ON A TYPE OF TRANS-SASAKIAN MANIFOLDS

KRISHNENDU DE

Abstract

The object of the present paper is to study 3-dimensional trans-Sasakian manifolds admitting a W_{2}-curvature tensor. Trans-Sasakian manifolds satisfying the curvature condition $S(X, \xi) \cdot R=0$ is also considered.

1. Introduction

Trans-Sasakian manifolds arose in a natural way from the classification of almost contact metric structures by Chinea and Gonzales [5] and they appear as a natural generalization of both Sasakian and Kenmotsu manifolds. Again in the Gray-Hervella classification of almost Hermite manifolds [8], there appears a class W_{4} of Hermitian manifolds which are closely related to locally conformally Kähler manifolds. An almost contact metric structure on a manifold M is called a trans-Sasakian structure [12] if the product manifold $M \times \mathbb{R}$ belongs to the class W_{4}. The class $C_{6} \oplus C_{5}([10],[11])$ coincides with the class of trans-Sasakian structures of type (α, β). In [11], the local nature of the two subclasses C_{5} and C_{6} of trans-Sasakian structures is characterized completely. In [4], some curvature identities and sectional curvatures for C_{5}, C_{6} and transSasakian manifolds are obtained. It is known that [17] trans-Sasakian structures of type $(0,0),(0, \beta)$, and $(\alpha, 0)$ are cosymplectic, β - Kenmotsu and α-Sasakian respectively where $\alpha, \beta \in \mathbb{R}$.

The local structure of trans-Sasakian manifolds of dimension $n \geq 5$ has been completely characterized by Marrero [10]. He proved that a trans-Sasakian manifold of dimension $n \geq 5$ is either cosymplectic or α-Sasakian or β-Kenmotsu manifold. Hence a proper trans-Sasakian manifold exists only for three dimension. Three-dimensional trans-Sasakian manifolds have been studied by De and Tripathi [7], De and Sarkar [6], Shukla and Singh [15], and many others.

On the other hand, Pokhariyal and Mishra [14] have introduced new tensor fields, called W_{2} and E-tensor fields, in a Riemannian manifold, and studied

[^0]their properties. Then, Pokhariyal [13] has studied some properties of this tensor fields in a Sasakian manifold. Recently, De and Sarkar [10] have studied P-Sasakian manifolds admitting W_{2} tensor field.

The curvature tensor W_{2} is defined by

$$
\begin{align*}
& W_{2}(X, Y, U, V)=R(X, Y, U, V) \tag{1.1}\\
&+\frac{1}{n-1}[g(X, U) S(Y, V)-g(Y, U) S(X, V),
\end{align*}
$$

where S is a Ricci tensor of type $(0,2)$. The notion of the quasi-conformal curvature tensor was introduced by Yano and Sawaki [19]. According to them a quasi-conformal curvature tensor is defined by

$$
\begin{align*}
\widetilde{C}(X, Y) Z= & a R(X, Y) Z+b[S(Y, Z) X-S(X, Z) Y+g(Y, Z) Q X \tag{1.2}\\
& -g(X, Z) Q Y]-\frac{r}{n}\left[\frac{a}{n-1}+2 b\right][g(Y, Z) X-g(X, Z) Y],
\end{align*}
$$

where a and b are non-zero constants, R is the curvature tensor, S is the Ricci tensor, Q is the Ricci operator defined by $S(X, Y)=g(Q X, Y)$ and r is the scalar curvature of the Riemannian manifold $\left(M^{n}, g\right)(n \geq 3)$. If $a=1$ and $b=-\frac{1}{n-2}$, then (1.2) takes the form

$$
\begin{align*}
& \widetilde{C}(X, Y) Z=R(X, Y) Z-\frac{1}{n-2}[S(Y, Z) X-S(X, Z) Y+g(Y, Z) Q X \tag{1.3}\\
& -g(X, Z) Q Y]+\frac{r}{(n-1)(n-2)}[g(Y, Z) X-g(X, Z) Y]=C(X, Y) Z,
\end{align*}
$$

where C is the conformal curvature tensor [18].
On the other hand, the concircular curvature tensor \tilde{Z} in a Riemannian manifold is defined by

$$
\begin{equation*}
\tilde{Z}(X, Y) U=R(X, Y) U-\frac{r}{n(n-1)}(g(Y, U) X-g(X, U) Y) . \tag{1.4}
\end{equation*}
$$

Again an trans-Sasakian manifold is called Einstein if the Ricci tensor S is of the form $S=\lambda g$, where λ is a constant.

