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ON A TYPE OF TRANS-SASAKIAN MANIFOLDS

KRISHNENDU DE

Abstract. The object of the present paper is to study 3-dimensional
trans-Sasakian manifolds admitting a W2-curvature tensor. Trans-Sasakian
manifolds satisfying the curvature condition S(X, ξ).R = 0 is also consid-
ered.

1. Introduction

Trans-Sasakian manifolds arose in a natural way from the classification of
almost contact metric structures by Chinea and Gonzales [5] and they appear
as a natural generalization of both Sasakian and Kenmotsu manifolds. Again
in the Gray-Hervella classification of almost Hermite manifolds [8], there ap-
pears a class W4 of Hermitian manifolds which are closely related to locally
conformally Kähler manifolds. An almost contact metric structure on a mani-
fold M is called a trans-Sasakian structure [12] if the product manifold M ×R
belongs to the class W4. The class C6

⊕
C5 ([10],[11]) coincides with the class

of trans-Sasakian structures of type (α,β). In [11], the local nature of the two
subclasses C5 and C6 of trans-Sasakian structures is characterized completely.
In [4], some curvature identities and sectional curvatures for C5 , C6 and trans-
Sasakian manifolds are obtained. It is known that [17] trans-Sasakian struc-
tures of type (0,0) , (0,β) , and (α,0) are cosymplectic, β - Kenmotsu and
α-Sasakian respectively where α, β ∈ R.

The local structure of trans-Sasakian manifolds of dimension n ≥ 5 has been
completely characterized by Marrero [10]. He proved that a trans-Sasakian
manifold of dimension n ≥ 5 is either cosymplectic or α-Sasakian or β-Kenmotsu
manifold. Hence a proper trans-Sasakian manifold exists only for three dimen-
sion. Three-dimensional trans-Sasakian manifolds have been studied by De
and Tripathi [7], De and Sarkar [6], Shukla and Singh [15], and many others.

On the other hand, Pokhariyal and Mishra [14] have introduced new tensor
fields, called W2 and E-tensor fields, in a Riemannian manifold, and studied
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their properties. Then, Pokhariyal [13] has studied some properties of this
tensor fields in a Sasakian manifold. Recently, De and Sarkar [10] have studied
P -Sasakian manifolds admitting W2 tensor field.

The curvature tensor W2 is defined by

(1.1) W2(X, Y, U, V ) = R(X, Y, U, V )

+
1

n− 1
[g(X,U)S(Y, V )− g(Y, U)S(X, V ),

where S is a Ricci tensor of type (0,2). The notion of the quasi-conformal
curvature tensor was introduced by Yano and Sawaki [19]. According to them
a quasi-conformal curvature tensor is defined by

(1.2) C̃(X, Y )Z = aR(X,Y )Z + b[S(Y, Z)X − S(X,Z)Y + g(Y, Z)QX

− g(X,Z)QY ]− r

n
[

a

n− 1
+ 2b][g(Y, Z)X − g(X,Z)Y ],

where a and b are non-zero constants, R is the curvature tensor, S is the Ricci
tensor, Q is the Ricci operator defined by S(X,Y ) = g(QX, Y ) and r is the
scalar curvature of the Riemannian manifold (Mn, g)(n ≥ 3). If a = 1 and
b = − 1

n−2
, then (1.2) takes the form

(1.3) C̃(X, Y )Z = R(X, Y )Z − 1

n− 2
[S(Y, Z)X − S(X,Z)Y + g(Y, Z)QX

− g(X,Z)QY ] +
r

(n− 1)(n− 2)
[g(Y, Z)X − g(X,Z)Y ] = C(X, Y )Z,

where C is the conformal curvature tensor [18].
On the other hand, the concircular curvature tensor Z̃ in a Riemannian

manifold is defined by

(1.4) Z̃(X, Y )U = R(X, Y )U − r

n(n− 1)
(g(Y, U)X − g(X,U)Y ).

