0$ (or $b \neq 0$).

Again, an LP-Sasakian manifold with $R=0$ or $E=0$ (i.e., for the case $a=0$ and $b=0$), one can easily determine that such manifold is an Einstein. This leads to the followings:

Theorem 4.3. Let $M^{2 n+1}(\phi, \xi, \eta, g)$, $n>1$; be an LP-Sasakian manifold with vanishing generalized quasi-conformal curvature tensor. Then M is either an Einstein space or an η-Einstein space or isometric to the Lorentz sphere $S^{2 n+1}(1)$.

Again, from (4.1), one can easily determine the following theorem-
Theorem 4.4. Every LP-Sasakian manifold $\left(M^{2 n+1}, g\right), n>1$ with vanishing generalized quasi-conformal curvature tensor is necessarily η-parallel.

Further, if we choose $a=b$, then from (4.1) we can state the following.
Theorem 4.5. A generalized quasi-conformally flat LP-Sasakian manifold $\left(M^{2 n+1}, g\right),(n>1)$ is a manifold of quasi-constant curvature with associated scalars

$$
A=-\left(1+\frac{b}{a}\right) \kappa a+\frac{c r}{2 n+1}\left(\frac{1}{2 n}+a+b\right), B=a(\kappa+2 n),
$$

provided that $a \neq 0$.
The notion of a manifold of quasi-constant curvature was first introduced by Chen and Yano [3] for a Riemannian geometry.

5. LP-SASAKIAN MANIFOLDS WITH SEMI-SYMMETRY TYPE CURVATURE CONDITION

Definition 5.1. A $(2 n+1)$-dimensional ($n>1$) LP-Sasakian manifold is said to be semi-symmetry type if the condition $\omega(X, Y) \cdot \mathcal{W}=0$ holds, for any vector fields X, Y on the manifold and $\omega(X, Y)$ acts on \mathcal{W} as derivation, where ω and \mathcal{W} stand for generalized quasi-conformal curvature tensor with the associated scalar triples $(\bar{a}, \bar{b}, \bar{c})$ and (a, b, c) respectively.

Now, let us consider a $(2 n+1)$-dimensional LP-Sasakian manifold M, satisfying the condition

$$
\begin{equation*}
(\omega(\xi, X) \cdot \mathcal{W})(Y, Z) U=0 \tag{5.1}
\end{equation*}
$$

which is equivalent to

$$
\begin{align*}
& g(\omega(\xi, X) \mathcal{W}(Y, Z) U, \xi)-g(\mathcal{W}(\omega(\xi, X) Y, Z) U, \xi) \tag{5.2}\\
& \quad-g(\mathcal{W}(Y, \omega(\xi, X) Z) U, \xi)-g(\mathcal{W}(Y, Z) \omega(\xi, X) U, \xi)=0 .
\end{align*}
$$

Putting $X=Y=\left\{e_{i}\right\}$ in (5.2) where $\left\{e_{1}, e_{2}, e_{3}, \ldots, e_{2 n}, e_{2 n+1}=\xi\right\}$ is an orthonormal basis of the tangent space at each point of the manifold M and then taking the summation over $i, 1 \leq i \leq 2 n+1$, we get

$$
\begin{align*}
& \sum_{i=1}^{2 n+1}\left[g\left(\omega\left(\xi, e_{i}\right) \mathcal{W}\left(e_{i}, Z\right) U, \xi\right)-g\left(\mathcal{W}\left(\omega\left(\xi, e_{i}\right) e_{i}, Z\right) U, \xi\right)\right. \tag{5.3}\\
&\left.-g\left(\mathcal{W}\left(e_{i}, \omega\left(\xi, e_{i}\right) Z\right) U, \xi\right)-g\left(\mathcal{W}\left(e_{i}, Z\right) \omega\left(\xi, e_{i}\right) U, \xi\right)\right]=0
\end{align*}
$$

From the equation (3.7), we can easily estimate the followings

$$
\begin{align*}
\eta(\mathcal{W}(\xi, U) Z) & =\left[\frac{c r}{2 n+1}\left(\frac{1}{2 n}+a+b\right)-2 n a-2 n b-1\right] \eta(Z) \eta(U) \tag{5.4}\\
& +\left[\frac{c r}{2 n+1}\left(\frac{1}{2 n}+a+b\right)-2 n b-1\right] g(Z, U)-a S(Z, U)
\end{align*}
$$

$$
\begin{align*}
\sum_{i=1}^{2 n+1} \tilde{\mathcal{W}}\left(e_{i}, Z, U, e_{i}\right)=(1-b & +2 n a) S(Z, U) \tag{5.5}\\
& +\left\{b r-\frac{2 n c r}{2 n+1}\left(\frac{1}{2 n}+a+b\right)\right\} g(Z, U)
\end{align*}
$$

$$
\begin{align*}
\sum_{i=1}^{2 n+1} \eta\left(\mathcal{W}\left(e_{i}, Z\right) e_{i}\right)=-2 n(1-a & +2 n b) \eta(Z) \tag{5.6}\\
& -\left\{a r-\frac{2 n c r}{2 n+1}\left(\frac{1}{2 n}+a+b\right)\right\} \eta(Z)
\end{align*}
$$

$$
\begin{align*}
& \text { (5.7) } \sum_{i=1}^{2 n+1} S\left(\mathcal{W}\left(e_{i}, Z\right) U, e_{i}\right)=\left\{a r+\frac{c r}{2 n+1}\left(\frac{1}{2 n}+a+b\right)\right\} S(Z, U) \tag{5.7}\\
& -(a+b-1) S^{2}(Z, U)-\frac{c r^{2}}{2 n+1}\left(\frac{1}{2 n}+a+b\right) g(Z, U)+b S\left(Q e_{i}, e_{i}\right) g(Z, U)
\end{align*}
$$

$$
\begin{align*}
& \sum_{i=1}^{2 n+1} \eta\left(e_{i}\right) \eta\left(\mathcal{W}\left(Q e_{i}, Z\right) U\right) \tag{5.8}\\
& =-2 n\left[1+2 n b-\frac{c r}{2 n+1}\left(\frac{1}{2 n}+a+b\right)\right] g(Z, U)-2 n a S(Z, U) \\
& \quad-2 n\left[1+2 n(a+b)-\frac{c r}{2 n+1}\left(\frac{1}{2 n}+a+b\right)\right] \eta(Z) \eta(U)
\end{align*}
$$

and

$$
\begin{align*}
& \sum_{i=1}^{2 n+1} S\left(e_{i}, Z\right) \eta\left(\mathcal{W}\left(e_{i}, \xi\right) U\right) \tag{5.9}\\
&=2 n {\left[1+2 n(a+b)-\frac{c r}{2 n+1}\left(\frac{1}{2 n}+a+b\right)\right] \eta(Z) \eta(U) } \\
&+\left\{1+2 n b-\frac{c r}{2 n+1}\left(\frac{1}{2 n}+a+b\right)\right\} S(Z, U)+a S^{2}(Z, U)
\end{align*}
$$