The paper is organized as follows: In section 2, some preliminary results are recalled. After preliminaries in section 3, we construct some examples of 3 -dimensional trans-Sasakian manifold. Then we have studied a 3-dimensional trans-Sasakian manifold satisfying $W_{2}=0$. In the next section, we have studied W_{2}-semisymmetric 3-dimensional trans-Sasakian manifolds. Also, we have classified 3-dimensional trans-Sasakian manifolds satisfying $\tilde{Z} . W_{2}=0$ and $C . W_{2}=0$. Finally we prove that a 3 -dimensional trans-Sasakian manifold satisfying the condition $S(X, \xi) \cdot R=0$ is an Einstein manifold, provided $\alpha, \beta=$ constant.

2. Preliminaries

Let M be a connected almost contact metric manifold with an almost contact metric structure (ϕ, ξ, η, g), that is, ϕ is an $(1,1)$ tensor field, ξ is a vector field ,η is a 1 -form and g is a compatible Riemannian metric such that

$$
\begin{equation*}
\phi^{2}(X)=-X+\eta(X) \xi, \eta(\xi)=1, \phi \xi=0, \eta \phi=0 \tag{2.1}
\end{equation*}
$$

for all X and Y tangent to $M([1],[2])$.
The fundamental 2-form Φ of the manifold is defined by

$$
\begin{equation*}
\Phi(X, Y)=g(X, \phi Y) \tag{2.4}
\end{equation*}
$$

for all X and Y tangent to M.
An almost contact metric structure (ϕ, ξ, η, g) on a connected manifold M is called a trans-Sasakian structure [12] if ($M \times \mathbb{R}, \mathrm{J}, \mathrm{G})$ belongs to the class $W_{4}[8]$, where J is the almost complex structure on $M \times \mathbb{R}$ defined by $J\left(X, f \frac{d}{d f}\right)=\left(\phi X-f \xi, \eta(X) \frac{d}{d t}\right)$, for any vector fields X on M, f is a smooth function on $M \times \mathbb{R}$ and G is the product metric on $M \times \mathbb{R}$. This may be expressed by the condition [3]

$$
\begin{equation*}
\left(\nabla_{X} \phi\right) Y=\alpha(g(X, Y) \xi-\eta(Y) X)+\beta(g(\phi X, Y) \xi-\eta(Y) \phi X) \tag{2.5}
\end{equation*}
$$

for smooth functions α and β on M. Hence we say that the trans-Sasakian structure is of type (α, β). From (2.5) it follows that

$$
\begin{gather*}
\nabla_{X} \xi=-\alpha(\phi X)+\beta(X-\eta(X) \xi) \tag{2.6}\\
\left(\nabla_{X} \eta\right) Y=-\alpha g(\phi X, Y)+\beta g(\phi X, \phi Y) \tag{2.7}
\end{gather*}
$$

An explicit example of a 3-dimensional proper trans-Sasakian manifold is constructed in [10]. In [7], Ricci tensor and curvature tensor for 3-dimensional trans-Sasakian manifolds are studied and their explicit formulae are given.

From [7] we know that for a 3-dimensional trans-Sasakian manifold

$$
\begin{gather*}
2 \alpha \beta+\xi \alpha=0 \tag{2.8}\\
S(X, \xi)=\left(2\left(\alpha^{2}-\beta^{2}\right)-\xi \beta\right) \eta(X)-X \beta-(\phi X) \alpha \tag{2.9}\\
S(X, Y)=\left(\frac{r}{2}+\xi \beta-\left(\alpha^{2}-\beta^{2}\right)\right) g(X, Y) \tag{2.10}\\
-\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(X) \eta(Y) \\
\quad-(Y \beta+(\phi Y) \alpha) \eta(X)-(X \beta+(\phi X) \alpha) \eta(Y),
\end{gather*}
$$

$$
\begin{align*}
& R(X, Y) \xi=\left(\alpha^{2}-\beta^{2}\right)(\eta(Y) X-\eta(X) Y)-\eta(Y)(X \beta) \xi+\phi(X) \alpha \xi \tag{2.11}\\
+ & \eta(X)(Y \beta) \xi+\phi(Y) \alpha \xi-(Y \beta) X+(X \beta) Y-(\phi(Y) \alpha) X+(\phi(X) \alpha) Y,
\end{align*}
$$