Again an trans-Sasakian manifold is called Einstein if the Ricci tensor S is of
the form S = λg, where λ is a constant.

The paper is organized as follows: In section 2, some preliminary results
are recalled. After preliminaries in section 3, we construct some examples of
3-dimensional trans-Sasakian manifold. Then we have studied a 3-dimensional
trans-Sasakian manifold satisfying W2 = 0. In the next section, we have
studied W2-semisymmetric 3-dimensional trans-Sasakian manifolds. Also, we
have classified 3-dimensional trans-Sasakian manifolds satisfying Z̃.W2 = 0
and C.W2 = 0. Finally we prove that a 3-dimensional trans-Sasakian manifold
satisfying the condition S(X, ξ).R = 0 is an Einstein manifold, provided α, β =
constant.
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2. Preliminaries

LetM be a connected almost contact metric manifold with an almost contact
metric structure (ϕ,ξ,η,g),that is, ϕ is an (1,1) tensor field, ξ is a vector field
,η is a 1-form and g is a compatible Riemannian metric such that

(2.1) ϕ2(X) = −X + η(X)ξ, η(ξ) = 1, ϕξ = 0, ηϕ = 0

(2.2) g(ϕX, ϕY ) = g(X, Y )− η(X)η(Y )

(2.3) g(X,ϕY ) = −g(ϕX, Y ), g(X, ξ) = η(X)

for all X and Y tangent to M([1],[2]).
The fundamental 2-form Φ of the manifold is defined by

(2.4) Φ(X, Y ) = g(X,ϕY )

for all X and Y tangent to M .
An almost contact metric structure (ϕ,ξ,η,g) on a connected manifold M

is called a trans-Sasakian structure [12] if ( M × R, J ,G) belongs to the
class W4 [8], where J is the almost complex structure on M × R defined by
J(X, f d

df
) = (ϕX − fξ, η(X) d

dt
), for any vector fields X on M , f is a smooth

function on M × R and G is the product metric on M × R. This may be
expressed by the condition [3]

(2.5) (∇Xϕ)Y = α(g(X,Y )ξ − η(Y )X) + β(g(ϕX, Y )ξ − η(Y )ϕX)

for smooth functions α and β on M . Hence we say that the trans-Sasakian
structure is of type (α,β). From (2.5) it follows that

(2.6) ∇Xξ = −α(ϕX) + β(X − η(X)ξ),

(2.7) (∇Xη)Y = −αg(ϕX, Y ) + βg(ϕX, ϕY ).

An explicit example of a 3-dimensional proper trans-Sasakian manifold is
constructed in [10]. In [7], Ricci tensor and curvature tensor for 3-dimensional
trans-Sasakian manifolds are studied and their explicit formulae are given.

From [7] we know that for a 3-dimensional trans-Sasakian manifold

(2.8) 2αβ + ξα = 0,

(2.9) S(X, ξ) = (2(α2 − β2)− ξβ)η(X)−Xβ − (ϕX)α,

(2.10) S(X,Y ) = (
r

2
+ ξβ − (α2 − β2))g(X,Y )

− (
r

2
+ ξβ − 3(α2 − β2))η(X)η(Y )

− (Y β + (ϕY )α)η(X)− (Xβ + (ϕX)α)η(Y ),



94 KRISHNENDU DE

(2.11) R(X,Y )ξ = (α2 − β2)(η(Y )X − η(X)Y )− η(Y )(Xβ)ξ + ϕ(X)αξ

+ η(X)(Y β)ξ + ϕ(Y )αξ − (Y β)X + (Xβ)Y − (ϕ(Y )α)X + (ϕ(X)α)Y,

and

R(X,Y )Z = (
r

2
+ 2ξβ − 2(α2 − β2))(g(Y, Z)X − g(X,Z)Y(2.12)

−g(Y, Z)[(
r

2
+ ξβ − 3(α2 − β2))η(X)ξ

−η(X)(ϕ gradα− grad β) + (Xβ + (ϕX)α)ξ]