Now,
(5.10)

$$
\begin{aligned}
& \sum_{i=1}^{2 n+1} g\left(\omega\left(\xi, e_{i}\right) \mathcal{W}\left(e_{i}, Z\right) U, \xi\right) \\
& =\left[\frac{\bar{c} r}{2 n+1}\left(\frac{1}{2 n}+\bar{a}+\bar{b}\right)-2 n \bar{b}-1\right]\left\{\overline{\mathcal{W}}\left(e_{i}, Z, U, e_{i}\right)+\eta\left(\mathcal{W}\left(e_{i}, Z\right) U\right) \eta\left(e_{i}\right)\right\} \\
& \quad-\bar{a}\left[S\left(\mathcal{W}\left(e_{i}, Z\right) U, e_{i}\right)+2 n \eta\left(\mathcal{W}\left(e_{i}, Z\right) U\right) \eta\left(e_{i}\right)\right] \\
& =\left[\frac{\bar{c} r}{2 n+1}\left(\frac{1}{2 n}+\bar{a}+\bar{b}\right)-2 n \bar{b}-1\right] \overline{\mathcal{W}}\left(e_{i}, Z, U, e_{i}\right)-\bar{a} S\left(\mathcal{W}\left(e_{i}, Z\right) U, e_{i}\right) \\
& \quad+\left[\frac{\bar{c} r}{2 n+1}\left(\frac{1}{2 n}+\bar{a}+\bar{b}\right)-2 n \bar{b}-1-2 n \bar{a}\right] \eta(\mathcal{W}(\xi, U) Z) .
\end{aligned}
$$

In consequence of (5.5) and (5.7), the equation (5.10) becomes

$$
\begin{align*}
& \sum_{i=1}^{2 n+1} g\left(\omega\left(\xi, e_{i}\right) \mathcal{W}\left(e_{i}, Z\right) U, \xi\right)= \tag{5.11}\\
& {\left[\left\{\frac{\bar{c} r}{2 n+1}\left(\frac{1}{2 n}+\bar{a}+\bar{b}\right)-2 n \bar{b}-1\right\}(1+2 n a-b)\right.}
\end{align*}
$$

$$
\begin{aligned}
& \left.-\bar{a}\left\{a r+\frac{c r}{2 n+1}\left(\frac{1}{2 n}+a+b\right)\right\}\right] S(Z, U)+\bar{a}(a+b-1) S^{2}(Z, U) \\
& +\left\{\frac{\bar{c} r}{2 n+1}\left(\frac{1}{2 n}+\bar{a}+\bar{b}\right)-2 n(\bar{a}+\bar{b})-1\right\} \eta(\mathcal{W}(\xi, U) Z) \\
& +\left[\left\{\frac{\bar{c} r}{2 n+1}\left(\frac{1}{2 n}+\bar{a}+\bar{b}\right)-2 n \bar{b}-1\right\}\left\{b r-\frac{2 n c r}{2 n+1}\left(\frac{1}{2 n}+a+b\right)\right\}\right. \\
& \left.-\bar{a}\left\{b\|Q\|^{2}-\frac{c r^{2}}{2 n+1}\left(\frac{1}{2 n}+a+b\right)\right\}\right] g(Z, U)
\end{aligned}
$$

Again,

$$
\begin{array}{rl}
\sum_{i=1}^{2 n+1} & g\left(\mathcal{W}\left(\omega\left(\xi, e_{i}\right) e_{i}, Z\right) U, \xi\right) \tag{5.12}\\
= & {\left[2 n\left\{1+2 n \bar{b}-\frac{\bar{c} r}{2 n+1}\left(\frac{1}{2 n}+\bar{a}+\bar{b}\right)\right\}+\bar{a} r+2 n \bar{b}-2 n \bar{a}\right] \eta(\mathcal{W}(\xi, U) Z)} \\
& +2 n \bar{b}\left[1+2 n b-\frac{c r}{2 n+1}\left(\frac{1}{2 n}+a+b\right)\right] g(Z, U)+2 n a \bar{b} S(Z, U) \\
& +2 n \bar{b}\left[1+2 n(a+b)-\frac{c r}{2 n+1}\left(\frac{1}{2 n}+a+b\right)\right] \eta(Z) \eta(U)
\end{array}
$$

By virtue of (5.9), we have

$$
\begin{align*}
& \sum_{i=1}^{2 n+1} g\left(\mathcal{W}\left(e_{i}, \omega\left(\xi, e_{i}\right) Z\right) U, \xi\right) \tag{5.13}\\
& \quad=\left\{\frac{\bar{c} r}{2 n+1}\left(\frac{1}{2 n}+\bar{a}+\bar{b}\right)-2 n \bar{b}-1\right\} \eta(\mathcal{W}(\xi, U) Z) \\
& \quad+2 n \bar{a}\left[1+2 n(a+b)-\frac{c r}{2 n+1}\left(\frac{1}{2 n}+a+b\right)\right] \eta(Z) \eta(U) \\
& \quad+\bar{a}\left\{1+2 n b-\frac{c r}{2 n+1}\left(\frac{1}{2 n}+a+b\right)\right\} S(Z, U)+a \bar{a} S^{2}(Z, U) .
\end{align*}
$$

Finally,

$$
\begin{array}{rl}
\sum_{i=1}^{2 n+1} & g\left(\mathcal{W}\left(e_{i}, Z\right) \omega\left(\xi, e_{i}\right) U, \xi\right) \tag{5.14}\\
= & \left\{1+2 n \bar{b}-\frac{\bar{c} r}{2 n+1}\left(\frac{1}{2 n}+\bar{a}+\bar{b}\right)\right\} g\left(e_{i}, U\right) \eta\left(\mathcal{W}\left(e_{i}, Z\right) \xi\right) \\
& +\left\{\frac{\bar{c} r}{2 n+1}\left(\frac{1}{2 n}+\bar{a}+\bar{b}\right)-2 n \bar{a}-1\right\} \eta\left(\mathcal{W}\left(e_{i}, Z\right) e_{i}\right) \eta(U) \\
& +\bar{a} S\left(e_{i}, U\right) \eta\left(\mathcal{W}\left(e_{i}, Z\right) \xi\right)
\end{array}
$$

$$
=\left\{\frac{\bar{c} r}{2 n+1}\left(\frac{1}{2 n}+\bar{a}+\bar{b}\right)-2 n \bar{a}-1\right\} \eta\left(\mathcal{W}\left(e_{i}, Z\right) e_{i}\right) \eta(U) .
$$