and

$$
\begin{align*}
R(X, Y) Z= & \left(\frac{r}{2}+2 \xi \beta-2\left(\alpha^{2}-\beta^{2}\right)\right)(g(Y, Z) X-g(X, Z) Y \tag{2.12}\\
& -g(Y, Z)\left[\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(X) \xi\right. \\
& -\eta(X)(\phi \operatorname{grad} \alpha-\operatorname{grad} \beta)+(X \beta+(\phi X) \alpha) \xi] \\
& +g(X, Z)\left[\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(Y) \xi\right. \\
& -\eta(Y)(\phi \operatorname{grad} \alpha-\operatorname{grad} \beta)+(Y \beta+(\phi Y) \alpha) \xi] \\
& -[(Z \beta+(\phi Z) \alpha) \eta(Y)+(Y \beta+(\phi Y) \alpha) \eta(Z) \\
& \left.\left.+\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(Y) \eta(Z)\right] X \\
& +[(Z \beta+(\phi Z) \alpha) \eta(X)+(X \beta+(\phi X) \alpha) \eta(Z) \\
& \left.\left.+\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(X) \eta(Z)\right] Y,
\end{align*}
$$

where S is the Ricci tensor of type $(0,2)$ and R is the curvature tensor of type $(1,3)$ and r is the scalar curvature of the manifold M.
In a 3 -dimensional trans-Sasakian manifold, using (2.9), (2.11) and (2.13), equation (1.3) and (1.4) reduce to

$$
\begin{gather*}
\tilde{Z}(\xi, X) Y=\left(\alpha^{2}-\beta^{2}-\frac{r}{6}\right)\{g(X, Y) \xi-\eta(Y) X\} \tag{2.13}\\
C(\xi, Y) W=\frac{\left(\alpha^{2}-\beta^{2}\right)(n-1)(n-4)+r}{(n-1)(n-2)}\{g(Y, W) \xi-\eta(W) Y\} \tag{2.14}\\
-\frac{1}{(n-2)}\{S(Y, W) \xi-\eta(W) Q Y\}
\end{gather*}
$$

respectively.

3. Examples of 3-dimensional trans-Sasakian manifold

Example 3.1. We consider the 3-dimensional manifold $M=\left\{(x, y, z) \in \mathbb{R}^{3}, z \neq\right.$ $0\}$, where (x, y, z) are standard co-ordinates of \mathbb{R}^{3}.

The vector fields

$$
e_{1}=z\left(\frac{\partial}{\partial x}+y \frac{\partial}{\partial z}\right), \quad e_{2}=z \frac{\partial}{\partial y}, \quad e_{3}=\frac{\partial}{\partial z}
$$

are linearly independent at each point of M.
Let g be the Riemannian metric defined by

$$
g\left(e_{1}, e_{3}\right)=g\left(e_{1}, e_{2}\right)=g\left(e_{2}, e_{3}\right)=0
$$

$$
g\left(e_{1}, e_{1}\right)=g\left(e_{2}, e_{2}\right)=g\left(e_{3}, e_{3}\right)=1
$$

Let η be the 1 -form defined by $\eta(Z)=g\left(Z, e_{3}\right)$ for any $Z \varepsilon \chi(M)$.
Let ϕ be the $(1,1)$ tensor field defined by

$$
\phi\left(e_{1}\right)=e_{2}, \quad \phi\left(e_{2}\right)=-e_{1}, \quad \phi\left(e_{3}\right)=0 .
$$

Then using the linearity of ϕ and g, we have

$$
\eta\left(e_{3}\right)=1, \phi^{2} Z=-Z+\eta(Z) e_{3}, g(\phi Z, \phi W)=g(Z, W)-\eta(Z) \eta(W)
$$

for any $Z, W \in \chi(M)$, the set of all smooth vector fields on M.
Then for $e_{3}=\xi$, the structure (ϕ, ξ, η, g) defines an almost contact metric structure on M.

Let ∇ be the Levi-Civita connection with respect to the metric g and R be the curvature tensor of M. Then we have

$$
\left[e_{1}, e_{2}\right]=y e_{2}-z^{2} e_{3}, \quad\left[e_{1}, e_{3}\right]=-\frac{1}{z} e_{1} \quad \text { and } \quad\left[e_{2}, e_{3}\right]=-\frac{1}{z} e_{2}
$$

