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SINGULAR PERTURBATION TECHNIQUES FOR THE SOLUTE
TRANSPORT EQUATION IN UNSATURATED POROUS MEDIA

KAMEL AL-KHALED *

Abstract. In this paper we formulate a system of partial differential equations that models the
contamination of groundwater due to migration of dissolved contaminants through unsaturated to
saturated zone. A closed form solution using singular perturbation techniques for the water flow and
solute transport equations in the unsaturated zone is given. Indeed, the solution can be used as a
tools to verify the accuracy of numerical models of water flow and solute transport.

1. Introduction. Analysis and prediction of solute transport in hydroge-
ologic systems generally involve the use of some form of the advection-dispersion
equation. Dispersivity (i.e., the spreading of a tracer or a solute carried by a fluid
flowing in a porous medium) has traditionally been considered and a constant for the
entire medium (see, [2]). De Marsily [5] points out that breakthough curves moni-
tored at different distances from the source cannot, in general, be matched optimally
with a single dispersivity value, and that optimal dispersivities seem to increase with
distance of the observation point from the source.

The movement of water and solutes through the unsaturated zone has been of
importance in traditional applications of groundwater hydrology, soil physics, and
agronomy. In recent years, the need to understand the behavior of hazardous waste
and toxic chemicals in soils has resulted in a renewed interest in this subject. One
of the primary concerns is that dissolved contaminants may migrate through the
unsaturated zone, reach the saturated zone, and contaminate the groundwater.

Additionally, movement of solutes or pesticides should be identified before their
application in agriculture, to prevent any pollution. Therefore, mathematical models
are useful tools for a first assessment of the expected concentration in groundwa-
ter, which may enable identification of the pesticides with the highest contamination
potential.

The search for solutions to model water flow and solute transport continues to be
of scientific interest. Typically, water flow and solute transport in unsaturated soils
result in transient phenomena, making it a challenging problem. The nature of soil
hydraulic conductivity renders the governing flow equation nonlinear.

In recent years, several analytical methods were developed to simulate water
movement and solute transport in the unsaturated zone, for more details see [1, 3,
9, 10]. Although much progress has already been made in solving the problems of
transient water flow in unsaturated and saturated porous flow media, many new
developments have been made by numerical investigations in recent years [6]. A
large number of numerical solution are generally approached by a finite-difference
approximation [8], or by a finite element methods [11].

The objective of this paper is to capitalize on these features of that analytical
flow model and extend its use to simulate contaminant movement in soils to that a
complete, closed form approximate solution for solute transport in the unsaturated
zone is achieved using singular perturbation techniques.
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In the next section, the solute transport problem is stated mathematically. The
solution using the method of singular perturbation techniques is incorporated in sec-
tion 3. The perturbation solution is tested and the concentration of solute in the soil
is determined in section 4.

2. Governing Equations. The traditional approach to describing solute
transport through soil is based on the advection-dispersion equation. In one dimen-
sion, the theoretical basis for modeling the liquid phase water movement in unsatu-
rated porous media can be described by a combination of the Darcy’s law and the
equation of continuity, (see, [5, Ch. 10],[3]) as:

0 o? 0

ac(m,t) = Dﬁc(m,t) - v%c(x,t) —Ac(z,t), >0, t>0.
where t is the time, x is the horizontal distance taken zero at the soil center and
measured positive to the right of the soil center; ¢(z,t) is the solute concentration
(mass of solute over volume of solute) at time ¢, distance z; D is the soil-water
diffusivity; v is the average velocity and A is the decay coefficient (1/time). The
contamination in groundwater can be calculated by means of equation (2.1). July
and Roth [7] derived the solution of this equation for a Dirac-é pulse applied to the
soil surface.

We now consider the behavior of contamination in a saturated zone with zero
initial concentration, i.e.,

(2.1)

(2.2) c(z,0) =0, =z >0.
and at = 0 a periodic infiltration rate is prescribed as:
(2.3) ¢(0,t) = co(l + sinwt), t>0.

where ¢y is the constant concentration at the entrance of the medium (z = 0) pre-
scribed from ¢ = 0.

3. Perturbation Approximation of the Model. The solute transport
equation (2.1) along with the two supplementary conditions (2.2), and (2.3) are the
mathematical modeling for the unknown concentration c(z,t). We now scale this
mathematical problem by selecting characteristic values for the dependent and inde-
pendent variables. Consequently, we define dimensionless variables by

P t 7= z o= c
D YD
Reformulating the problem in terms of these scaled variables easily gives the scaled
problem

(3.1) 2c(ac t) = ea—zc(w t) — ic(av t) —c(z,t), >0, t>0
- 6t ) - 8.7:2 7 am ? 7 ) ) -

(3.2) ¢(z,0) =0, t>0.

