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33 (2017), 133–146
www.emis.de/journals

ISSN 1786-0091

t−BALANCING NUMBERS, PELL NUMBERS AND
SQUARE TRIANGULAR NUMBERS

AHMET TEKCAN AND AZIZ YAZLA

Abstract. Let t ≥ 2 be an integer. In this work we get all integer solutions
of the Diophantine equation 8r2 + 8tr + 1 = y2 in order to determine the
general terms of all t−balancing numbers for which 2t2 − 1 is prime. Later
we obtain some formulas for the sums of Pell, Pell–Lucas, balancing and
Lucas–balancing numbers in terms of t−balancing numbers and also we
deduce the general terms of all t−balancing numbers in terms of square
triangular numbers.

1. Preliminaries.

A positive integer n is called a balancing number (see [1] and [3]) if the
Diophantine equation

(1.1) 1 + 2 + · · ·+ (n− 1) = (n+ 1) + (n+ 2) + · · ·+ (n+ r)

holds for some positive integer r which is called cobalancing number (or ba-
lancer). If n is a balancing number with balancer r, then from (1.1) one has
(n−1)n

2
= rn+ r(r+1)

2
and so

(1.2) r =
−(2n+ 1) +

√
8n2 + 1

2
and n =

2r + 1 +
√

8r2 + 8r + 1

2
.

Let Bn denote the nth balancing number, and let bn denote the nth cobalan-
cing number. Then B1 = 1, B2 = 6, Bn+1 = 6Bn − Bn−1 and b1 = 0, b2 = 2,
bn+1 = 6bn − bn−1 + 2 for n ≥ 2. The zeros of the characteristic equation
x2− 6x+ 1 = 0 for balancing numbers are α1 = 3 +

√
8 and β1 = 3−

√
8. Ray

derived some nice results on balancing and cobalancing numbers in his Phd
thesis (Balancing and Cobalancing Numbers, Department of Maths., National
Institute of Technology, Rourkela, India, 2009). Since x is a balancing number
if and only if 8x2 + 1 is a perfect square, he set y2 − 8x2 = 1 for some integer
y 6= 0. The fundamental solution is (y1, x1) = (3, 1). So yn+xn

√
8 = (3+

√
8)n
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and similarly yn − xn
√

8 = (3 −
√

8)n for n ≥ 1. Thus xn = (3+
√

8)n−(3−
√

8)n

2
√

8

which is the Binet formula for balancing numbers and is denoted by Bn. Let
α = 1 +

√
2 and β = 1−

√
2 be the roots of the characteristic equation for Pell

(and also Pell–Lucas) numbers defined by P0 = 0, P1 = 1, Pn = 2Pn−1 + Pn−2

(and Q0 = Q1 = 2, Qn = 2Qn−1 + Qn−2) for n ≥ 2. Since α2 = 3 +
√

8

and β2 = 3 −
√

8, the Binet formula for balancing numbers is Bn = α2n−β2n

4
√

2
.

Similarly bn = α2n−1−β2n−1

4
√

2
− 1

2
.

From (1.2), we note that Bn is a balancing number if and only if 8B2
n + 1 is

a perfect square and bn is a cobalancing number if and only if 8b2
n + 8bn + 1 is

a perfect square. Thus

(1.3) Cn =
√

8B2
n + 1 and cn =

√
8b2
n + 8bn + 1

are integers called the nth Lucas–balancing and nth Lucas–cobalancing number.