Taking $e_{3}=\xi$ and using Koszul formula for the Riemannian metric g, we can easily calculate

$$
\begin{gathered}
\nabla_{e_{1}} e_{3}=-\frac{1}{z} e_{1}+\frac{1}{z^{2}} e_{2}, \nabla_{e_{1}} e_{2}=-\frac{1}{2} z^{2} e_{3}, \nabla_{e_{1}} e_{1}=\frac{1}{z} e_{3}, \nabla_{e_{2}} e_{3}=-\frac{1}{z} e_{2}-\frac{1}{2} z^{2} e_{1}, \\
\nabla_{e_{2}} e_{2}=y e_{1}+\frac{1}{z} e_{3}, \nabla_{e_{2}} e_{1}=\frac{1}{2} z^{2} e_{3}-y e_{2}, \nabla_{e_{3}} e_{3}=0, \nabla_{e_{3}} e_{2}=-\frac{1}{2} z^{2} e_{1}, \\
\nabla_{e_{3}} e_{1}=\frac{1}{2} z^{2} e_{2} .
\end{gathered}
$$

From the above it can be easily seen that (ϕ, ξ, η, g) is a trans-Sasakian structure on M. Consequently $M^{3}(\phi, \xi, \eta, g)$ is a trans-Sasakian manifold with $\alpha=-\frac{1}{2} z^{2} \neq 0$ and $\beta=-\frac{1}{z} \neq 0$.
Example 3.2. We consider the 3 -dimensional manifold $M=\left\{(x, y, z) \in \mathbb{R}^{3}\right.$, $(x, y, z) \neq 0\}$, where (x, y, z) are standard co-ordinates of \mathbb{R}^{3}.

The vector fields

$$
e_{1}=\frac{\partial}{\partial z}-y \frac{\partial}{\partial x}, \quad e_{2}=\frac{\partial}{\partial y}, \quad e_{3}=2 \frac{\partial}{\partial x}
$$

are linearly independent at each point of M. Let g be the Riemannian metric defined by

$$
\begin{gathered}
g\left(e_{1}, e_{3}\right)=g\left(e_{1}, e_{2}\right)=g\left(e_{2}, e_{3}\right)=0, \\
g\left(e_{1}, e_{1}\right)=g\left(e_{2}, e_{2}\right)=g\left(e_{3}, e_{3}\right)=1 .
\end{gathered}
$$

Let η be the 1 -form defined by $\eta(Z)=g\left(Z, e_{3}\right)$ for any $Z \in \chi(M)$. Let ϕ be the $(1,1)$ tensor field defined by

$$
\phi\left(e_{1}\right)=-e_{2}, \quad \phi\left(e_{2}\right)=e_{1}, \quad \phi\left(e_{3}\right)=0 .
$$

Then using the linearity of ϕ and g, we have

$$
\eta\left(e_{3}\right)=1, \phi^{2} Z=-Z+\eta(Z) e_{3}, g(\phi Z, \phi W)=g(Z, W)-\eta(Z) \eta(W)
$$

for any $Z, W \in \chi(M)$. Thus for $e_{3}=\xi$, the structure (ϕ, ξ, η, g) defines an almost contact metric structure on M.

Let ∇ be the Levi-Civita connection with respect to the metric g. Then we have

$$
\left[e_{1}, e_{2}\right]=e_{1} e_{2}-e_{2} e_{1}=\left(\frac{\partial}{\partial z}-y \frac{\partial}{\partial x}\right) \frac{\partial}{\partial y}-\frac{\partial}{\partial y}\left(\frac{\partial}{\partial z}-y \frac{\partial}{\partial x}\right)=\frac{\partial}{\partial x}=\frac{1}{2} e_{3} .
$$

Similarly,

$$
\left[e_{1}, e_{3}\right]=0 \quad \text { and } \quad\left[e_{2}, e_{3}\right]=0
$$

Taking $e_{3}=\xi$ and using Koszul formula for the Riemannian metric g, we can easily calculate

$$
\begin{aligned}
& \nabla_{e_{1}} e_{3}=\frac{1}{4} e_{2}, \quad \nabla_{e_{1}} e_{2}=-\frac{1}{4} e_{3}, \quad \nabla_{e_{1}} e_{1}=0, \\
& \nabla_{e_{2}} e_{3}=-\frac{1}{4} e_{1}, \quad \nabla_{e_{2}} e_{2}=0, \quad \nabla_{e_{2}} e_{1}=\frac{1}{4} e_{3}, \\
& \nabla_{e_{3}} e_{3}=0, \quad \nabla_{e_{3}} e_{2}=-\frac{1}{4} e_{1}, \quad \nabla_{e_{3}} e_{1}=\frac{1}{4} e_{2} .
\end{aligned}
$$

We see that the structure (ϕ, ξ, η, g) satisfies the formula (2.6) for $\alpha=\frac{1}{4}$ and $\beta=0$. Hence the manifold is a trans-Sasakian manifold of type $\left(\frac{1}{4}, 0\right)$.