In view of (5.6), the equation (5.14) turns into

$$
\begin{align*}
& \sum_{i=1}^{2 n+1} g\left(\mathcal{W}\left(e_{i}, Z\right) \omega\left(\xi, e_{i}\right) U, \xi\right) \tag{5.15}\\
& =-\left\{\frac { \overline { c } r } { 2 n + 1 } \left(\frac{1}{2 n}+\right.\right. \\
& \bar{a}+\bar{b})-2 n \bar{a}-1\}[2 n(1-a+2 n b) \\
&
\end{align*}
$$

By virtue of (5.4), (5.11), (5.12), (5.13) and (5.15), we obtain from (5.3) that

$$
\begin{align*}
& {\left[\left\{\frac{\bar{c} r}{2 n+1}\left(\frac{1}{2 n}+\bar{a}+\bar{b}\right)-2 n \bar{b}-1\right\}(1+2 n a-b)\right.} \tag{5.16}\\
& -\bar{a}\left\{a r+\frac{c r}{2 n+1}\left(\frac{1}{2 n}+a+b\right)\right\}+a \bar{a} r \\
& +2 n a\left\{1+2 n \bar{b}-\frac{\bar{c} r}{2 n+1}\left(\frac{1}{2 n}+\bar{a}+\bar{b}\right)\right\} \\
& \left.-\bar{a}\left\{1+2 n b-\frac{c r}{2 n+1}\left(\frac{1}{2 n}+a+b\right)\right\}\right] S(Z, U) \\
& + \\
& +\left\{2 n(1-a+2 n b)+a r-\frac{2 n c r}{2 n+1}\left(\frac{1}{2 n}+a+b\right)\right\} \times \\
& +\left\{\frac{\bar{c} r}{2 n+1}\left(\frac{1}{2 n}+\bar{a}+\bar{b}\right)-2 n \bar{a}-1\right\} \\
& + \\
& -2 n(\bar{a}+\bar{b})\left\{1+2 n(a+b)-\frac{c r}{2 n+1}\left(\frac{1}{2 n}+a+b\right)-2 n(a+b)-1\right\} \times \\
& \\
& \times\left\{2 n\left\{-\bar{b}+\frac{\bar{c} r}{2 n+1}\left(\frac{1}{2 n}+\bar{a}+\bar{b}\right)-1-2 n \bar{b}\right\}-\bar{a} r\right\} \\
& + \\
& \left.+\left\{\frac{\bar{c} r}{2 n+1}\left(\frac{1}{2 n}+\bar{a}+\bar{b}\right)-2 n \bar{b}-1\right\}\left\{b r-\frac{2 n c r}{2 n+1}\left(\frac{1}{2 n}+a+b\right)\right\}\right] \eta(U) \eta(Z) \\
& + \\
& \quad\left\{\frac{c r}{2 n+1}\left(\frac{1}{2 n}+a+b\right)-2 n b-1\right\} \times \\
& \\
& \quad \times\left\{-2 n\left\{1+2 n \bar{b}-\frac{\bar{c} r}{2 n+1}\left(\frac{1}{2 n}+\bar{a}+\bar{b}\right)\right\}-\bar{a} r-2 n \bar{b}\right\} \\
& - \\
& \hline
\end{align*}
$$

$$
\begin{aligned}
& \left.-2 n \bar{b}\left\{1+2 n b-\frac{c r}{2 n+1}\left(\frac{1}{2 n}+a+b\right)\right\}\right] g(Z, U) \\
& +\bar{a}(b-1) S^{2}(Z, U)=0
\end{aligned}
$$

From (5.16), one can easily bring out the following.
Theorem 5.2. Let $\left(M^{2 n+1}, g\right), n>1$ be an LP-Sasakian manifold. Then the nature of Ricci tensor for respective semi-symmetry type curvature conditions are given in Table 1.

6. LP-SASAKIAN MANIFOLD SATISFYing the CONDItion $\mathcal{W} \cdot S=0$

Let $M^{2 n+1}(\phi, \xi, \eta, g)(n>1)$, be an LP-Sasakian manifold, satisfying the condition

$$
\begin{equation*}
\mathcal{W}(\xi, Y) \cdot S=0 \tag{6.1}
\end{equation*}
$$

i.e.

$$
\mathcal{W}(\xi, Y) S(Z, U)-S(\mathcal{W}(\xi, Y) Z, U)-S(Z, \mathcal{W}(\xi, Y) U)=0
$$

i.e.

$$
\begin{equation*}
S(\mathcal{W}(\xi, Y) Z, U)+S(Z, \mathcal{W}(\xi, Y) U)=0 \tag{6.2}
\end{equation*}
$$

Taking $U=\xi$ in (6.2) and using (2.9), we get

$$
\begin{equation*}
2 n \eta(\mathcal{W}(\xi, Y) Z)+S(Z, \mathcal{W}(\xi, Y) \xi)=0 \tag{6.3}
\end{equation*}
$$

In view of (2.7), (2.9) and (3.7), we have

$$
\begin{align*}
& \eta(\mathcal{W}(\xi, Y) Z)=\left[\frac{c r}{2 n+1}\left(\frac{1}{2 n}+a+b\right)-2 n a-2 n b-1\right] \eta(Z) \eta(Y) \tag{6.4}\\
& +\left[\frac{c r}{2 n+1}\left(\frac{1}{2 n}+a+b\right)-2 n b-1\right] g(Z, Y)-a S(Z, Y) \\
& S(Z, \mathcal{W}(\xi, Y) \xi)=\left[1+2 n a-\frac{c r}{2 n+1}\left(\frac{1}{2 n}+a+b\right)\right] S(Y, Z) \tag{6.5}\\
& +2 n\left[1+2 n(a+b)-\frac{c r}{2 n+1}\left(\frac{1}{2 n}+a+b\right)\right] \eta(Y) \eta(Z)+b S^{2}(Y, Z) .
\end{align*}
$$

By virtue of(6.4) and (6.5), the equation (6.3) yields

$$
\begin{align*}
S^{2}(Y, Z)=\frac{2 n}{b}[1+2 n b- & \left.\frac{c r}{2 n+1}\left(\frac{1}{2 n}+a+b\right)\right] g(Y, Z) \tag{6.6}\\
& +\frac{1}{b}\left[\frac{c r}{2 n+1}\left(\frac{1}{2 n}+a+b\right)-1\right] S(Y, Z)
\end{align*}
$$

for all Y, Z where $b \neq 0$, provided $S^{2}(X, Y)=S(Q X, Y)$.
This leads to Theorem 6.1.