Their Binet formulas are Cn = α2n+β2n

2
and cn = α2n−1+β2n−1

2
(for further details

see [7, 8, 9, 10]).
Balancing numbers and their generalizations have been investigated by se-

veral authors from many aspects (see [4, 5, 6, 12]). Recently in [2], Dash, Ota
and Dash considered the t−balancing numbers for an integer t ≥ 2. A positive
integer n is called a t−balancing number if

(1.4) 1 + 2 + · · ·+ n = (n+ 1 + t) + (n+ 2 + t) + · · ·+ (n+ r + t)

holds for some positive integer r which is called t−cobalancing (or t−balancer)
number. For example

• 2, 14, 84, 492, 2870, · · · are 0−balancing numbers with 0−balancers 1, 6,
35, 204, 1189, · · · ;
• 5, 34, 203, 1188, 6929, · · · are 1−balancing numbers with 1−balancers

2, 14, 84, 492, 2870, · · · ;
• 3, 8, 25, 54, 153, · · · are 2−balancing numbers with 2−balancers 1, 3, 10,

22, 63, · · · ;
• 6, 11, 45, 74, 272, · · · are 3−balancing numbers with 3−balancers 2, 4, 18,

30, 112, · · · .
(Here we note that 0−and 1−balancing numbers can be given in terms of
balancing numbers, indeed, B0

n = bn+1, b
0
n = Bn, C

0
n = cn+1, c

0
n = Cn and

B1
n = Bn+1−1, b1

n = bn+1, C
1
n = Cn+1, c

1
n = cn+1, that is why it is assumed that

t ≥ 2).
From (1.4) we see that

r =
−(2n+ 2t+ 1) +

√
8n2 + 8n(1 + t) + (2t+ 1)2

2
and(1.5)

n =
(2r − 1) +

√
8r2 + 8tr + 1

2
.
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Let Bt
n denote the nth t−balancing number and let btn denote the nth t−co-

balancing number. Then from (1.5), we see that Bt
n is a t−balancing number

if and only if 8(Bt
n)2 + 8Bt

n(1 + t) + (2t + 1)2 is a perfect square and btn is a
t−cobalancing number if and only if 8(btn)2 + 8tbtn + 1 is a perfect square. So

(1.6) Ct
n =

√
8(Bt

n)2 + 8Bt
n(1 + t) + (2t+ 1)2 and ctn =

√
8(btn)2 + 8tbtn + 1

are integers which are called the nth Lucas t−balancing and nth Lucas t−co-
balancing number.

2. Results.

In the present paper, we want to determine the general terms of all t−balan-
cing numbers. But we first determine the set of all positive integer solutions
of the Diophantine equation

(2.1) 8r2 + 8tr + 1 = y2.

Let us explain why? We note that for giving any t−cobalancing number r,
8r2 + 8tr+ 1 is a perfect square. So we let 8r2 + 8tr+ 1 = y2 for some integer
y 6= 0. Thus from (2.1), we deduce that 2(2r + t)2 − y2 = 2t2 − 1. So putting
x = 2r + t, we get the Pell equation

(2.2) 2x2 − y2 = 2t2 − 1.

Now let ∆ be a positive non–square discriminant and let O∆ = {x + yρ∆ :

x, y ∈ Z}, where ρ∆ =
√

∆
4

if ∆ ≡ 0(mod 4), or 1+
√

∆
2

if ∆ ≡ 1(mod 4). So

O∆ is a subring of Q(
√

∆) = {x + y
√

∆ : x, y ∈ Q}. Then the unit group
O∗∆ is defined to be the group of units of the ring O∆. For the quadratic
form F (x, y) = ax2 + bxy + cy2 of discriminant ∆ = b2 − 4ac, we can write

F (x, y) =

(
xa+y b+

√
∆

2

)(
xa+y b−

√
∆

2

)
a

. So the module MF of F is the O∆−module

MF = {xa + y b+
√

∆
2

: x, y ∈ Z} ⊂ Q(
√

∆). Therefore we get (u + vρ∆)(xa +

y b+
√

∆
2

) = x′a+ y′ b+
√

∆
2

, where

(2.3) [x′ y′] =


[x y]

[
u− b

2
v av

−cv u+ b
2
v

]
if ∆ ≡ 0(mod 4)

[x y]

[
u+ 1−b

2
v av

−cv u+ 1+b
2
v

]
if ∆ ≡ 1(mod 4).