4. 3-DImEnsional trans-Sasakian manifolds satisfying $W_{2}=0$

In this section we consider a 3-dimensional trans-Sasakian manifolds satisfying $W_{2}=0$. Then we have from (1.1)

$$
\begin{equation*}
R(X, Y, U, V)=\frac{1}{n-1}[g(Y, U) S(X, V)-g(X, U) S(Y, V)] \tag{4.1}
\end{equation*}
$$

Using $X=U=\xi$ in (4.1), we have

$$
\begin{equation*}
R(\xi, Y, \xi, V)=\frac{1}{n-1}[g(Y, \xi) S(\xi, V)-g(\xi, \xi) S(Y, V)] \tag{4.2}
\end{equation*}
$$

From (2.1), (2.9) and (2.11), we get

$$
\begin{align*}
S(Y, V)=2\left(\alpha^{2}-\beta^{2}-\xi \beta\right) g(Y, V)+(\xi \beta) & \eta(Y) \eta(V) \tag{4.3}\\
& -\{(\phi V) \alpha\} \eta(Y)-(V \beta) \eta(Y) .
\end{align*}
$$

If α and β are constant, then we have

$$
\begin{equation*}
S(Y, V)=2\left(\alpha^{2}-\beta^{2}\right) g(Y, V) . \tag{4.4}
\end{equation*}
$$

Thus we have the following:
Theorem 4.1. A 3-dimensional trans-Sasakian manifold satisfying $W_{2}=0$ is an Einstein manifold, provided $\alpha, \beta=$ constant.

Now using (4.4) in (4.1), we get

$$
\begin{equation*}
R(X, Y, U, V)=\left(\alpha^{2}-\beta^{2}\right)[g(Y, U) g(X, V)-g(X, U) g(Y, V)] \tag{4.5}
\end{equation*}
$$

Corollary 4.1. A 3-dimensional trans-Sasakian manifold satisfying $W_{2}=0$ is a manifold of constant curvature $\left(\alpha^{2}-\beta^{2}\right)$, provided $\alpha, \beta=$ constant.

5. W_{2}-SEmisymmetric 3 -DIMENSIONAL TRANS-SASAKIAN MANIFOLDS

A Riemannian or a semi-Riemannian manifold is said to be semi-symmetric ([16],[9]) if $R(X, Y) \cdot R=0$, where R is the Riemannian curvature tensor and $R(X, Y)$ is considered as a derivation of the tensor algebra at each point of the manifold for tangent vectors X, Y. If a Riemannian manifold satisfies

$$
\begin{equation*}
R(X, Y) \cdot W_{2}=0 \tag{5.1}
\end{equation*}
$$

then the manifold is said to be W_{2} semi-symmetric manifold.
Proposition 5.1. Let M be an 3-dimensional trans-Sasakian manifold. Then the W_{2}-curvature tensor on M satisfies the condition

$$
\begin{equation*}
W_{2}(X, Y, U, \xi)=0 \tag{5.2}
\end{equation*}
$$

From (5.1)we have

$$
\begin{align*}
R(X, Y) W_{2}(Z, U) V & -W_{2}(R(X, Y) Z, U) V \tag{5.3}\\
& -W_{2}(Z, R(X, Y) U) V-W_{2}(Z, U) R(X, Y) V=0 .
\end{align*}
$$

This equation implies

$$
\begin{align*}
& g\left(R(X, Y) W_{2}(Z, U) V, \xi\right)-g\left(W_{2}(R(X, Y) Z, U) V, \xi\right) \tag{5.4}\\
& \quad-g\left(W_{2}(Z, R(X, Y) U) V, \xi\right)-g\left(W_{2}(Z, U) R(X, Y) V, \xi\right)=0
\end{align*}
$$

Putting $X=\xi$ in(5.4) we obtain

$$
\begin{align*}
& g\left(R(\xi, Y) W_{2}(Z, U) V, \xi\right)-g\left(W_{2}(R(\xi, Y) Z, U) V, \xi\right) \tag{5.5}\\
& \quad-g\left(W_{2}(Z, R(\xi, Y) U) V, \xi\right)-g\left(W_{2}(Z, U) R(\xi, Y) V, \xi\right)=0 .
\end{align*}
$$