Curvature condition	Expression for Ricci tensor
$\begin{gathered} \hline R(\xi, X) \cdot R=0 \quad \text { Obtain } \\ \text { by } \bar{a}=\bar{b}=\bar{c}=0 \\ \& \quad a=b=c=0) \end{gathered}$	$S=2 n g,$ an Einstein space.
$\begin{gathered} R(\xi, X) \cdot C=0 \quad \text { (Obtain } \\ b y \bar{a}=\bar{b}=\bar{c}=0, \\ \left.a=b=-\frac{1}{2 n-1} \quad \& \quad c=1\right) \end{gathered}$	$\begin{gathered} S=\left(\frac{r}{2 n}-1\right) g+\left(\frac{r}{2 n}-2 n-1\right) \eta \otimes \eta, \\ \text { an } \eta-\text { Einstein space. } \end{gathered}$
$\begin{gathered} R(\xi, X) \cdot \hat{C}=0 \quad \text { (Obtain } \\ b y \bar{a}=\bar{b}=\bar{c}=0, \\ \left.a=b=-\frac{1}{2 n-1} \quad \& \quad c=0\right) \end{gathered}$	$\begin{gathered} S=\left(\frac{r}{2 n}-1\right) g+\left(\frac{r}{2 n}-2 n-1\right) \eta \otimes \eta, \\ \text { an } \eta-\text { Einstein space. } \end{gathered}$
$\begin{gathered} \hline \hline R(\xi, X) \cdot E=0 \quad \text { Obtain } \\ b y \bar{a}=\bar{b}=\bar{c}=0, \\ a=b=0 \quad \& \quad c=1) \end{gathered}$	$S=2 n g,$ an Einstein space.
$\begin{gathered} R(\xi, X) \cdot P=0(\text { Obtain } \\ \quad b y \bar{a}=\bar{b}=\bar{c}=0, \\ \left.a=-\frac{1}{2 n} \& b=c=0\right) \end{gathered}$	$\begin{gathered} S=2 n g+\left(\frac{r}{2 n}-2 n-1\right) \eta \otimes \eta, \\ \quad \text { an } \eta-\text { Einstein space. } \end{gathered}$
$\begin{gathered} R(\xi, X) \cdot H=0 \quad \text { Obtain } \\ \quad b y \bar{a}=\bar{b}=\bar{c}=0, \\ \left.a=b=-\frac{1}{4 n} \quad \& \quad c=0\right) \\ \hline \hline \end{gathered}$	$\begin{gathered} S=\left(\frac{r+4 n^{2}}{4 n+1}\right) g+\left\{\frac{r-2 n(2 n+1)}{4 n+1}\right\} \eta \otimes \eta, \\ \text { an } \eta-\text { Einstein space. } \end{gathered}$
$\begin{gathered} \hline \hline E(\xi, X) \cdot R=0(\text { Obtain } \\ b y \bar{a}=\bar{b}=0, \bar{c}=1, \\ \& \quad a=b=c=0) \end{gathered}$	$S=2 n g,$ an Einstein space.
$\begin{gathered} \hline \hline(\xi, X) \cdot C=0 \quad \text { Obtain } \\ b y \bar{a}=0=\bar{b}, \bar{c}=1 \\ \left.a=b=-\frac{1}{2 n-1}, \quad c=1\right) \end{gathered}$	$\begin{gathered} S=\left(\frac{r}{2 n}-1\right) g+\left(\frac{r}{2 n}-2 n-1\right) \eta \otimes \eta, \\ \text { an } \eta-\text { Einstein space. } \end{gathered}$
$\begin{gathered} E(\xi, X) \cdot \hat{C}=0 \quad(\text { Obtain } \\ b y \bar{a}=0=\bar{b}, \bar{c}=1 \\ \left.a=b=-\frac{1}{2 n-1} \quad \& \quad c=1\right) \end{gathered}$	$\begin{gathered} S=\left(\frac{r}{2 n}-1\right) g+\left(\frac{r}{2 n}-2 n-1\right) \eta \otimes \eta, \\ \text { an Einstein space } \end{gathered}$
$\begin{gathered} E(\xi, X) \cdot E=0 \quad \text { (Obtain } \\ b y \bar{a}=0=\bar{b}, \bar{c}=1 \\ a=b=0 \quad \& \quad c=1) \end{gathered}$	$S=2 n g,$ an Einstein space.
$\begin{gathered} E(\xi, X) \cdot P=0 \quad(\text { Obtain } \\ b y \bar{a}=0=\bar{b}, \bar{c}=1 \\ \left.a=-\frac{1}{2 n}, b=0 \quad \& \quad c=1\right) \end{gathered}$	$\begin{gathered} S=2 n g+\left(\frac{r}{2 n}-2 n-1\right) \eta \otimes \eta, \\ \text { an } \eta-\text { Einstein space. } \end{gathered}$