So there is a bijection Ψ : {(x, y) : F (x, y) = m} → {γ ∈ MF : N(γ) = am}
for solving the Diophantine equation F (x, y) = m, that is, ax2+bxy+cy2 = m.
The action of O∗∆,1 = {α ∈ O∗∆ : N(α) = 1} on the set Ω = {(x, y) : F (x, y) =
m} of integral solutions of the equation F (x, y) = m is most interesting when
∆ is a positive non–square since O∗∆,1 is infinite. Therefore the orbit of each
solution will be infinite and so the set Ω is either empty or infinite. Since
O∗∆,1 can be explicitly determined, the set Ω is satisfactorily described by
the representation of such a list, called a set of representatives of the orbits.
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Let ε∆ be the smallest unit of O∆ that is grater than 1 and let τ∆ = ε∆ if
N(ε∆) = 1; or ε2

∆ if N(ε∆) = −1. Then every O∗∆,1 orbit of integral solutions

of F (x, y) = m contains a solution (x, y) ∈ Z2 such that 0 ≤ y ≤ U , where

U =
∣∣amτ∆

∆

∣∣ 1
2 (1 − 1

τ∆
) if am > 0; or U =

∣∣amτ∆
∆

∣∣ 1
2 (1 + 1

τ∆
) if am < 0. So

for finding a set of representatives of the O∗∆,1 orbits of integral solutions of
F (x, y) = m, we must find for each integer y such that 0 ≤ y ≤ U, all integers
x that satisfy F (x, y) = m. If F (x, y) = m, then ∆y2 + 4am = (2ax + by)2

and so x =
−by±
√

∆y2+4am

2a
.

Here we notice that there are one, two, three (maybe or more) sets of rep-
resentatives depending on t for the Pell equation 2x2 − y2 = 2t2 − 1. For
example, for t = 3, the set of representatives is {[±3, 1]}; for t = 5, the set
of representatives is {[±5, 1], [±7, 7]}; for t = 37, the set of representatives
is {[±37, 1], [±41, 25], [±43, 31], [±47, 41]}. To determine all (positive) integer
solutions of 2x2 − y2 = 2t2 − 1 we have to put some restrictions on t. From
now on, we assume that t is an integer such that 2t2 − 1 is a prime.

Theorem 2.1. Let 2t2 − 1 be a prime for an integer t ≥ 2. Then for the Pell
equation 2x2 − y2 = 2t2 − 1, we have

(1) The set of all positive integer solutions is Ω = {(x2n, y2n), (x2n+1, y2n+1)},
where

[x2n+1 y2n+1] = [t 1]Mn for n ≥ 0

[x2n y2n] = [t − 1]Mn for n ≥ 1,

and M =

[
3 4
2 3

]
.

(2) The nth power of M is

Mn =

[
Cn 4Bn

2Bn Cn

]
.

(3) The set of all positive integer solutions can be given in terms of balanc-
ing and Lucas–balancing numbers, that is,

(x2n+1, y2n+1) = (tCn + 2Bn, 4tBn + Cn) for n ≥ 0

(x2n, y2n) = (tCn − 2Bn, 4tBn − Cn) for n ≥ 1

or in terms of Pell numbers, that is,

(x2n+1, y2n+1) = ((P2n + P2n−1)t+ P2n, 2tP2n + P2n + P2n−1)

(x2n, y2n) = ((P2n + P2n−1)t− P2n, 2tP2n − P2n − P2n−1)

for n ≥ 1.