Using (5.4) in (5.5), we get

$$
\begin{align*}
& -g\left(Y, W_{2}(Z, U) V\right) \xi+\eta\left(W_{2}(Z, U) V\right) Y+g(Y, Z) g\left(W_{2}(\xi, U) V, \xi\right) \tag{5.6}\\
& -\eta(Z) g\left(W_{2}(Y, U) V, \xi\right)+g(Y, U) g\left(W_{2}(Z, \xi) V, \xi\right)-\eta(U) g\left(W_{2}(Z, Y) V, \xi\right) \\
& +g(Y, V) g\left(W_{2}(Z, U) \xi, \xi\right)-\eta(V) g\left(W_{2}(Z, U) Y, \xi\right)=0
\end{align*}
$$

Taking the inner product with ξ and using (5.2) in (5.7), we obtain

$$
W_{2}(Z, U, V, Y)=0
$$

Then from previous Theorem and Corollary we have
Theorem 5.1. A W_{2}-semisymmetric 3-dimensional trans-Sasakian manifold is an Einstein manifold and hence a manifold of constant curvature $\left(\alpha^{2}-\beta^{2}\right)$, provided $\alpha, \beta=$ constant.

6. 3-DIMENSIONAL TRANS-SASAKIAN MANIFOLDS SATISFYING
 $$
\tilde{Z}(X, Y) \cdot W_{2}=0
$$

In this section we consider a 3-dimensional trans-Sasakian manifolds satisfying the condition

$$
\begin{equation*}
\tilde{Z}(X, Y) \cdot W_{2}=0 . \tag{6.1}
\end{equation*}
$$

This equation implies

$$
\begin{align*}
\tilde{Z}(X, Y) W_{2}(Z, U) V & -W_{2}(\tilde{Z}(X, Y) Z, U) V \tag{6.2}\\
& -W_{2}(Z, \tilde{Z}(X, Y) U) V-W_{2}(Z, U) \tilde{Z}(X, Y) V=0 .
\end{align*}
$$

Putting $X=\xi$ in(6.2) we obtain

$$
\begin{align*}
\tilde{Z}(\xi, Y) W_{2}(Z, U) V- & W_{2}(\tilde{Z}(\xi, Y) Z, U) V \tag{6.3}\\
& -W_{2}(Z, \tilde{Z}(\xi, Y) U) V-W_{2}(Z, U) \tilde{Z}(\xi, Y) V=0 .
\end{align*}
$$

Using (2.13) in (6.3), we obtain

$$
\begin{align*}
& \left(\alpha^{2}-\beta^{2}-\frac{r}{6}\right)\left\{g\left(Y, W_{2}(Z, U) V\right) \xi-g\left(W_{2}(Z, U) V, \xi\right) Y\right. \tag{6.4}\\
& -g(Y, Z) W_{2}(\xi, U) V+\eta(Z) W_{2}(Y, U) V-g(Y, U) W_{2}(Z, \xi) V \\
& \left.\eta(U) W_{2}(Z, U) V-g(Y, V) W_{2}(Z, U) \xi+\eta(V) W_{2}(Z, U) Y\right\}=0 .
\end{align*}
$$

Taking the inner product with ξ and using (4.2)in (6.5), we have

$$
\begin{equation*}
\left(\alpha^{2}-\beta^{2}-\frac{r}{6}\right) g\left(Y, W_{2}(Z, U) V\right)=0 . \tag{6.5}
\end{equation*}
$$

Again from (2.13) we have $\left(\alpha^{2}-\beta^{2}-\frac{r}{6}\right) \neq 0$. Hence we have

$$
\begin{equation*}
W_{2}(Z, U, V, Y)=0 . \tag{6.6}
\end{equation*}
$$

From the proof of Theorem 4.1 and Corollary 4.1 we have
Theorem 6.1. A 3-dimensional trans-Sasakian manifold satisfying the condition $\tilde{Z}(X, Y) . W_{2}=0$ is an Einstein manifold and hence a manifold of constant curvature $\left(\alpha^{2}-\beta^{2}\right)$, provided $\alpha, \beta=$ constant.