TABLE 1

Curvature condition	Expression for Ricci tensor		
$\begin{gathered} \hline \hline E(\xi, X) \cdot H=0 \quad(\text { Obtain } \\ b y \bar{a}=0=\bar{b}, \bar{c}=1 \\ \left.a=b=-\frac{1}{4 n} \quad \& \quad c=1\right) \end{gathered}$	$\begin{gathered} S=\left(\frac{r+4 n^{2}}{4 n+1}\right) g+\left\{\frac{r-2 n(2 n+1)}{4 n+1}\right\} \eta \otimes \eta, \\ \text { an } \eta-\text { Einstein space. } \end{gathered}$		
$\hat{C}(\xi, X) \cdot R=0$ (Obtain by $\bar{a}=\bar{b}=-\frac{1}{2 n-1}, \quad \bar{c}=0$ \& $a=b=c=0$)	$\begin{aligned} & 2 S=(r+2 n) g+(r-2 n) \eta \otimes \eta \\ & -S^{2} . \end{aligned}$		
$\begin{aligned} & \hat{C}(\xi, X) \cdot \hat{C}=0 \quad(\text { Obtain } \\ & \text { by } \bar{a}=\bar{b}=-\frac{1}{2 n-1}, \quad \bar{c}=0, \\ & \left.a=b=-\frac{1}{2 n-1} \quad \& \quad c=0\right) \end{aligned}$	$\begin{aligned} & (2 n-1) S=\left(\\|Q\\|^{2}-2 n\right) g \\ & -2 n r \eta \otimes \eta+2 n S^{2} . \end{aligned}$		
$\begin{aligned} & \hat{C}(\xi, X) \cdot C=0 \quad(\text { Obtain } \\ & \text { by } \bar{a}=\bar{b}=-\frac{1}{2 n-1}, \quad \bar{c}=0, \\ & \left.a=b=-\frac{1}{2 n-1} \quad \& \quad c=1\right) \end{aligned}$	$\begin{aligned} & (2 n-1) S=\left(\\|Q\\|^{2}-2 n\right) g \\ & +\left\{\frac{r^{2}}{2 n}-(2 n+1) r\right\} \eta \otimes \eta-2 n S^{2} \end{aligned}$		
$\hat{C}(\xi, X) \cdot E=0$ (Obtain by $\bar{a}=\bar{b}=-\frac{1}{2 n-1}, \quad \bar{c}=0$ \& $a=b=c=0$)	$\begin{aligned} & 2 S=(r+2 n) g+S^{2} \\ & +(2 n-r)\left\{\frac{r}{2 n(2 n+1)}-1\right\} \eta \otimes \eta . \end{aligned}$		
	$\begin{aligned} & 2 S=(r+2 n) g+\left(\frac{r}{2 n}-2 n-1\right) \eta \otimes \eta \\ & +S^{2} \end{aligned}$		
$\begin{aligned} & \hline \hat{C}(\xi, X) \cdot H=0 \quad(\text { Obtain } \\ & b y \bar{a}=\bar{b}=-\frac{1}{2 n-1}, \quad \bar{c}=0 \\ & \left.a=b=-\frac{1}{4 n} \quad \& \quad c=0\right) \end{aligned}$	$\begin{aligned} & \frac{6 n+1}{4 n} S=\left(\frac{2 n+1}{4 n} r+n+\frac{1}{4 n}\\|Q\\|^{2}\right) g \\ & +\left(\frac{r}{4 n}-\frac{2 n+1}{2}\right) \eta \otimes \eta-\left(1+\frac{1}{4 n}\right) S^{2} . \end{aligned}$		
$P(\xi, X) \cdot R=0$ (Obtain by $\bar{a}=-\frac{1}{2 n}, \quad \bar{b}=0, \bar{c}=0$ $\& a=b=c=0)$	$\begin{aligned} & \left(\frac{1}{2 n}-1\right) S=\left(\frac{r}{2 n}-2 n\right) g \\ & +\left(\frac{r}{2 n}-2 n-1\right) \eta \otimes \eta+\frac{1}{2 n} S^{2} . \end{aligned}$		
$\begin{aligned} & \hline \hline P(\xi, X) \cdot \hat{C}=0 \quad \text { (Obtain } \\ & b y \bar{a}=-\frac{1}{2 n}, \quad \bar{b}=0, \bar{c}=0 \\ & \left.a=b=-\frac{1}{2 n-1} \quad \& \quad c=0\right) \end{aligned}$	$\begin{aligned} & \frac{4 n^{2}+1}{2 n} S=\left\{\frac{2 n+1}{2 n} r-2 n-\frac{\\|Q\\|^{2}}{2 n}\right\} g \\ & +\left\{\frac{2 n+1}{2 n} r-(2 n+1)^{2}\right\} \eta \otimes \eta+S^{2} . \end{aligned}$		
$\begin{aligned} & P(\xi, X) \cdot C=0 \quad(\text { Obtain } \\ & b y \bar{a}=-\frac{1}{2 n}, \quad \bar{b}=0, \bar{c}=0 \\ & \left.a=b=-\frac{1}{2 n-1} \quad \& \quad c=1\right) \end{aligned}$	$\begin{aligned} & -\frac{4 n^{2}+1}{2^{2 n}} S=\left\{\frac{r}{2 n}-(2 n+1)\right\}^{2} \eta \otimes \eta \\ & -S^{2}+\left(\frac{r}{2 n}-2 n\right)\left(\frac{r}{2 n}-1\right) g \\ & -\frac{1}{2 n}\left(\frac{r^{2}}{2 n}-\\|Q\\|^{2}\right) g . \end{aligned}$		
$\begin{gathered} \hline P(\xi, X) \cdot E=0 \quad(\text { Obtain } \\ b y \bar{a}=-\frac{1}{2 n}, \quad \bar{b}=0, \bar{c}=0 \\ a=b=0 \quad \& \quad c=1) \end{gathered}$	$\begin{aligned} & \frac{1-2 n}{2 n} S=\left(\frac{r}{2 n}-2 n\right) g \\ & -\frac{1}{2 n+1}\left\{\frac{r}{2 n}-(2 n+1)\right\}^{2} \eta \otimes \eta-\frac{1}{2 n} S^{2} . \end{aligned}$		
$\begin{aligned} & P(\xi, X) \cdot P=0 \quad \text { (Obtain } \\ & b y \bar{a}=-\frac{1}{2 n}, \quad \bar{b}=0, \bar{c}=0 \\ & \left.a=-\frac{1}{2 n}, b=0 \quad \& \quad c=0\right) \end{aligned}$	$(1-2 n) S=\left(r-4 n^{2}\right) g-S^{2}$.		
$\begin{aligned} & \hline P(\xi, X) \cdot H=0 \quad \text { Obtain } \\ & b y \bar{a}=-\frac{1}{2 n}, \bar{b}=0, \bar{c}=0 \\ & \left.a=b=-\frac{1}{4 n} \& \quad c=0\right) \end{aligned}$	$\begin{aligned} & S=\left(n-\frac{1}{8 n^{2}}\\|Q\\|^{2}\right) g+ \\ & +\frac{1}{2 n}\left(1+\frac{1}{4 n}\right) S^{2} . \end{aligned}$		