Proof. (1) For the Pell equation 2x2 − y2 = 2t2 − 1, we get τ8 = 3 + 2
√

2 and
8(y2 +2t2−1) is a square only for y = 1 in the range 0 ≤ y ≤ U and in this case
x = ±t. Therefore, we find that there is exactly one O∗8,1 set of representative
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of the orbits and that {[±t 1]} is a set of representatives. [t 1]Mn generates
the solutions (x2n+1, y2n+1) for n ≥ 0 and [t − 1]Mn generates the solutions

(x2n, y2n) for n ≥ 1, where M =

[
3 4
2 3

]
by (2.3). So the set of all positive

integer solutions of 2x2−y2 = 2t2−1 is Ω = {(x2n, y2n), (x2n+1, y2n+1)}, where
[x2n+1 y2n+1] = [t 1]Mn for n ≥ 0 and [x2n y2n] = [t − 1]Mn for n ≥ 1.

(2) We prove it by induction on n. Let us assume that n = 1. Then since
C1 = 3 and B1 = 1, this relation is true. Let us assume that this relation is
satisfied for n− 1, that is,

Mn−1 =

[
Cn−1 4Bn−1

2Bn−1 Cn−1

]
.

Then we get

(2.4) M ·Mn−1 =

[
3Cn−1 + 8Bn−1 12Bn−1 + 4Cn−1

2Cn−1 + 6Bn−1 8Bn−1 + 3Cn−1

]
.

Since 3Cn−1 + 8Bn−1 = Cn, 3Bn−1 + Cn−1 = Bn, Cn−1 + 3Bn−1 = Bn and
8Bn−1 + 3Cn−1 = Cn, (2.4) becomes

M ·Mn−1 =

[
Cn 4Bn

2Bn Cn

]
= Mn.

(3) From (1) and (2), it is easily seen that (x2n+1, y2n+1) = (tCn+2Bn, 4tBn+
Cn) for n ≥ 0 and (x2n, y2n) = (tCn − 2Bn, 4tBn − Cn) for n ≥ 1. The last
assertion is obvious since P2n = 2Bn and P2n + P2n−1 = Cn. �

Hence we can give the following main result.

Theorem 2.2. (1) For balancing numbers, we have

16BnCn + 32B2
n + 2C2

n + 2 = (4bn+1 + 2)2

24BnCn + 32B2
n + 4C2

n = 2cn+1(4bn+1 + 2)

8B2
n + 2C2

n + 8BnCn − 1 = c2
n+1

for n ≥ 1.
(2) The general terms of all t−balancing numbers can be given in terms of

balancing numbers as

Bt
2n−1 =

(4Bn + Cn − 1)t− (2Bn + Cn + 1)

2

bt2n−1 =
(Cn − 1)t− 2Bn

2
Ct

2n−1 = (4bn+1 + 2)t− cn+1

ct2n−1 = 4tBn − Cn

Bt
2n =

(4Bn + Cn − 1)t+ (2Bn + Cn − 1)

2
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bt2n =
(Cn − 1)t+ 2Bn

2
Ct

2n = (4bn+1 + 2)t+ cn+1

ct2n = 4tBn + Cn

for n ≥ 1.
(3) The general terms of balancing numbers can be given in terms of t−ba-

lancing numbers as

Bn =
bt2n − bt2n−1

2
and Cn =

ct2n − ct2n−1

2
for n ≥ 1

bn =
Ct

2n−2 + Ct
2n−3 − 4t

8t
and cn =

Ct
2n−2 − Ct

2n−3

2
for n ≥ 2.

(4) Binet formulas for t−balancing numbers are

Bt
2n−1 = t

(
α2n+1 + β2n+1 − 2

4

)
− α2n+1 − β2n+1 + 2

√
2

4
√

2

bt2n−1 = t

(
α2n + β2n − 2

4

)
− α2n − β2n

4
√

2

Ct
2n−1 = t

(
α2n+1 − β2n+1

√
2

)
− α2n+1 + β2n+1

2

ct2n−1 = t

(
α2n − β2n

√
2

)
− α2n + β2n

2

Bt
2n = t

(
α2n+1 + β2n+1 − 2

4

)
+
α2n+1 − β2n+1 − 2

√
2

4
√

2

bt2n = t

(
α2n + β2n − 2

4

)
+
α2n − β2n

4
√

2

Ct
2n = t

(
α2n+1 − β2n+1

√
2

)
+
α2n+1 + β2n+1

2

ct2n = t

(
α2n − β2n

√
2

)
+
α2n + β2n

2

for n ≥ 1.
(5) The general terms of Pell and Pell–Lucas numbers can be given in terms

