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ERRATUM TO “NEW APPROACH FOR CLOSURE SPACES
BY RELATIONS”

AMR ZAKARIA

ABSTRACT. In this note, an alleged lemma 3.6 stated in [2] is incorrect
in general, by giving an example. In addition to this point, if the closure
space studied in [2] was T} space, then it is the discrete space (X, P(X)).
As a consequence, Proposition 6.4, Corollary 6.4, Proposition 6.5, Corollary
6.6, Proposition 6.6 and Corollary 6.7 mentioned in [2] are trivially satisfied
without proof.

1. INTRODUCTION

Definition 1. [1] Let X be a nonempty set and R be a binary relation on X.
The minimal neighbourhood of x € X is defined as:

(1) ()r = {pR : z € pR},
where pR ={q € X : (p,q) € R}.

Definition 2. [2] Let R be a binary relation on a nonempty set X. The closure
operation on X, denoted by clg, defined as follows:

(2) cdr(A)=AU{zr e X :(z)pNA#0D}.

Theorem 1. [2] Let R be a binary relation on a nonempty set X. Then a
closure space (X, clgr) is an Alexandrov topological space.

Lemma 1. [3] Let (X, 7) be an Alexandrov Ty-space. Then (X, T) is the dis-
crete space; that is, T = P(X).

Lemma 3.6 in [2] claimed that for any binary relation R on X the following
implication has been satisfied:

z € cdr({y}) =y € (¥)r.
This assertion is wrong in general by giving example.
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2. MAIN RESULTS

The following example shows that the sufficient condition of Lemma 3.6 in
[2] is incorrect in general.

Ezample 1. Let X = {a,b,c,d} and R = {(a,a), (a,b), (b,c),(d,a)}. Then
(ayp = {a}, (b)r = {a,b}, ()r = {c} and (d)r = 0. It’s clear that d €
clr({d}) = {d}, but d & (d) .

Proposition 1. Let R be a binary relation on a nonempty set X. Then any
closure space (X, clg) which is Ty is the discrete space (X, P(X)).

Proof. The result is a direct consequence of Theorem 1 and Lemma 1. 0

Remark 1. 1t should be noted that Proposition 1 implies that Proposition 6.4,
Corollary 6.4, Proposition 6.5, Corollary 6.6, Proposition 6.6 and Corollary 6.7
stated in [2] are trivially satisfied without proof.
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