Table 2

Curvature condition	Expression for Ricci tensor		
$\begin{gathered} \hline \hline H(\xi, X) \cdot R=0 \quad \text { Obtain } \\ b y \bar{a}=\bar{b}=-\frac{1}{4 n}, \quad \bar{c}=0 \\ \& \quad a=b=c=0) \end{gathered}$	$\begin{gathered} \frac{1-2 n}{4 n} S=\left(\frac{r}{4 n}-n\right) g \\ +\left(\frac{r}{4 n}-\frac{1}{2}\right) \eta \otimes \eta-\frac{1}{4 n} S^{2} . \end{gathered}$		
$\begin{array}{rr} \hline \hline H(\xi, X) \circ \hat{C}=0 & (\text { Obtain } \\ b y \bar{a}=\bar{b}=-\frac{1}{4 n}, & \bar{c}=0 \\ \left.a=b=-\frac{1}{2 n-1} \quad \& \quad c=0\right) \end{array}$	$\begin{aligned} & \hline \frac{4 n^{2}+1}{4 n} S=\left\{\frac{2 n+1}{4 n} r-n-\frac{\\|Q\\|^{2}}{4 n}\right\} g \\ & +\left\{\frac{4 n+1}{4 n} r-\frac{(2 n+1)^{2}}{2}\right\} \eta \otimes \eta+\frac{1}{2 n} S^{2} . \end{aligned}$		
$\begin{gathered} H(\xi, X) \cdot E=0 \quad(\text { Obtain } \\ b y \bar{a}=\bar{b}=-\frac{1}{4 n}, \quad \bar{c}=0 \\ a=b=0 \quad \& \quad c=1) \end{gathered}$	$\begin{aligned} & \frac{1-2 n}{4 n} S=\left(\frac{r}{4 n}-n\right) g-\frac{1}{4 n} S^{2} \\ & +\left(\frac{r}{2 n}-1\right)\left(\frac{1}{2}-\frac{r}{4 n(2 n+1)}\right) \eta \otimes \eta . \end{aligned}$		
$H(\xi, X) \cdot P=0$ (Obtain by $\bar{a}=\bar{b}=-\frac{1}{4 n}, \quad \bar{c}=0$, $\left.a=-\frac{1}{2 n}, \quad b=0 \quad \& \quad c=0\right)$	$\begin{aligned} & \frac{1-2 n}{4 n} S=\left(\frac{r}{4 n}-n\right) g \\ & +\frac{1}{2}\left\{2 n+1-\frac{r}{2 n}\right\} \eta \otimes \eta-\frac{1}{4 n} S^{2} . \end{aligned}$		
$\begin{gathered} \hline \hline H(\xi, X) \cdot H=0 \quad \text { Obtain } \\ b y \bar{a}=\bar{b}=-\frac{1}{4 n}, \quad \bar{c}=0 \\ \left.a=b=-\frac{1}{4 n} \& \quad c=0\right) \end{gathered}$	$\begin{aligned} & \hline \hline S=\frac{1}{2 n}\left(1+\frac{1}{4 n}\right) S^{2} \\ & +\left(n-\frac{1}{8 n^{2}}\\|Q\\|^{2}\right) g \\ & +\left(\frac{r}{4 n}-\frac{2 n+1}{2}\right) \eta \otimes \eta . \\ & \hline \hline \end{aligned}$		
$\begin{gathered} C(\xi, X) \cdot R=0(\text { Obtain } \\ \text { by } \bar{a}=\bar{b}=-\frac{1}{2 n-1}, \bar{c}=1 \\ a=b=c=0) \end{gathered}$	$\begin{aligned} & \left(2-\frac{r}{2 n}\right) S=2 n g-S^{2} \\ & +(r-2 n) \eta \otimes \eta . \end{aligned}$		
$\begin{gathered} C(\xi, X) \cdot \hat{C}=0(\text { Obtain } \\ b y \bar{a}=\bar{b}=-\frac{1}{2 n-1}, \bar{c}=1 \\ \left.a=b=-\frac{1}{2 n-1}, c=0\right) \end{gathered}$	$\begin{aligned} & \hline(2 n-1-r) S= \\ & \left\{\left(r-\frac{r^{2}}{2 n}\right)-2 n+\\|Q\\|^{2}\right\} g \\ & +\left(r-\frac{r^{2}}{2 n}\right) \eta \otimes \eta-2 n S^{2} . \end{aligned}$		
$\begin{gathered} C(\xi, X) \cdot C=0 \text { (Obtain } \\ \text { by } \bar{a}=\bar{b}=-\frac{1}{2 n-1}, \bar{c}=1 \\ \left.a=b=-\frac{1}{2 n-1}, c=0\right) \end{gathered}$	$\begin{aligned} & (2 n-1-r) S= \\ & \left\{\left(r-\frac{r^{2}}{2 n}\right)-2 n+\\|Q\\|^{2}\right\} g-2 n S^{2} . \end{aligned}$		
$\begin{gathered} C(\xi, X) \cdot P=0 \text { (Obtain } \\ \text { by } \bar{a}=\bar{b}=-\frac{1}{2 n-1}, \bar{c}=1 \\ \left.a=-\frac{1}{2 n}, b=c=0\right) \end{gathered}$	$\begin{aligned} & \left(2-\frac{r}{2 n}\right) S=2 n g-S^{2} \\ & +\left(\frac{r}{2 n}-1\right)\left(2 n+1-\frac{r}{2 n}\right) \eta \otimes \eta . \end{aligned}$		
$\begin{gathered} C(\xi, X) \cdot E=0 \text { (Obtain } \\ b y \bar{a}=\bar{b}=-\frac{1}{2 n-1}, \bar{c}=1 \\ a=b=0, c=1) \end{gathered}$	$\begin{aligned} & \left(2-\frac{r}{2 n}\right) S=2 n g-S^{2} \\ & +\left(\frac{r}{2 n}-1\right)\left\{2 n(2 n+1)-\frac{r}{2 n+1}\right\} \eta \otimes \eta \end{aligned}$		
$\begin{gathered} C(\xi, X) \cdot H=0 \quad(\text { Obtain } \\ b y \bar{a}=\bar{b}=-\frac{1}{2 n-1}, \bar{c}=1 \\ \left.a=b=-\frac{1}{4 n}, c=0\right) \end{gathered}$	$\begin{aligned} & \hline \hline \frac{1}{n}\left\{\left(3 n+\frac{1}{2}\right)-\left(r+\frac{r^{2}}{4 n}\right)\right\} S \\ & =-\left(2+\frac{1}{2 n}\right) S^{2} \\ & +\left\{\frac{r}{2 n}\left(1-\frac{r}{2 n}\right)+2 n+\frac{\\|Q\\|^{2}}{2 n}\right\} g \\ & +\left(\frac{r}{2 n}-2 n-1\right)\left(1-\frac{r}{2 n}\right) \eta \otimes \eta . \end{aligned}$		

TABLE 3

Theorem 6.1. Let $M^{2 n+1}(\phi, \xi, \eta, g)$ be an LP-Sasakian manifold with $\mathcal{W} \cdot S=$ 0 . Then the Ricci tensor S admit the relation (6.6) provided $b \neq 0$.

Now, for $b=0$, the equation (6.6) reduces to

$$
\begin{equation*}
\left[\frac{c r}{2 n+1}\left(\frac{1}{2 n}+a\right)-1\right]\{S(Y, Z)-2 n g(Y, Z)\}=0 \tag{6.7}
\end{equation*}
$$

i.e,

$$
\begin{equation*}
S(Y, Z)=2 n g(Y, Z) \text { or } \frac{c r}{2 n+1}\left(\frac{1}{2 n}+a\right)-1 \neq 0 \tag{6.8}
\end{equation*}
$$

Theorem 6.2. Let $M^{2 n+1}(\phi, \xi, \eta, g)(n>1)$, be a LP-Sasakian manifold. Then the following conditions are equivalent:
(a) M is a is an Einstein space.
(b) M is Ricci symmetric i.e., $\nabla S=0$.
(c) $P(\xi, X) \cdot S=0$ (or $E(\xi, X) \cdot S=0$) for all $X \in \chi(M)$.