+g(X,Z)[(
r

2
+ ξβ − 3(α2 − β2))η(Y )ξ

−η(Y )(ϕ gradα− grad β) + (Y β + (ϕY )α)ξ]

−[(Zβ + (ϕZ)α)η(Y ) + (Y β + (ϕY )α)η(Z)

+
r

2
+ ξβ − 3(α2 − β2))η(Y )η(Z)]X

+[(Zβ + (ϕZ)α)η(X) + (Xβ + (ϕX)α)η(Z)

+
r

2
+ ξβ − 3(α2 − β2))η(X)η(Z)]Y ,

where S is the Ricci tensor of type (0, 2) and R is the curvature tensor of type
(1, 3) and r is the scalar curvature of the manifold M.
In a 3-dimensional trans-Sasakian manifold, using (2.9), (2.11) and (2.13),
equation (1.3) and (1.4) reduce to

(2.13) Z̃(ξ,X)Y = (α2 − β2 − r

6
){g(X, Y )ξ − η(Y )X},

(2.14) C(ξ, Y )W =
(α2 − β2)(n− 1)(n− 4) + r

(n− 1)(n− 2)
{g(Y,W )ξ − η(W )Y }

− 1

(n− 2)
{S(Y,W )ξ − η(W )QY },

respectively.

3. Examples of 3-dimensional trans-Sasakian manifold

Example 3.1. We consider the 3-dimensional manifoldM = {(x, y, z) ∈ R3, z ̸=
0}, where (x, y, z) are standard co-ordinates of R3.

The vector fields

e1 = z(
∂

∂x
+ y

∂

∂z
), e2 = z

∂

∂y
, e3 =

∂

∂z

are linearly independent at each point of M .
Let g be the Riemannian metric defined by

g(e1, e3) = g(e1, e2) = g(e2, e3) = 0,
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g(e1, e1) = g(e2, e2) = g(e3, e3) = 1.

Let η be the 1-form defined by η(Z) = g(Z, e3) for any Zεχ(M).
Let ϕ be the (1, 1) tensor field defined by

ϕ(e1) = e2, ϕ(e2) = −e1, ϕ(e3) = 0.

Then using the linearity of ϕ and g, we have

η(e3) = 1, ϕ2Z = −Z + η(Z)e3, g(ϕZ, ϕW ) = g(Z,W )− η(Z)η(W ),

for any Z,W ∈ χ(M), the set of all smooth vector fields on M .
Then for e3 = ξ, the structure (ϕ, ξ, η, g) defines an almost contact metric

structure on M .
Let ∇ be the Levi-Civita connection with respect to the metric g and R be

the curvature tensor of M . Then we have

[e1, e2] = ye2 − z2e3, [e1, e3] = −1

z
e1 and [e2, e3] = −1

z
e2.

Taking e3 = ξ and using Koszul formula for the Riemannian metric g, we
can easily calculate

∇e1e3 = −1

z
e1 +

1

z2
e2, ∇e1e2 = −1

2
z2e3, ∇e1e1 =

1

z
e3, ∇e2e3 = −1

z
e2 −

1

2
z2e1,

∇e2e2 = ye1 +
1

z
e3, ∇e2e1 =

1

2
z2e3 − ye2,∇e3e3 = 0, ∇e3e2 = −1

2
z2e1,

∇e3e1 =
1

2
z2e2.

From the above it can be easily seen that (ϕ, ξ, η, g) is a trans-Sasakian struc-
ture on M . Consequently M3(ϕ, ξ, η, g) is a trans-Sasakian manifold with
α = −1

2
z2 ̸= 0 and β = −1

z
̸= 0.

Example 3.2. We consider the 3-dimensional manifold M = {(x, y, z) ∈ R3,
(x, y, z) ̸= 0}, where (x, y, z) are standard co-ordinates of R3.