of t−balancing numbers as

P2n = bt2n − bt2n−1, P2n+1 =
Ct

2n + Ct
2n−1

4t
,

Q2n =
bt4n − bt4n−1

bt2n − bt2n−1

and Q2n+1 = Ct
2n − Ct

2n−1

for n ≥ 1.
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Proof. (1) Note that Bn = α2n−β2n

4
√

2
, Cn = α2n+β2n

2
and bn = α2n−1−β2n−1

4
√

2
− 1

2
. So

16BnCn + 32B2
n + 2C2

n + 2

= 16(
α2n − β2n

4
√

2
)(
α2n + β2n

2
) + 32(

α2n − β2n

4
√

2
)2 + 2(

α2n + β2n

2
)2 + 2

=
α4n+2 − 2(αβ)2n+1 + β4n+2

2

= 16(
α2n+1 − β2n+1

4
√

2
− 1

2
)2 + 16(

α2n+1 − β2n+1

4
√

2
)− 4

= 16(
α2n+1 − β2n+1

4
√

2
− 1

2
)2 + 16(

α2n+1 − β2n+1

4
√

2
− 1

2
) + 4

= 16b2
n+1 + 16bn+1 + 4 = (4bn+1 + 2)2.

The others can be proved similarly.
(2) Since x = 2r + t, we get from (3) of Theorem 2.1 that

bt2n−1 =
(Cn − 1)t− 2Bn

2
.

Thus from (1.6), we get

ct2n−1 =
√

8(bt2n−1)2 + 8tbt2n−1 + 1

=

√
8(

(Cn − 1)t− 2Bn

2
)2 + 8t(

(Cn − 1)t− 2Bn

2
) + 1

=
√

16t2B2
n − 8tBnCn + C2

n

= 4tBn − Cn
since 8B2

n + 1 = C2
n. So from (1.5), we deduce that

Bt
2n−1 =

(4Bn + Cn − 1)t− (2Bn + Cn + 1)

2
and hence

Ct
2n−1 =

√
8(Bt

2n−1)2 + 8Bt
2n−1(1 + t) + (2t+ 1)2

=

√√√√√√√
8
(

(4Bn+Cn−1)t−(2Bn+Cn+1)
2

)2

+8
(

(4Bn+Cn−1)t−(2Bn+Cn+1)
2

)
(1 + t)

+(2t+ 1)2

=

√√√√√ t2(16BnCn + 32B2
n + 2C2

n + 2)
−t(24BnCn + 32B2

n + 4C2
n)

+(8B2
n + 2C2

n + 8BnCn − 1)

=
√
t2(4bn+1 + 2)2 − 2tcn+1(4bn+1 + 2) + c2

n+1
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= (4bn+1 + 2)t− cn+1

by (1). The others can be proved similarly.

(3) Since bt2n−1 = (Cn−1)t−2Bn
2

and bt2n = (Cn−1)t+2Bn
2

by (2), we easily deduce

that
bt2n−bt2n−1

2
= Bn. The others are similar.

(4) Recall that Bn = α2n−β2n

4
√

2
and Cn = α2n+β2n

2
. So we get from (2) that

Bt
2n−1 =

(4Bn + Cn − 1)t− (2Bn + Cn + 1)

2

=
t
[
4
(
α2n−β2n

4
√

2

)
+ α2n+β2n

2
− 1
]
− 2

(
α2n−β2n

4
√

2

)
− α2n+β2n

2
− 1

2

=
t
(
α2n(1+

√
2)+β2n(1−

√
2)−2

2

)
− α2n(1+

√
2)−β2n(1−

√
2)+2

√
2

2
√

2

2

= t

(
α2n+1 + β2n+1 − 2

4

)
− α2n+1 − β2n+1 + 2

√
2

4
√

2
.