Example 6.3. (see [24, p. 286-287]) Let $M^{3}(\phi, \xi, \eta, g)$ be an LP-Sasakian manifold $\left(M^{3}, g\right)$ with a ϕ-basis

$$
e=e^{z} \frac{\partial}{\partial x}, \phi e=e^{z-\alpha x} \frac{\partial}{\partial x}, \xi=\frac{\partial}{\partial x}, \text { where } \alpha \text { is non-zero constant. }
$$

Then from Koszul's formula for Lorentzian metric g, we can obtain the LeviCivita connection as follows

$$
\begin{aligned}
\nabla_{e} \xi & =\phi e, & \nabla_{e} \phi e & =0, & \nabla_{e} e & =-\xi \\
\nabla_{\phi \phi} \xi & =e, & \nabla_{\phi e} \phi e & =\alpha e^{z} e, & \nabla_{\phi e} e & =\alpha e^{z} \phi e, \\
\nabla_{\xi} \xi & =0, & \nabla_{\xi} \phi e & =0, & \nabla_{\xi} e & =0 .
\end{aligned}
$$

Using the above relations, one can easily calculate the non-vanishing components of the curvature tensor R, Ricci tensor S, scalar curvature r and generalized quasi-conformal curvature tensor W as follows

$$
\begin{aligned}
R(\phi e, \xi) \xi=-\phi e, & R(e, \xi) \xi=-e, \quad R(e, \phi e) \phi e=\left(1-\alpha^{2} e^{2 z}\right) e, \\
R(\phi e, \xi) \phi e=-\xi, & R(e, \xi) e=-\xi, \quad R(e, \phi e) e=-\left(1-\alpha^{2} e^{2 z}\right) \phi e, \\
S(e, e)=-\alpha^{2} e^{2 z}, & S(\phi e, \phi e)=-\alpha e^{z}, \quad S(\xi, \xi)=-2, r=2\left(1-\alpha^{2} e^{2 z}\right), \\
\mathcal{W}(e, \xi) \xi=-\lambda_{1} e, & \mathcal{W}(\phi e, \xi) \xi=-\lambda_{1} \phi e, \\
\mathcal{W}(e, \xi) e=-\lambda_{2} \xi, & \mathcal{W}(\phi e, \xi) \phi e=-\lambda_{2} \xi \\
\mathcal{W}(e, \phi e) \phi e=\lambda_{3} e, & \mathcal{W}(e, \phi e) e=-\lambda_{3} \phi e, \\
\omega(e, \xi) \xi=-\bar{\lambda}_{1} e, & \omega(\phi e, \xi) \xi=-\bar{\lambda}_{1} \phi e, \\
\omega(e, \xi) e=-\bar{\lambda}_{2} \xi, & \omega(\phi e, \xi) \phi e=-\bar{\lambda}_{2} \xi,
\end{aligned}
$$

where,

$$
\lambda_{1}=\left[1+2 a-b \alpha^{2} e^{2 z}-\frac{c}{3}(1+2 a+2 b)\left(1-\alpha^{2} e^{2 z}\right)\right],
$$

$$
\begin{aligned}
& \lambda_{2}=\left[1-a \alpha^{2} e^{2 z}+2 b-\frac{c}{3}(1+2 a+2 b)\left(1-\alpha^{2} e^{2 z}\right)\right] \\
& \lambda_{3}=\left[\left(1-\alpha^{2} e^{2 z}\right)\left(1-\frac{c}{3}\right)+(a+b) \alpha^{2} e^{2 z}\left(\frac{2 c}{3}-1\right)\right] \\
& \bar{\lambda}_{1}=\left[1+2 \bar{a}-\bar{b} \alpha^{2} e^{2 z}-\frac{\bar{c}}{3}(1+2 \bar{a}+2 \bar{b})\left(1-\alpha^{2} e^{2 z}\right)\right] \\
& \bar{\lambda}_{2}=\left[1-\bar{a} \alpha^{2} e^{2 z}+2 \bar{b}-\frac{\bar{c}}{3}(1+2 \bar{a}+2 \bar{b})\left(1-\alpha^{2} e^{2 z}\right)\right]
\end{aligned}
$$

and the components which can be obtained from these by the symmetry properties. we calculate the covariant derivatives of the non-vanishing components of the curvature tensor as follows:

$$
\begin{aligned}
(\omega(e, \xi) \cdot \mathcal{W})(\phi e, \xi) \phi e & =\bar{\lambda}_{1}\left(\lambda_{2}-\lambda_{3}\right) e, \quad(\omega(e, \xi) \cdot \mathcal{W})(e, \phi e) \phi e=\bar{\lambda}_{2}\left(\lambda_{2}-\lambda_{3}\right) \xi \\
(\omega(e, \xi) \cdot \mathcal{W})(e, \phi e) e & =0, \quad(\omega(e, \xi) \cdot \mathcal{W})(e, \phi e) \xi=\left(\lambda_{1} \bar{\lambda}_{2}-\bar{\lambda}_{1} \lambda_{3}\right) \phi e \\
(\omega(\phi e, \xi) \cdot \mathcal{W})(e, \phi e) \xi & =\left(\bar{\lambda}_{1} \lambda_{3}-\lambda_{1} \bar{\lambda}_{2}\right) e, \quad(\omega(\phi e, \xi) \cdot \mathcal{W})(e, \xi) e=\bar{\lambda}_{1}\left(\lambda_{2}-\lambda_{3}\right) \\
(\omega(\phi e, \xi) \cdot \mathcal{W})(e, \phi e) \phi e & =0, \quad(\omega(\phi e, \xi) \cdot \mathcal{W})(\phi e, \xi) \phi e=\left(\bar{\lambda}_{1} \lambda_{2}-\lambda_{1} \bar{\lambda}_{2}\right) \phi e \\
(\omega(\phi e, \xi) \cdot \mathcal{W})(e, \phi e) e & =\bar{\lambda}_{2}\left(\lambda_{3}-\lambda_{2}\right) \xi, \quad(\omega(e, \xi) \cdot \mathcal{W})(e, \xi) e=\left(\bar{\lambda}_{1} \lambda_{2}-\lambda_{1} \bar{\lambda}_{2}\right) e \\
(\omega(e, \xi) \cdot \mathcal{W})(\phi e, \xi) e & =\left(\bar{\lambda}_{1} \lambda_{3}-\lambda_{1} \bar{\lambda}_{2}\right) \xi, \quad(\omega(\phi e, \xi) \cdot \mathcal{W})(\phi e, \xi) e=0 \\
(\omega(e, \xi) \cdot \mathcal{W})(e, \xi) \phi e & =0, \quad(\omega(\phi e, \xi) \cdot \mathcal{W})(e, \xi) \phi e=\left(\bar{\lambda}_{1} \lambda_{3}-\lambda_{1} \bar{\lambda}_{2}\right) e
\end{aligned}
$$

From the above it is clear that the manifold $\left(M^{3}, g\right)$ under consideration is a semi-symmetry type LP-Sasakian manifold if $\bar{\lambda}_{1}=\lambda_{2}=\lambda_{3}$.