The vector fields

e1 =
∂

∂z
− y

∂

∂x
, e2 =

∂

∂y
, e3 = 2

∂

∂x

are linearly independent at each point of M . Let g be the Riemannian metric
defined by

g(e1, e3) = g(e1, e2) = g(e2, e3) = 0,

g(e1, e1) = g(e2, e2) = g(e3, e3) = 1.

Let η be the 1-form defined by η(Z) = g(Z, e3) for any Z ∈ χ(M). Let ϕ be
the (1, 1) tensor field defined by

ϕ(e1) = −e2, ϕ(e2) = e1, ϕ(e3) = 0.

Then using the linearity of ϕ and g, we have

η(e3) = 1, ϕ2Z = −Z + η(Z)e3, g(ϕZ, ϕW ) = g(Z,W )− η(Z)η(W ),
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for any Z,W ∈ χ(M). Thus for e3 = ξ, the structure (ϕ, ξ, η, g) defines an
almost contact metric structure on M .

Let ∇ be the Levi-Civita connection with respect to the metric g. Then we
have

[e1, e2] = e1e2 − e2e1 = (
∂

∂z
− y

∂

∂x
)
∂

∂y
− ∂

∂y
(
∂

∂z
− y

∂

∂x
) =

∂

∂x
=

1

2
e3.

Similarly,
[e1, e3] = 0 and [e2, e3] = 0.

Taking e3 = ξ and using Koszul formula for the Riemannian metric g, we
can easily calculate

∇e1e3 =
1

4
e2, ∇e1e2 = −1

4
e3, ∇e1e1 = 0,

∇e2e3 = −1

4
e1, ∇e2e2 = 0, ∇e2e1 =

1

4
e3,

∇e3e3 = 0, ∇e3e2 = −1

4
e1, ∇e3e1 =

1

4
e2.

We see that the structure (ϕ, ξ, η, g) satisfies the formula (2.6) for α = 1
4
and

β = 0. Hence the manifold is a trans-Sasakian manifold of type (1
4
, 0).

4. 3-dimensional trans-Sasakian manifolds satisfying W2 = 0

In this section we consider a 3-dimensional trans-Sasakian manifolds satis-
fying W2 = 0. Then we have from (1.1)

(4.1) R(X, Y, U, V ) =
1

n− 1
[g(Y, U)S(X, V )− g(X,U)S(Y, V )].

Using X = U = ξ in (4.1), we have

(4.2) R(ξ, Y, ξ, V ) =
1

n− 1
[g(Y, ξ)S(ξ, V )− g(ξ, ξ)S(Y, V )].

From (2.1), (2.9) and (2.11), we get

(4.3) S(Y, V ) = 2(α2 − β2 − ξβ)g(Y, V ) + (ξβ)η(Y )η(V )

− {(ϕV )α}η(Y )− (V β)η(Y ).

If α and β are constant, then we have

(4.4) S(Y, V ) = 2(α2 − β2)g(Y, V ).

Thus we have the following:

Theorem 4.1. A 3-dimensional trans-Sasakian manifold satisfying W2 = 0 is
an Einstein manifold, provided α, β= constant.

Now using (4.4) in (4.1), we get

(4.5) R(X,Y, U, V ) = (α2 − β2)[g(Y, U)g(X,V )− g(X,U)g(Y, V )].



ON A TYPE OF TRANS-SASAKIAN MANIFOLDS 97

Corollary 4.1. A 3-dimensional trans-Sasakian manifold satisfying W2 = 0
is a manifold of constant curvature (α2 − β2), provided α, β= constant.

5. W2-semisymmetric 3-dimensional trans-Sasakian manifolds

A Riemannian or a semi-Riemannian manifold is said to be semi-symmetric
([16],[9]) if R(X,Y ).R = 0, where R is the Riemannian curvature tensor and
R(X, Y ) is considered as a derivation of the tensor algebra at each point of the
manifold for tangent vectors X,Y . If a Riemannian manifold satisfies

(5.1) R(X,Y ).W2 = 0,

then the manifold is said to be W2 semi-symmetric manifold.