The others can be proved similarly.

(5) Note that bt2n−1 = (Cn−1)t−2Bn
2

and bt2n = (Cn−1)t+2Bn
2

by (2). So

bt2n − bt2n−1 =
(Cn − 1)t+ 2Bn

2
− (Cn − 1)t− 2Bn

2
= P2n

since Bn = P2n

2
. The others can be proved similarly. �

2.1. Sums. In this subsection, we consider the sums of numbers we mentioned
above.

Theorem 2.3. (1) For the sums of t−balancing numbers, we have

n∑
i=1

Bt
i = (Bn+2

2
+ bn+2

2
− n+ 2

2
)t− n

2

n∑
i=1

bti = (Bn
2

+ bn+2
2
− n

2
)t

n∑
i=1

Ct
i = (3Bn+2

2
+Bn

2
+ 2bn+2

2
− 3)t

n∑
i=1

cti = 4bn+2
2
t

for even n ≥ 2 or

n∑
i=1

Bt
i = (Bn+3

2
−Bn+1

2
− n+ 3

2
)t− bn+3

2
− n+ 1

2
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n∑
i=1

bti = (2Bn+1
2
− n+ 1

2
)t−Bn+1

2

n∑
i=1

Ct
i = (bn+5

2
− bn+1

2
− 4)t− 2Bn+3

2
+ 2bn+3

2
+ 1

n∑
i=1

cti = 4(Bn+1
2

+ bn+1
2

)t− 2Bn+1
2
− 2bn+1

2
− 1

for odd n ≥ 1.
(2) For the sums of Pell numbers, we have

n∑
i=1

P2i−1 =
bt2n − bt2n−1

2

n∑
i=1

P2i =
Ct

2n + Ct
2n−1 − 4t

8t

2n∑
i=0

P2i+1 =
(Ct

2n + Ct
2n−1)(Ct

2n − Ct
2n−1)

8t

2n∑
i=1

P2i =
(bt2n − bt2n−1)(Ct

2n − Ct
2n−1)

2

2n∑
i=0

(P2i+1 + P2i+2) =
(ct2n+2 − ct2n+1)(Ct

2n − Ct
2n−1)

4
.

(3) For the sums of Pell–Lucas numbers, we have

2n∑
i=0

Qi =
2(bt4n+2 − bt4n+1)

Ct
2n − Ct

2n−1

2n∑
i=1

Q2i =
(bt2n − bt2n−1)(Ct

2n + Ct
2n−1)

t
.

(4) For the sums of balancing numbers, we have

2n∑
i=1

Bi =
(bt2n − bt2n−1)(Ct

2n − Ct
2n−1)

4

2n∑
i=1

B2i =
(bt2n − bt2n−1)(ct2n − ct2n−1)(bt4n+2 − bt4n+1)

4

2n∑
i=1

(Bi +Bi+1) = 2(bt2n − bt2n−1)(bt2n+2 − bt2n+1)
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2n∑
i=0

B2i+1 =
(Ct

2n + Ct
2n−1)(Ct

2n − Ct
2n−1)(bt4n+2 − bt4n+1)

16t

2n∑
i=0

(B2i+1 +B2i+2) =
(Ct

4n+2 − Ct
4n+1)(bt4n+2 − bt4n+1)

4
.

(5) For the sums of Lucas–cobalancing numbers, we have

2n+1∑
i=1

ci+1 =
(Ct

2n − Ct
2n−1)(Ct

2n+2 − Ct
2n+1)

4

2n+1∑
i=1

c2i+1 =
(Ct

2n − Ct
2n−1)(Ct

2n + Ct
2n−1)(Ct

4n+4 − Ct
4n+3)

16t
.