Lemma 6.4. There exists a semi-symmetry type LP-Sasakian manifold provided $\bar{\lambda}_{1}=\lambda_{1}, \bar{\lambda}_{2}=\lambda_{2}=\lambda_{3}=\bar{\lambda}_{3}$.

References

[1] K. K. Baishya and P. R. Chowdhury. On generalized quasi-conformal $n(k, \mu)$-manifolds. to appear.
[2] E. Cartan. Sur une classe remarquable d'espaces de Riemann. Bull. Soc. Math. France, 54:214-264, 1926.
[3] B.-y. Chen and K. Yano. Hypersurfaces of a conformally flat space. Tensor (N.S.), 26:318-322, 1972. Commemoration volumes for Prof. Dr. Akitsugu Kawaguchi's seventieth birthday, Vol. III.
[4] U. C. De, K. Matsumoto, and A. A. Shaikh. On Lorentzian para Sasakian manifolds. Rend. Semin. Mat. Messina, Ser. II, Suppl.:149-158, 2000.
[5] R. Deszcz, M. Gł ogowska, M. Hotloś, and Z. entürk. On certain quasi-Einstein semisymmetric hypersurfaces. Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 41:151-164 (1999), 1998.
[6] R. Deszcz and M. g. Gł ogowska. Examples of nonsemisymmetric Ricci-semisymmetric hypersurfaces. Colloq. Math., 94(1):87-101, 2002.
[7] R. Deszcz and M. Hotloś. On hypersurfaces with type number two in space forms. Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 46:19-34 (2004), 2003.
[8] L. P. Eisenhart. Riemannian Geometry. Princeton University Press, Princeton, N. J., 1949. 2d printing.
[9] Y. Ishii. On conharmonic transformations. Tensor (N.S.), 7:73-80, 1957.
[10] O. r. Kowalski. An explicit classification of 3-dimensional Riemannian spaces satisfying $R(X, Y) \cdot R=0$. Czechoslovak Math. J., 46(121)(3):427-474, 1996.
[11] K. Matsumoto. On Lorentzian paracontact manifolds. Bull. Yamagata Univ. Natur. Sci., 12(2):151-156, 1989.
[12] I. Mihai and R. Rossca. On Lorentzian P-Sasakian manifolds. In Classical analysis (Kazimierz Dolny, 1991), pages 155-169. World Sci. Publ., River Edge, NJ, 1992.
[13] K. Nomizu. On the decomposition of generalized curvature tensor fields. Codazzi, Ricci, Bianchi and Weyl revisited. pages 335-345, 1972.
[14] M. Okumura. Some remarks on space with a certain contact structure. Tôhoku Math. J. (2), 14:135-145, 1962.
[15] B. J. Papantoniou. Contact Riemannian manifolds satisfying $R(\xi, X) \cdot R=0$ and $\xi \in$ (k, μ)-nullity distribution. Yokohama Math. J., 40(2):149-161, 1993.
[16] D. Perrone. Contact Riemannian manifolds satisfying $R(X, \xi) \cdot R=0$. Yokohama Math. J., 39(2):141-149, 1992.
[17] G. P. Pokhariyal and R. S. Mishra. Curvature tensors' and their relativistics significance. Yokohama Math. J., 18:105-108, 1970.
[18] S. Sasaki. Lecture notes on almost contact manifolds. Tohoku. Univ., 1964.
[19] K. Sekigawa. On 4-dimensional connected Einstein spaces satisfying the condition $R(X, Y) \cdot R=0$. Sci. Rep. Niigata Univ. Ser. A No., 7:29-31, 1969.
[20] K. Sekigawa and H. Takagi. On conformally flat spaces satisfying a certain condition on the Ricci tensor. Tôhoku Math. J. (2), 23:1-11, 1971.
[21] K. Sekigawa and S. Tanno. Sufficient conditions for a Riemannian manifold to be locally symmetric. Pacific J. Math., 34:157-162, 1970.
[22] A. A. Shaikh and K. K. Baishya. On ϕ-symmetric LP-Sasakian manifolds. Yokohama Math. J., 52(2):97-112, 2006.
[23] A. A. Shaikh and K. K. Baishya. Some results on LP-Sasakian manifolds. Bull. Math. Soc. Sci. Math. Roumanie (N.S.), 49(97)(2):193-205, 2006.
[24] A. A. Shaikh, T. Basu, and K. K. Baishya. On the existence of locally ϕ-recurrent LP-Sasakian manifolds. Bull. Allahabad Math. Soc., 24(2):281-295, 2009.
[25] N. S. Sinjukov. On geodesic maps of riemannian space. Proc. III All-Union Math. Cong. Nauka, Moskva, 1956.
[26] Z. I. Szabó. Structure theorems on Riemannian spaces satisfying $R(X, Y) \cdot R=0$. I. The local version. J. Differential Geom., 17(4):531-582 (1983), 1982.
[27] Z. I. Szabó. Classification and construction of complete hypersurfaces satisfying $R(X, Y) \cdot R=0$. Acta Sci. Math. (Szeged), 47(3-4):321-348, 1984.
[28] Z. I. Szabó. Structure theorems on Riemannian spaces satisfying $R(X, Y) \cdot R=0$. II. Global versions. Geom. Dedicata, 19(1):65-108, 1985.
[29] K. Yano and S. Bochner. Curvature and Betti numbers. Annals of Mathematics Studies, No. 32. Princeton University Press, Princeton, N. J., 1953.
[30] K. Yano and S. Sawaki. Riemannian manifolds admitting a conformal transformation group. J. Differential Geometry, 2:161-184, 1968.

Kanak Kanti Baishya,
Department Of Mathematics,
Kurseong College, Dowhill Road, Kurseong, Darjeeling-734203, West Bengal,
India
E-mail address: kanakkanti.kc@gmail.com
Partha Roy Chowdhury,
Department Of Mathematics,
Shaktigarh Bidyapith (H.S.), Siliguri,
Darjeeling-734005, West Bengal, India
E-mail address: partha.raychowdhury81@gmail.com

[^0]: 2010 Mathematics Subject Classification. 53C15, 53C25.
 Key words and phrases. LP-Sasakian manifolds, Generalized quasi-conformal curvature tensor, Semi-symmetry type manifolds, Ricci semi-symmetry type manifolds.