Proposition 5.1. Let M be an 3-dimensional trans-Sasakian manifold. Then
the W2-curvature tensor on M satisfies the condition

(5.2) W2(X,Y, U, ξ) = 0.

From (5.1)we have

(5.3) R(X,Y )W2(Z,U)V −W2(R(X,Y )Z,U)V

−W2(Z,R(X, Y )U)V −W2(Z,U)R(X,Y )V = 0.

This equation implies

(5.4) g(R(X, Y )W2(Z,U)V, ξ)− g(W2(R(X,Y )Z,U)V, ξ)

− g(W2(Z,R(X, Y )U)V, ξ)− g(W2(Z,U)R(X, Y )V, ξ) = 0.

Putting X = ξ in(5.4) we obtain

(5.5) g(R(ξ, Y )W2(Z,U)V, ξ)− g(W2(R(ξ, Y )Z,U)V, ξ)

− g(W2(Z,R(ξ, Y )U)V, ξ)− g(W2(Z,U)R(ξ, Y )V, ξ) = 0.

Using (5.4) in (5.5), we get

− g(Y,W2(Z,U)V )ξ + η(W2(Z,U)V )Y + g(Y, Z)g(W2(ξ, U)V, ξ)(5.6)

− η(Z)g(W2(Y, U)V, ξ) + g(Y, U)g(W2(Z, ξ)V, ξ)− η(U)g(W2(Z, Y )V, ξ)

+ g(Y, V )g(W2(Z,U)ξ, ξ)− η(V )g(W2(Z,U)Y, ξ) = 0.

Taking the inner product with ξ and using (5.2) in (5.7), we obtain

W2(Z,U, V, Y ) = 0.

Then from previous Theorem and Corollary we have

Theorem 5.1. A W2-semisymmetric 3-dimensional trans-Sasakian manifold
is an Einstein manifold and hence a manifold of constant curvature (α2−β2),
provided α, β= constant.
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6. 3-dimensional trans-Sasakian manifolds satisfying
Z̃(X, Y ).W2 = 0

In this section we consider a 3-dimensional trans-Sasakian manifolds satis-
fying the condition

(6.1) Z̃(X,Y ).W2 = 0.

This equation implies

(6.2) Z̃(X,Y )W2(Z,U)V −W2(Z̃(X, Y )Z,U)V

−W2(Z, Z̃(X,Y )U)V −W2(Z,U)Z̃(X,Y )V = 0.

Putting X = ξ in(6.2) we obtain

(6.3) Z̃(ξ, Y )W2(Z,U)V −W2(Z̃(ξ, Y )Z,U)V

−W2(Z, Z̃(ξ, Y )U)V −W2(Z,U)Z̃(ξ, Y )V = 0.

Using (2.13) in (6.3), we obtain

(α2 − β2 − r

6
){g(Y,W2(Z,U)V )ξ − g(W2(Z,U)V, ξ)Y(6.4)

−g(Y, Z)W2(ξ, U)V + η(Z)W2(Y, U)V − g(Y, U)W2(Z, ξ)V

η(U)W2(Z,U)V − g(Y, V )W2(Z,U)ξ + η(V )W2(Z,U)Y } = 0.

Taking the inner product with ξ and using (4.2)in (6.5), we have

(6.5) (α2 − β2 − r

6
)g(Y,W2(Z,U)V ) = 0.

Again from (2.13) we have (α2 − β2 − r
6
) ̸= 0. Hence we have

(6.6) W2(Z,U, V, Y ) = 0.

From the proof of Theorem 4.1 and Corollary 4.1 we have

Theorem 6.1. A 3-dimensional trans-Sasakian manifold satisfying the condi-
tion Z̃(X,Y ).W2 = 0 is an Einstein manifold and hence a manifold of constant
curvature (α2 − β2), provided α, β= constant.