Proof. (1) Let n be even, say n = 2k for an integer k ≥ 1. Then from (4) of
Theorem 2.2, we easily get

2k∑
i=1

Bt
i = Bt

1 +Bt
2 + · · ·+Bt

2k

=

[(
α3 + β3 − 2

4

)
t− α3 − β3 + 2

√
2

4
√

2

]

+

[(
α3 + β3 − 2

4

)
t+

α3 − β3 − 2
√

2

4
√

2

]

+ · · ·+

[(
α2k+1 + β2k+1 − 2

4

)
t− α2k+1 − β2k+1 − 2

√
2

4
√

2

]

=

(
α3 + α5 + · · ·+ α2k+1 + β3 + β5 + · · ·+ β2k+1

2
− k
)
t− k

=

(
α2k+2 − β2k+2

4
√

2
+
α2k+1 − β2k+1

4
√

2
− 1

2
− 2k + 2

2

)
t− k

=

(
Bn+2

2
+ bn+2

2
− n+ 2

2

)
t− n

2
.

The others can be proved similarly. �

In [11], Santana and Diaz–Barrero proved that the sum of first nonzero 4n+1
terms of Pell numbers is a perfect square, that is,

(2.5)
4n+1∑
i=1

Pi =

(
n∑
i=0

(
2n+ 1

2i

)
2i

)2

.

Later in [13, Theorem 2.1], Tekcan and Tayat proved that the sum of first
nonzero 2n+ 1 terms of Pell numbers is a perfect square if n is even or half of
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a perfect square if n is odd, that is,

2n+1∑
i=1

Pi =


(
αn+1+βn+1

2

)2

for even n(
αn+1−βn+1

√
2

)2

2
for odd n.

They set Xn = αn+1+βn+1

2
and Yn = αn+1−βn+1

√
2

for n ≥ 0 and proved that the

right hand side of (2.5) is (2X2
n− 2XnYn−1 + (−1)n+1)2. Similarly, we can give

the following theorem.

Theorem 2.4. Let Pn denote the nth Pell number, let Qn denote the nth Pell–
Lucas number and let Bn denote the nth balancing number. Then

(1) The sum of Pell numbers from 1 to 4n− 3 is a perfect square and is

4n−3∑
i=1

Pi =

(
Ct

2n−2 − Ct
2n−3

2

)2

for n ≥ 2.
(2) The sum of Pell numbers from 1 to 4n − 1 and adding 1 is a perfect

square and is

1 +
4n−1∑
i=1

Pi =

(
ct2n − ct2n−1

2

)2

for n ≥ 1.
(3) The sum of Pell numbers from 1 to 2n− 1 is a perfect square and is

2n−1∑
i=1

Pi =

(
Ct
n−1 − Ct

n−2

2

)2

for odd n ≥ 3, and the half of the sum of Pell numbers from 1 to 2n−1
is a perfect square and is

2n−1∑
i=1

Pi

2
=
(
btn − btn−1

)2

for even n ≥ 2.
(4) The sum of (2i − 1)st Pell–Lucas numbers from 1 to 2n is a perfect

square and is

2n∑
i=1

Q2i−1 =
(
2(bt2n − bt2n−1)

)2

for n ≥ 1.
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(5) The half of the sum of (2i+ 1)st Pell–Lucas numbers from 0 to 2n is a
perfect square and is

2n∑
i=0

Q2i+1

2
=

(
Ct

2n − Ct
2n−1

2

)2

for n ≥ 1.
(6) The sum of (2i−1)st balancing numbers from 1 to 2n is a perfect square

and is
2n∑
i=1

B2i−1 =

(
bt4n − bt4n−1

2

)2

for n ≥ 1.