(3.3) c(0,t) =1+sinQt, ¢t > 0.

where Q = w/)\ and assumed to be O(1), and € = AD/v? << 1.
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A careful examination of the problem (3.1) will show that went wrong and point
the way toward a correct, singular perturbation method for obtaining an approximate
solution. To get the outer solution, denoted by c¢°(z,t), the unperturbed problem
found by setting e =0 is

(3.4) —c(z,t) + %c"(x,t) = —c°(z,t)

and using the characteristic method, the solution is given by c°(z,t) = ne~* on the
lines z — t = constant where n = constant. To satisfy both the initial condition
c°(z,0) = 0 and the boundary condition ¢°(0,t) = 1 + sin Qt = ¢,(¢), it is obviously
that for z > ¢, ¢°(z,t) = 0. For z < t, the characteristic back from (z,t) to (0,7) is
x=1t—7,and so c°(z,t) = cp(7)e” ¢, i.e., the outer solution is given by

0, x>t
ot—x)e ™, <t

(3.5) (z,t) = {

We should remark that along z = ¢ the solution does not match. We will focus in
along x = t, where we will put a boundary layer and solve the inner problem, denote
the inner solution by c¢!(z,t).

In the characteristic coordinates 7 = t—x, n = = and passing a simple calculations
equation (3.1) becomes

2 2 62

0 0
(36) 66_1720(7777-) - 2667767'0(77,7—) + Gwc(nﬂ') - 6_770(77:7') - c(naT) =0

where now the layer is along 7 = 0. It is easy to show that the layer has width +/e.
The scale transformation is then 7 = 7/4/€, and the partial differential equation (3.6)
becomes

2 2 62 o

o d
. I _e(n,7) =2 A+ 2 (. F) — (0. F) — e(n. 7) =
3.7) 68n26(n,7) \/Eanaf6(n,7)+ 572¢n,7) 8n0(n,r) c(n,7) =0

To leading order, set € = 0 we get the diffusion equation

0 . 7_62A _ Y
a—nc(nﬂ') = WC(TLT) — &, 7)

which can be solved via the transformation é(n, 7) = ue™" to get
. T/Ve
—{1
étn.r) = l+erf (5 )je

Therefore

. 1 t—x
cx,t)=={l+erf| — )} °
@0 =glrers (L2))
Finally, to obtain a composite expansion that is uniformly valid in the domain
we note that the sum of the outer and the inner approximations is

) L terf(t22)le?, x>t
(3.8) (1) +ci(z,t) = a Vine J
2{1+erf = )}e " +ep(t —z)e™, w <t
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Fi1Gc. 1. The concentration in the saturated zone.

Hence, by subtracting the common limit in the overlap domain, which has value
0 for z > t, and e * for z < t, we have the approximate solution

(39)  c(z,1) Hiers (72 )be, z>1
. c(z,t) =
{l+erf (\Z%)}e‘m-l—cb(t—x)e_m—e_m, z <t

Therefore, we have obtained an approximate form of the concentration c¢(z,t) for
z>0, t>0.

4. Results and Discussion. In this section, the perturbation solution formu-
lated here is tested, and the solution of Equation (2.1) for the concentration ¢(z,t) of
solute in the soil is determined without iterative steps commonly used in numerical
schems. The input requirement for the perturbed simulation includes, the diffusivity
D; the average velocity v; the decaying coefficient A. For the sake of illustration, we
choose D = 0.05m?/yr, v = 1m/yr, and A = 9.29yr~'. The boundary condition is
¢(0,t) = 1 + sin 8¢, and thus Q = 0.861, ¢ = 0.4645. Figure 1 shows the concentra-
tion in the saturated zone as a function of time, calculated with Equation (3.9). The
concentration ¢(z,t) in equation (3.9) accounts for a pulse entering the coupled un-
saturated /saturated system as ¢t = 0. The results in Figure 1 indicate that the pulse
inputs yield a large time limit for which the maximum and minimum concentration
do not increase anytime.

5. Conclusion. The preliminary results obtained by the model are encouraging
and allow us to be optimistic regarding its application. It has the advantage of being
easy to use, because of the relative simplicity of the calculations, easily and needing
few resources. The resent approach may be extended to more complex cases, such
as three-dimensional flow dispersion of real tracers, and dispersion with radioactive
decay or chemical reactions.
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