7. 3-DIMENSIONAL TRANS-SASAKIAN MANIFOLDS SATISFYING
 $$
C(X, Y) \cdot W_{2}=0
$$

In this section we characterize the 3 -dimensional trans-Sasakian manifold satisfying the condition

$$
\begin{equation*}
C(X, Y) \cdot W_{2}=0 \tag{7.1}
\end{equation*}
$$

This equation implies

$$
\begin{align*}
C(X, Y) W_{2}(Z, U) V & -W_{2}(C(X, Y) Z, U) V \tag{7.2}\\
& -W_{2}(Z, C(X, Y) U) V-W_{2}(Z, U) C(X, Y) V=0 .
\end{align*}
$$

Putting $X=\xi$ in(7.2) we obtain

$$
\begin{align*}
C(\xi, Y) W_{2}(Z, U) V- & W_{2}(C(\xi, Y) Z, U) V \tag{7.3}\\
& -W_{2}(Z, C(\xi, Y) U) V-W_{2}(Z, U) C(\xi, Y) V=0 .
\end{align*}
$$

Using (2.14) in (7.3), we obtain

$$
\begin{align*}
& \left(\frac{\left(\alpha^{2}-\beta^{2}\right)(n-1)(n-4)+r}{(n-1)(n-2)}\right)\left\{g\left(Y, W_{2}(Z, U) V\right) \xi-g\left(W_{2}(Z, U) V, \xi\right) Y\right. \tag{7.4}\\
& -g(Y, Z) W_{2}(\xi, U) V+\eta(Z) W_{2}(Y, U) V-g(Y, U) W_{2}(Z, \xi) V \\
& \left.\eta(U) W_{2}(Z, U) V-g(Y, V) W_{2}(Z, U) \xi+\eta(V) W_{2}(Z, U) Y\right\}=0
\end{align*}
$$

Taking the inner product with ξ and using (4.2)in (7.5), we have

$$
\begin{equation*}
\left(\frac{\left(\alpha^{2}-\beta^{2}\right)(n-1)(n-4)+r}{(n-1)(n-2)}\right) g\left(Y, W_{2}(Z, U) V\right)=0 . \tag{7.5}
\end{equation*}
$$

Let U_{1} and U_{2} be a part of M satisfying $\left.\left(\alpha^{2}-\beta^{2}\right)(n-1)(n-4)+r\right)=0$ and

$$
\begin{equation*}
W_{2}(Z, U, V, Y)=0 \tag{7.6}
\end{equation*}
$$

This leads to the following:
Theorem 7.1. Let M be a 3-dimensional trans-Sasakian manifold satisfying the condition $C(X, Y) \cdot W_{2}=0$. Then either $\left.\left(\alpha^{2}-\beta^{2}\right)(n-1)(n-4)+r\right)=0$, or M is a manifold of constant curvature $\left(\alpha^{2}-\beta^{2}\right)$, provided $\alpha, \beta=$ constant.

8. 3-Dimensional trans-Sasakian manifolds Satisfying
 $$
S(X, \xi) \cdot R=0
$$

We now consider a 3-dimensional trans-Sasakian manifold satisfying the condition

$$
\begin{equation*}
S(X, \xi) \cdot R=0 \tag{8.1}
\end{equation*}
$$

By definition we have

$$
\begin{align*}
(S(X, \xi) \cdot R)(U, V) Z= & \left(\left(X \wedge_{S} \xi\right) \cdot R\right)(U, V) Z \tag{8.2}\\
= & \left(X \wedge_{S} \xi\right) R(U, V) Z+R\left(\left(X \wedge_{S} \xi\right) U, V\right) Z \\
& +R\left(U,\left(X \wedge_{S} \xi\right) V\right) Z+R(U, V)\left(X \wedge_{S} \xi\right) Z
\end{align*}
$$

where the endomorphism $X \wedge_{S} Y$ is defined by

$$
\begin{equation*}
\left(X \wedge_{S} Y\right) Z=S(Y, Z) X-S(X, Z) Y \tag{8.3}
\end{equation*}
$$

Using the definition of (8.3) in (8.2) we get by virtue of (8.1)

$$
\begin{align*}
& S(\xi, R(U, V) Z) X-S(X, R(U, V) Z) \xi+R(S(\xi, U) X-S(X, U) \xi, V) Z \tag{8.4}\\
+ & R(U, S(\xi, V) X-S(X, V) \xi) Z+R(U, V)\{S(\xi, Z) X-S(X, Z) \xi\}=0
\end{align*}
$$

Taking the inner product of (8.4) by ξ we obtain
$S(\xi, R(U, V) Z) \eta(X)-S(X, R(U, V) Z)+S(\xi, U) \eta R(X, V) Z$

$$
\begin{aligned}
& -S(X, U) \eta(R(\xi, V) Z)+S(\xi, V) \eta(R(U, X) Z-S(X, V) \eta(R(U, \xi) Z) \\
& +S(\xi, Z) \eta(R(U, V) X)-S(X, Z) \eta(R(U, V) \xi)=0
\end{aligned}
$$

Putting $U=Z=\xi$ in (8.5) and using (2.9) and (2.11) we get

$$
\begin{equation*}
S(X, V)=2\left(\alpha^{2}-\beta^{2}\right)^{2} g(X, V)+4\left(\alpha^{2}-\beta^{2}\right)^{2} \eta(X) \eta(V), \tag{8.6}
\end{equation*}
$$

provided $\alpha, \beta=$ constant. This leads to the following:
Theorem 8.1. 3-dimensional trans-Sasakian manifold satisfying the condition $S(X, \xi) \cdot R=0$ is an Einstein manifold, provided $\alpha, \beta=$ constant.