7. 3-dimensional trans-Sasakian manifolds satisfying
C(X, Y ).W2 = 0

In this section we characterize the 3-dimensional trans-Sasakian manifold
satisfying the condition

(7.1) C(X,Y ).W2 = 0.

This equation implies

(7.2) C(X, Y )W2(Z,U)V −W2(C(X,Y )Z,U)V

−W2(Z,C(X,Y )U)V −W2(Z,U)C(X,Y )V = 0.
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Putting X = ξ in(7.2) we obtain

(7.3) C(ξ, Y )W2(Z,U)V −W2(C(ξ, Y )Z,U)V

−W2(Z,C(ξ, Y )U)V −W2(Z,U)C(ξ, Y )V = 0.

Using (2.14) in (7.3), we obtain

(
(α2 − β2)(n− 1)(n− 4) + r

(n− 1)(n− 2)
){g(Y,W2(Z,U)V )ξ − g(W2(Z,U)V, ξ)Y(7.4)

−g(Y, Z)W2(ξ, U)V + η(Z)W2(Y, U)V − g(Y, U)W2(Z, ξ)V

η(U)W2(Z,U)V − g(Y, V )W2(Z,U)ξ + η(V )W2(Z,U)Y } = 0.

Taking the inner product with ξ and using (4.2)in (7.5), we have

(7.5) (
(α2 − β2)(n− 1)(n− 4) + r

(n− 1)(n− 2)
)g(Y,W2(Z,U)V ) = 0.

Let U1 and U2 be a part of M satisfying (α2 − β2)(n− 1)(n− 4) + r) = 0 and

(7.6) W2(Z,U, V, Y ) = 0.

This leads to the following:

Theorem 7.1. Let M be a 3-dimensional trans-Sasakian manifold satisfying
the condition C(X,Y ).W2 = 0. Then either (α2 − β2)(n− 1)(n− 4) + r) = 0,
or M is a manifold of constant curvature (α2 − β2), provided α, β= constant.

8. 3-dimensional trans-Sasakian manifolds satisfying
S(X, ξ).R = 0

We now consider a 3-dimensional trans-Sasakian manifold satisfying the
condition

(8.1) S(X, ξ).R = 0.

By definition we have

(S(X, ξ).R)(U, V )Z = ((X ∧S ξ).R)(U, V )Z(8.2)

= (X ∧S ξ)R(U, V )Z +R((X ∧S ξ)U, V )Z

+R(U, (X ∧S ξ)V )Z +R(U, V )(X ∧S ξ)Z,

where the endomorphism X ∧S Y is defined by

(8.3) (X ∧S Y )Z = S(Y, Z)X − S(X,Z)Y.

Using the definition of (8.3) in (8.2) we get by virtue of (8.1)

(8.4) S(ξ, R(U, V )Z)X − S(X,R(U, V )Z)ξ +R(S(ξ, U)X − S(X,U)ξ, V )Z

+R(U, S(ξ, V )X − S(X, V )ξ)Z +R(U, V ){S(ξ, Z)X − S(X,Z)ξ} = 0.

Taking the inner product of (8.4) by ξ we obtain

S(ξ, R(U, V )Z)η(X)− S(X,R(U, V )Z) + S(ξ, U)ηR(X,V )Z(8.5)
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− S(X,U)η(R(ξ, V )Z) + S(ξ, V )η(R(U,X)Z − S(X, V )η(R(U, ξ)Z)

+ S(ξ, Z)η(R(U, V )X)− S(X,Z)η(R(U, V )ξ) = 0.

Putting U = Z = ξ in (8.5) and using (2.9) and (2.11) we get

(8.6) S(X, V ) = 2(α2 − β2)2g(X, V ) + 4(α2 − β2)2η(X)η(V ),

provided α, β = constant. This leads to the following:

Theorem 8.1. 3-dimensional trans-Sasakian manifold satisfying the condition
S(X, ξ).R = 0 is an Einstein manifold, provided α, β = constant.
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