Proof. (1) Note that Pn = αn−βn
α−β and

n∑
i=1

Pi = Pn+Pn+1−1
2

. So

4n−3∑
i=1

P2i−1 =
P4n−3 + P4n−2 − 1

2

=

α4n−3−β4n−3

2
√

2
+ α4n−2−β4n−2

2
√

2
− 1

2

=
α4n−2 + β4n−2 − 2

4

=

(
(4bn + 2)t+ cn − (4bn + 2)t+ cn

2

)2

=

(
Ct

2n−2 − Ct
2n−3

2

)2

by (2) of Theorem 2.2. The other cases can be proved similarly. �

2.2. Relationship with Triangular Numbers. In this subsection, we con-
sider the relationship between t−balancing numbers and triangular numbers

which are the numbers of the form Tn = n(n+1)
2

for n ≥ 0. There are infin-
itely many triangular numbers that are also square numbers which are called
square triangular numbers and is denoted by Sn. For the nth square triangular
number Sn, we can write

Sn = s2
n =

tn(tn + 1)

2
,

where sn and tn are the sides of the corresponding square and triangle.
In the following theorem, we can give the general terms of sn, tn and Sn in

terms of t−balancing numbers and contrary, we can give the general terms of
all t−balancing numbers in terms of squares and triangles.
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Theorem 2.5. (1) The general terms of sn, tn and Sn are

sn =
bt2n − bt2n−1

2
, tn =

ct2n − ct2n−1 − 2

4
, Sn = (

Ct
2n − Ct

2n−1 − bt2n+2 + bt2n+1

2
)2

for n ≥ 1.
(2) The general terms of all t−balancing numbers are

Bt
2n−1 = (tn + 2sn)t− (sn + tn + 1)

bt2n−1 = tnt− sn
Ct

2n−1 = (4sn + 4tn + 2)t− (sn + sn+1)

ct2n−1 = 4snt− (2tn + 1)

Bt
2n = (tn + 2sn)t+ (sn + tn)

bt2n = tnt+ sn

Ct
2n = (4sn + 4tn + 2)t+ (sn + sn+1)

ct2n = 4snt+ (2tn + 1)

for n ≥ 1.

Proof. (1) Since sn = α2n−β2n

4
√

2
, tn = α2n+β2n−2

4
and Sn = (α

2n−β2n

4
√

2
)2, we deduce

from (4) of Theorem 2.2 that

sn =
α2n − β2n

4
√

2

=

(
t
(
α2n+β2n−2

4

)
+ α2n−β2n

4
√

2

)
−
(
t
(
α2n+β2n−2

4

)
− α2n−β2n

4
√

2

)
2

=
bt2n − bt2n−1

2

and

tn =
α2n + β2n − 2

4

=

(
t
(
α2n−β2n
√

2

)
+ α2n+β2n

2

)
−
(
t
(
α2n−β2n
√

2

)
− α2n+β2n

2

)
− 2

4

=
ct2n − ct2n−1 − 2

4
.

Similarly it can be showed that Sn =
(
Ct2n−Ct2n−1−bt2n+2+bt2n+1

2

)2

.

(2) We get from (2) and (4) of Theorem 2.2 that

Bt2n−1 =
(4Bn + Cn − 1)t− (2Bn + Cn + 1)

2

=

[
4
(
α2n−β2n

4
√
2

)
+ α2n+β2n

2 − 1
]
t−
[
2
(
α2n−β2n

4
√
2

)
+ α2n+β2n

2 + 1
]

2
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=

(
α2n+1 + β2n+1 − 2

4

)
t−

(
α2n+1 − β2n+1 + 2

√
2

4
√

2

)

=

(
α2n + β2n − 2 +

√
2α2n −

√
2β2n

)
t

4
− α2n − β2n +

√
2α2n +

√
2β2n + 2

√
2

4
√

2

=

(
α2n + β2n − 2

4
+
α2n − β2n

2
√

2

)
t−
(
α2n − β2n

4
√

2
+
α2n + β2n − 2

4
+ 1

)
= (tn + 2sn)t− (sn + tn + 1).

The others can be proved similarly. �
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