References

[1] D. E. Blair. Contact manifolds in Riemannian geometry. Lecture Notes in Mathematics, Vol. 509. Springer-Verlag, Berlin-New York, 1976.
[2] D. E. Blair. Riemannian geometry of contact and symplectic manifolds, volume 203 of Progress in Mathematics. Birkhäuser Boston, Inc., Boston, MA, 2002.
[3] D. E. Blair and J. A. Oubiña. Conformal and related changes of metric on the product of two almost contact metric manifolds. Publ. Mat., 34(1):199-207, 1990.
[4] D. Chinea and C. González. Curvature relations in trans-Sasakian manifolds. In Proceedings of the XIIth Portuguese-Spanish Conference on Mathematics, Vol. II (Portuguese) (Braga, 1987), pages 564-571. Univ. Minho, Braga, 1987.
[5] D. Chinea and C. Gonzalez. A classification of almost contact metric manifolds. Ann. Mat. Pura Appl. (4), 156:15-36, 1990.
[6] U. C. De and A. Sarkar. On three-dimensional trans-Sasakian manifolds. Extracta Math., 23(3):265-277, 2008.
[7] U. C. De and M. M. Tripathi. Ricci tensor in 3-dimensional trans-Sasakian manifolds. Kyungpook Math. J., 43(2):247-255, 2003.
[8] A. Gray and L. M. Hervella. The sixteen classes of almost Hermitian manifolds and their linear invariants. Ann. Mat. Pura Appl. (4), 123:35-58, 1980.
[9] O. r. Kowalski. An explicit classification of 3-dimensional Riemannian spaces satisfying $R(X, Y) \cdot R=0$. Czechoslovak Math. J., 46(121)(3):427-474, 1996.
[10] J. C. Marrero. The local structure of trans-Sasakian manifolds. Ann. Mat. Pura Appl. (4), 162:77-86, 1992.
[11] J. C. Marrero and D. Chinea. On trans-Sasakian manifolds. In Proceedings of the XIVth Spanish-Portuguese Conference on Mathematics, Vol. I-III (Spanish) (Puerto de la Cruz, 1989), pages 655-659. Univ. La Laguna, La Laguna, 1990.
[12] J. A. Oubiña. New classes of almost contact metric structures. Publ. Math. Debrecen, 32(3-4):187-193, 1985.
[13] G. P. Pokhariyal. Study of a new curvature tensor in a Sasakian manifold. Tensor (N.S.), 36(2):222-226, 1982.
[14] G. P. Pokhariyal and R. S. Mishra. Curvature tensors' and their relativistics significance. Yokohama Math. J., 18:105-108, 1970.
[15] S. S. Shukla and D. D. Singh. On (ϵ)-trans-Sasakian manifolds. Int. J. Math. Anal. (Ruse), 4(49-52):2401-2414, 2010.
[16] Z. I. Szabó. Structure theorems on Riemannian spaces satisfying $R(X, Y) \cdot R=0$. I. The local version. J. Differential Geom., 17(4):531-582 (1983), 1982.
[17] L. Vanhecke and D. Janssens. Almost contact structures and curvature tensors. Kodai Math. J., 4(1):1-27, 1981.
[18] K. Yano and M. Kon. Structures on manifolds, volume 3 of Series in Pure Mathematics. World Scientific Publishing Co., Singapore, 1984.
[19] K. Yano and S. Sawaki. Riemannian manifolds admitting a conformal transformation group. J. Differential Geometry, 2:161-184, 1968.

Received June 9, 2015.

Konnagar High School(H.S.),
68 G.T. Road (West), Konnagar, Hooghly, Pin.712235, West Bengal,
India
E-mail address: krishnendu_de@yahoo.com

[^0]: 2010 Mathematics Subject Classification. 53C15, 53C40.
 Key words and phrases. Trans-Sasakian manifold, W_{2}-curvature tensor, Concircular curvature tensor, Conformal curvature tensor, Einstein manifold.

